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When is the limit equal to the supremum norm of f?

OVIDIU FURDUI and HUIZENG QIN

ABSTRACT. If f is a nonnegative continuous function on [0, 1] we investigate the problem when is

lim
n→∞

n
√∫ 1

0 f(x)f(x2) · · · f(xn)dx equal to the supremum norm of f . This problem is motivated by a prob-

lem in classical analysis which states that if f is a continuous function on [a, b] then the following equality holds

lim
n→∞

n
√∫ b

a |f(x)|ndx = ‖f‖∞.

1. INTRODUCTION AND THE MAIN RESULT

It is a problem in classical analysis to show, (see [1]), that if f is a continuous function

on [a, b] then lim
n→∞

n

√∫ b
a
|f(x)|ndx = ‖f‖∞. Motivated by this problem we let f : [0, 1] →

[0,∞) be a continuous function and we investigate the problem when is

lim
n→∞

n

√∫ 1

0

f(x)f(x2) · · · f(xn)dx = ‖f‖∞. (1.1)

We prove that equality holds in (1.1) provided that f attains its maximum at 0 or 1, and for
the contrary case we give an example where equality (1.1) fails to hold. Our main result
is the following theorem.

Theorem 1.1. Let f : [0, 1] → [0,∞) be a continuous function that attains its maximum either
at 0 or at 1. Then

lim
n→∞

n

√∫ 1

0

f(x)f(x2) · · · f(xn)dx = ‖f‖∞.

Remark 1.1. It is interesting to study whether equality (1.1) still holds whenever f is a
function that does not attain its maximum at 0 or 1. We conjecture that, in this case, strict
inequality holds in (1.1) and we give below an example in favor of this conjecture.

2. PROOF OF THE MAIN RESULT

Proof. Let M = ‖f‖∞. If M = 0 the equality to prove follows by triviality so we consider

the case whenM > 0. We have n

√∫ 1

0
f(x)f(x2) · · · f(xn)dx ≤M. Thus, it suffices to prove

that

lim
n→∞

n

√∫ 1

0

f(x)f(x2) · · · f(xn)dx ≥M.

First we consider the case when f attains its maximum at 1, i.e.,M = f(1). Let 0 < ε < M .
Using the continuity of f at 1 we get that there is δ = δ(ε) > 0 such thatM−ε ≤ f(x) ≤M
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for all δ ≤ x ≤ 1. Since the functions x → f(xk), k = 1, . . . , n, also attain their maximum
at 1 we have that M − ε ≤ f(xk) ≤M for k

√
δ ≤ x ≤ 1. On the other hand, since δ < 1 and

δ <
√
δ < · · · < n

√
δ, we have that for all k = 1, . . . , n, one has M − ε ≤ f(xk) ≤ M, for

n
√
δ ≤ x ≤ 1. Thus,∫ 1

0

f(x)f(x2) · · · f(xn)dx ≥
∫ 1

n√
δ

f(x)f(x2) · · · f(xn)dx ≥ (M − ε)n
(
1− n
√
δ
)
,

and it follows that

n

√∫ 1

0

f(x)f(x2) · · · f(xn)dx ≥ (M − ε) n

√
1− n
√
δ.

Using that lim
n→∞

n
√
1− n
√
δ = 1, we get that

lim
n→∞

n

√∫ 1

0

f(x)f(x2) · · · f(xn)dx ≥M − ε,

and since ε was arbitrary taken the result follows.
Now we consider the case when f attains its maximum at 0, i.e., M = f(0).

Let 0 < ε < f(0) be fixed. Using the continuity of f at 0 we get that there is δ > 0 such
that 0 < f(0) − ε < f(x) < f(0) for all 0 < x < δ. Since xk < x for k ∈ N and x ∈ (0, δ)
one has that f(xk) > f(0)− ε > 0. We have

n

√∫ 1

0

f(x)f(x2) · · · f(xn)dx ≥ n

√∫ δ

0

f(x)f(x2) · · · f(xn)dx. (2.2)

It follows, based on Bernoulli’s integral inequality ([2, Corolar 4, p. 8]), that

n

√∫ δ

0

f(x)f(x2) · · · f(xn)dx ≥

(∫ δ

0

dx

) 1
n−1

·
∫ δ

0

n
√
f(x)f(x2) · · · f(xn)dx

= δ
1
n−1

∫ δ

0

n
√
f(x)f(x2) · · · f(xn)dx.

(2.3)

Combining (2.2) and (2.3) we obtain that

n

√∫ 1

0

f(x)f(x2) · · · f(xn)dx ≥ δ 1
n−1 ·

∫ δ

0

n
√
f(x)f(x2) · · · f(xn)dx. (2.4)

We prove that

lim
n→∞

∫ δ

0

n
√
f(x)f(x2) · · · f(xn)dx = δ · f(0) (2.5)

Let
hn(x) =

n
√
f(x)f(x2) · · · f(xn), x ∈ (0, δ),

and let v be the constant function v(x) = M = f(0). Then hn(x) ≤ v(x) for all x ∈ (0, δ).

On the other hand, lnhn(x) =
1

n

n∑
k=1

ln f(xk), and note that ln is well defined since f(xk) >

0 for x ∈ (0, δ). It follows, based on Cesaro Stolz Lemma, ([4, Glossary, p. 435]), that

lim
n→∞

lnhn(x) = lim
n→∞

ln f(xn+1) = ln f(0).
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Thus, lim
n→∞

hn(x) = f(0) and equality (2.5) follows based on Lebesgue Convergence The-
orem ([3, Theorem 16, p. 91]). Combining (2.4) and (2.5) we obtain that

lim
n→∞

n

√∫ 1

0

f(x)f(x2) · · · f(xn)dx ≥ lim
n→∞

(
δ

1
n−1 ·

∫ δ

0

n
√
f(x)f(x2) · · · f(xn)dx

)
= f(0),

and the theorem is proved. �

Now we give an example where f does not attain its maximum at 0 or 1 and equality
(1.1) fails to hold. Let f : [0, 1]→ [0, 1] be the continuous function defined by

f(x) =


1− e−

4
(2x−1)2 , x 6=

1

2
,

1, x =
1

2
,

and let L be the value of the limit

L = lim
n→∞

n

√√√√√√√√
∫ 1/2

0

(1− e−
4

(2x−1)2 ) · · · (1− e−
4

(2xn−1)2 )dx

+

∫ 1

1/2

(1− e−
4

(2x−1)2 ) · · · (1− e−
4

(2xn−1)2 )dx

.

We note that f increases on [0, 1/2] and that xn < xn−1 < · · · < x2, from which it follows
that f(x)f(x2) · · · f(xn) < f(x2)n−1 < (f(1/4))n−1 = (1 − e−16)n−1. We have, since
1− e−4/(2x−1)2 < 1, that∫ 1/2

0

(1− e−
4

(2x−1)2 )(1− e−
4

(2x2−1)2 ) · · · (1− e−
4

(2xn−1)2 )dx ≤ 1

2
(1− e−16)n−1,

and hence L is less than or equal to

lim
n→∞

n

√√√√√√√√√
1
2 (1− e

−16)n−1 +
n−1∑
k=1

∫ ( 1
2 )

1
k+1

( 1
2 )

1
k

(1− e−
4

(2x−1)2 ) · · · (1− e−
4

(2xn−1)2 )dx

+

∫ 1

( 1
2 )

1
n

(1− e−
4

(2x−1)2 )(1− e−
4

(2x2−1)2 ) · · · (1− e−
4

(2xn−1)2 )dx

.

Let k = 1, 2, . . . , n, be fixed and let A be the following set

A =

{
m, (2xm − 1)2 ≥ 1

2
,m = 1, 2, . . . , n, x ∈

[
(1/2)

1
k , (1/2)

1
k+1

]}
.

We note that the set A is the set of all integers m for which the inequality, (2xm − 1)2 ≥
1

2
,

holds for x in the specified interval. We prove that the number of elements of A, i.e., the
cardinality of A, verifies the inequality |A| > n(a/b) − a − 1, where a and b are defined
bellow. Let x ∈

[
(1/2)

1
k , (1/2)

1
k+1

]
and let fm(x) = (2xm − 1)2. A calculation shows that

f ′m(x) =

{
4mxm−1(2xm − 1) > 0, m < k,

4mxm−1(2xm − 1) < 0, m > k + 1.
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It follows that, for x ∈
[
(1/2)

1
k , (1/2)

1
k+1

]
, one has

fm(x) ≥

{
(21−

m
k − 1)2, m < k,

(21−
m

k+1 − 1)2, m > k + 1.

We consider the inequalities
(21−

m
k − 1)2 ≥

1

2
, m < k,

(21−
m

k+1 − 1)2 ≥
1

2
, m > k + 1,

which have the solutions
m ≤

(
1−

1

ln 2
ln

√
2 + 1
√
2

)
k = 0.2284466968 . . . · k, m < k,

m ≥

(
1−

1

ln 2
ln

√
2− 1
√
2

)
(k + 1) = 2.771553303 . . . · (k + 1), m > k + 1.

(2.6)

Let a = 1−
1

ln 2
ln

√
2 + 1
√
2

, b = 1−
1

ln 2
ln

√
2− 1
√
2

, and note that
a

b
= 0.082425511...

It follows, based on (2.6), that

m ∈ ([1, bakc] ∩ N) ∪ ([bb(k + 1)c , n] ∩ N) , (2.7)

where bxc denotes the integer part of x. We distinguish here several cases.
Case 1. b(k + 1) > n. We have, based on (2.7), that

|A| = bakc ≥ ak − 1 ≥ na
b
− a− 1.

Case 2. ak < 1. We have, based on (2.7), that

|A| = n− bb(k + 1)c+ 1 ≥ n− b(k + 1) ≥ n− b

a
− b > n

a

b
− a− 1.

Case 3. 1 < ak < b(k + 1) < n. In this case we get, based on (2.7), that

|A| = n− bb(k + 1)c+ 1 + bakc ≥ n− b(k + 1) + ka ≥ na
b
− a.

It follows that∫ ( 1
2 )

1
k+1

( 1
2 )

1
k

(1− e−
4

(2x−1)2 )(1− e−
4

(2x2−1)2 ) · · · (1− e−
4

(2xn−1)2 )dx

=

∫ ( 1
2 )

1
k+1

( 1
2 )

1
k

∏
m∈A

(
1− e−4/(2x

m−1)2
)
·
∏
m/∈A

(
1− e−4/(2x

m−1)2
)
dx

≤
∫ ( 1

2 )
1

k+1

( 1
2 )

1
k

(1− e−16)|A|dx =

((
1

2

)1/(k+1)

−
(
1

2

)1/k
)
(1− e−16)|A|

≤

((
1

2

)1/(k+1)

−
(
1

2

)1/k
)
(1− e−16)(n(a/b)−a−1).
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Thus, L is less than or equal to

lim
n→∞

n

√√√√ (1− e−16)n−1
2

+

(
1− 2

−1
n +

n−1∑
k=1

(
2

−1
k+1 − 2

−1
k

))
(1− e−16)(n a

b−a−1)

≤ lim
n→∞

n

√
(1− e−16)(n(a/b)−a−1) = (1− e−16)a/b = 0.9999999907242302...

< ||f ||∞ = 1,

Remark 2.2. One can also prove that if g : [0, 1] → [0,∞) is a continuous function that
attains its maximum at 1 then

lim
n→∞

n

√∫ 1

0

g(x)g(
√
x) · · · g( n

√
x)dx = ||g||∞. (2.8)

A natural question would be to determine whether equality holds in (2.8) when g does
not attain its maximum at 1. We leave this problem as an open problem to the interested
reader.
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