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On y-regular-open sets and y-closed spaces

SABIR HUSSAIN

ABSTRACT. The purpose of this paper is to continue studying the properties of y-regular open sets intro-
duced and explored by S. Hussain and B. Ahmad in 2007. The concept of «y-closed spaces have also been defined
and discussed.

1. INTRODUCTION

The concept of operation v was initiated by S. Kasahara [7]. He also introduced
~-closed graph of a function. Using this operation, H. Ogata [8] introduced the concept of
~-open sets and investigated the related topological properties of the associated topology
7, and 7. He further investigated general operator approaches of close graph of mappings.

Further S. Hussain and B. Ahmad [1-6] continued studying the properties of y-open
(closed) sets and generalized many classical notions in their work. The purpose of this
paper is to continue studying the properties of vy-regular open sets introduced and ex-
plored in [6]. The concept of y-closed spaces have also been defined and discussed.

First, we recall some definitions and results used in this paper. Hereafter, we shall write
a space in place of a topological space.

2. PRELIMINARIES
Throughout the present paper, X denotes topological spaces.

Definition 2.1. [7] An operation v : 7 — P(X) is a function from 7 to the power set of X
such that V C V7, for each V € 7, where V7 denotes the value of v at V. The operations
defined by v(G) = G, 7(G) = cl(G) and v(G) = intcl(G) are examples of operation .

Definition 2.2. [7] Let A C X. A point « € A is said to be vy-interior point of A, if there
exists an open nbd N of x such that N¥ C A and we denote the set of all such points by
int(A). Thus

inty (A)={x € A:z € Nerand N* C A} C A.

Note that A is y-open [8] iff A = int(A). A set A is called - closed [1] iff X-A is y-open.
Definition 2.3. [1] A point € X is called a y-closure point of AC X, if U" N A # ¢, for
each open nbd U of x. The set of all y-closure points of A is called y-closure of A and is
denoted by cl,(A). A subset A of X is called v-closed, if cl,(A) C A. Note that cl,(A) is
contained in every vy-closed superset of A.

Definition 2.4. [7] An operation +y on 7 is said be regular, if for any open nbds U, V of x €
X, there exists an open nbd W of x such that U" N V7Y 2> W7,

Received: 14.03.2011. In revised form: 14.09.2011. Accepted: 30.09.2011.

2000 Mathematics Subject Classification. 54A05, 54A10, 54D10, 54D99.

Key words and phrases. ~-closed (open), y-interior(closure), y-regular-open(closed), y-8-open(closed), y-extremally
disconnected, ~y-R-converge, y-R-accumulate, vy-closed spaces.

131



132 Sabir Hussain

Definition 2.5. [8] An operation « on 7 is said to be open, if for any open nbd U of each
x € X, there exists y-open set B such that € Band U" D B.

3. 7-REGULAR-OPEN SETS

Definition 3.6. [6] A subset A of X is said to be y-regular-open (resp. y-regular-closed), if
A = inty(cly(A)) (resp. A = cl,(int,(A))).
It is clear that RO, (X, 7) C 7, C 7 [6].

The following example shows that the converse of above inclusion is not true in gen-
eral.

Example 3.1. Let X= {a,b,c}, 7 = {¢, X, {a},{b},{a,b},{a,c}}. Forb € X, define an
operation v : 7 — P(X) by
A, ifbeA
v(4) = { d(A), ifbg A
Calculations shows that {a, b}, {a, c}, {b}, X, ¢ are y-open sets and {a, c}, {b}, X, ¢ are -
regular-open sets. Here set {a, b} is y-open but not v-regular-open.

Definition 3.7. [7] A space X is called y-extremally disconnected, if for all y-open subset
U of X, cl,(U) is a y-open subset of X.

Proposition 3.1. If A is a y-clopen set in X, then A is a y-reqular-open set. Moreover, if X is
~-extremally disconnected then the converse holds.

Proof. If A is a y-clopen set, then A = ¢l,(A) and A = int,(A), and so we have A =
int(cl,(A)). Hence A is y-regular-open.

Suppose that X is a y-extremally disconnected space and A is a y-regular-open set in
X. Then A is y-open and so ¢l (A) is a y-open set. Hence A = int.(cl,(A4)) = cl,(A) and
hence A is v-closed set. This completes the proof. O

The following example shows that space X to be y-extremally disconnected is necessary
in the converse of above Proposition 3.1.

Example 3.2. Let X= {a,b,c}, 7 = {4, X, {a}, {b}, {a,b}}. Define an operation vy : 7 —
P(X) by v(B) = int(cl(B)). Clearly X is not y-extremally disconnected space. Calcula-
tions shows that {a}, {a, b}, {b}, X, ¢ are y-open as well as y-regular-open sets. Here {a}
is a y-regular-open set but not y-clopen set.

Theorem 3.1. Let A C X, then (a) = (b) = (c), where :
(a) A is y-clopen.

(b) A= cly(int,(A)).

(¢) X — A is ~-reqular-open.

Proof. (a) = (b). This is obvious.
(b) = (c). Let A = cl,(inty(A)). Then X — A = X —cl, (inty(A4)) = int, (X —inty(A)) =

int,(cl,(X — A)), and hence X — A is y-regular-open set. Hence the proof. O
Using Proposition 3.1, we have the following theorem:

Theorem 3.2. If X is a y-extremally disconnected space. Then (a) = (b) = (c), where:

(a) X — Ais y-reqular-open.

(b) A is y-regular-open.

(c) A is y-clopen.
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Proof. (a) = (b). Suppose X is y-extremally disconnected space. From proposition 3.1,
X — Ais a y-open and ~-closed set, and hence A is a y-open and v-closed set. Thus
A = inty(cly(A)) implies A is y-regular-open set.

(b) = (c). This directory follows from Proposition 3.1. This completes as required. O

Combining Theorems 3.1 and 3.2, we have the following;:

Theorem 3.3. If X is a y-extremally disconnected space. Then the following statements are equiv-
alent:

(a) A is y-clopen.

(b) A = cly(int,(A)).

(¢) X — Ais ~-reqular-open.

(d) A is ~y-regular-open.

Theorem 3.4. Let A C X and ~ be an open operation. If cl,(A) is a y-regular-open set. Then A
is a y-open set in X. Moreover, if X is extremally ~-disconnected then the converse holds.

Proof. Suppose that ¢l (A) is a y-regular-open sets. Since + is open, we have
A C cly(A) Cinty(cly(cly(A))) = inty(cly(A)) = int,(A). This implies that A is y-open
set.

Suppose that X is y-extremally disconnected and A is y-open set. Then ¢l (A) is a ~-
open set, and hence vy-clopen set. Thus by Theorem 3.3, cl,(A) is a y-regular-open set.
This completes the proof. O

Corollary 3.1. Let X be a y-extremally disconnected space. Then for each subset A of X, the set
cly (int., (A)) is y-regular-open sets.

Definition 3.8. A point z € X is said to be a y-6-cluster point of a subset A of X, if
cy(U) N A # ¢ for every ~v-open set U containing x. The set of all y-6-cluster points of A
is called the y-6-closure of A and is denoted by ~clg(A).

Definition 3.9. A subset A of Xis said to be y-6-closed, if yclg(A) = A. The complement of
~-0-closed set is called v-f-open sets. Clearly a v-6-closed (y-6-open) is y-closed(y-open)
set.

Proposition 3.2. Let A and B be subsets of a space X. Then the following properties hold:
(1) If A C B, then ~yclg(A) C vclg(B).
(2) If A; is y-6-closed in X, for each i € I, then [

ser Ai is y-0-closed in X.

Proof. This is obvious.

(2). Let A; be y-0-closed in X for each ¢ € I. Then A; = ~clg(A;) for each i € I. Thus we
have yelg(N;ep Ai) © Miep velo(Ai) = Miep Ai € velo(Mier Ai)-

Therefore, we have ~yclg((;c; Ai) = ;e Ai and hence (., A; is y-0-closed. Hence the
proof. O

Theorem 3.5. If «y is an open operation. Then for any subset A of ~y-extremally disconnected space
X, the following hold:
~velg(A) = ({V: A CVand Vis y-0-closed}
=({V:ACVandVisy-regular-open}

Proof. Let x ¢ vyclg(A). Then there is a y-open set V with z € V such that ¢l (V) N A = ¢.
By Theorem 3.4, X — cl, (V') is y-regular-open and hence X — cl, (V) is a y-0-closed set
containing A and z ¢ X — «yclg(V'). Thus we have z ¢ (({V: A C V and V is y-6-closed }.
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Conversely, suppose that z ¢ [[{V: A C V and V is y-f-closed}. Then there exists a
v-8-closed set V such that A C V and « ¢ V, and so there exists a y-open set U withx € U
such that U C ¢l,(U) € X — V. Thus we have cl,(U)N A C ¢cl,(U) NV = ¢ implies
x & yclg(A).

The proof of the second equation follows similarly. This completes the proof. O

Theorem 3.6. Let v be an open operation. If X is a y-extremally disconnected space and A C X.
Then the followings hold:

(a) x € yelg(A) if and only if V N A # ¢, for each y-regqular-open set V with x € V.

(b) A is y-0-open if and only if for each x € A there exists a ~-regular-open set V with « € V such
that V C A.

(¢) A is a ~y-regular-open set if and only if A is y-6-clopen.

Proof. (a) and (b) follows directly from Theorems 3.3 and 3.4.

(c) Let A be a y-regular-open set. Then A is a y-open set and so A = cl,(A) = yclg(A) and
hence A is y-6-closed. Since X — A is a y-regular-open set, by the argument above, X — A
is y-6-closed and A is y-6-open. The converse is obvious. Hence the proof. O

It is obvious that v-regular-open = v-0-open = ~v-open. But the converses are not
necessarily true as the following examples show.

Example 3.3. Let X= {a,b,c}, 7 = {¢, X, {a},{b},{a,b},{a,c}}. Forb € X, define an
operation y : 7 — P(X) by
A, ifbe A
v(4) = { cd(A), ifbg A
Calculations shows that {a, b}, {a,c}, {b}, X, ¢ are v-open sets as well as y-6-open sets

and ~y-regular-open sets are {a,c}, {b}, X, #. Then the subset {a,b} is v-0-open but not
~-regular-open.

Example 3.4. Let X= {a,b,c}, 7 = {9, X, {a}, {b},{a, b}, {a,c}} be a topology on X. For
b € X, define an operation v : 7 — P(X) by

[ d(A), ifbeA
7("”_"”_{ A ifbe A

Calculations shows that {¢, X, {a}, {a, c}} are y-open sets and {¢, X, {a, c}} are y-6-open
sets. The the subset {a} is y-open but not v-6-open.

4. v-CLOSED SPACES

Definition 4.10. A filterbase I" in X, y-R-converges to z¢ € X, if for each ~-regular-open
set A with xy € A, there exists F' € I such that F' C A.

Definition 4.11. A filterbase I' in X y-R-accumulates to x¢ € X, if for each v-regular-open
set Awithzg € Aandeach FF €', FN A # ¢.

The following theorems are direct consequence of the above definitions.
Theorem 4.7. If a filterbase T in X, y-R-converges to xy € X, then T’ y-R-accumulates to x.

Theorem 4.8. If I'; and T’y are filterbases in X such that T's subordinate to I'y and T'y ~-R-
accumulates to xq, then I'y v-R-accumulates to x.

Theorem 4.9. If T is a maximal filterbase in X, then I ~-R-accumulates to xq if and only if T’
v-R-converges to xg.
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Definition 4.12. A space X is said to be vy-closed, if every cover {V,, : o € I} of X by
y-open sets has a finite subset Iy of I such that X = ¢, ¢l (Va)-

Proposition 4.3. If v is an open operation, then the following are equivalent:
(1) X is ~-closed.

(2) For each family {A, : a € I} of y-closed subsets of X such that
finite subset Iy of I such that (1, int(Aa) = ¢.

(3) For each family { Ao : « € I} of vy-closed subsets of X, if (), 1, it~ (Aa) # ¢, for every finite
subset Iy of I, then (), ; Aa # @.

(4) Every filterbase I" in X y-R-accumulates to zy € X.

(5) Every maximal filterbase T" in X -R-converges to zo € X.

acr Aa = ¢, there exists a

Proof. (2) < (3). This is obvious.

(2) = (1). Let {A, : a € I} be a family of y-open subsets of X such hat X = J,.; Aa
Then each X — A, is a y-closed subset of X and (. ;(X — A4) = ¢, and so there ex1sts
a finite subset Iy of I such that (,c; int, (X — A,) = ¢, and hence X = |J
inty(X — Aa)) = Uaer, ¢l (Aa). Therefore X is y-closed, since 7 is open.

(4) = (2). Let {A, : a € I} be a family of y-closed subsets of X such that (), .; Ao = ¢.
Suppose that for every finite subfamily {A,, : i = 1,2, ...,n}, i_, int,(Aqs,) # ¢. Then
Nis(Aa;) # dand T = {N_, As, : n € N,oy € I} forms a fllterbase in X. By 4), T
V—R—accumulates to some zyp € X. Thus for every y-open set A with zp € A and every
FeTl,Fncl,(A) # ¢. Since (\pcp F' = ¢, there exists a F' € I such that zo ¢ F, and so
there exists oy € I such that xy ¢ A,, and hence zp € X — A4,, and X — A,, is a y-open
set. Thus z¢ ¢ int,(Aq,) and zo € X — inty(As,), and hence Fy N (X — int,(Aq,)) =
Fynel, (X — Aqa,) = ¢, which is a contradiction to our hypothesis.

(5) = (4). Let T be filterbase in X. Then there exists a maximal filterbase ¢ in X such
that ¢ subordinate to I'. Since £ y-R-converges to z(, so by Theorems 4.8 and 4.9, I' v-R-
accumulate to zg .

(1) = (5). Suppose thatI" = {F, : a € I} is a maximal filterbase in X which does not
~-R-converge to any point in X. From Theorem 4.9, I' does not y-R-accumulates at any
point in X. Thus for every = € X, there exists a y-open set A, containing x and F;,, € I'
such that F,,, Ncl,(A;) = ¢. Since {4, : . € X}is 7-open cover of X, there exists a finite
subfamily {A 4 =1,2,...,n} such that X = (J;_, ¢l,(4;,). Because T is a filterbase
in X, there exists Fy € I‘ such that Fy C (L, Fu,,, and hence FoNely(Az,)) = ¢ for all
i =1,2,...,n. Hence we have that, ¢ = Fy (Ui, cl +(4z,)) = Fy N X, and hence F, = ¢.
This is a contradiction. Hence the proof. O

aEIo(

Definition 4.13. A net (z;);ep in a space X is said to be y-R-converges to « € X, if for
each vy-open set U with & € U, there exists iy such that «; € cl,(U) for all i > iy, where D
is a directed set.

Definition 4.14. A net (z;);ep in a space X is said to be y-R-accumulates to = € X, if for
each y-open set U with z € U and each i, z; € cl,(U), where D is a directed set.

The proofs of following propositions are easy and thus are omitted:

Proposition 4.4. Let (x;);cp be a net in X. For the filterbase F((z;)iep) = {{z; : 1 < j}:j €
D}inX,

(1) F((xs)iep) 7-R-converges to x if and only if (x;);cp y-R-converges to z.

(2) F((xs)iep) v-R-accumulates to x if and only if (x;);c p y-R-accumulates to x.
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Proposition 4.5. Every filterbase F in X determines a net (x;);cp in X such that
(1) F y-R-converges to x if and only if (x;);ep y-R-converges to x.
(2) F y-R-accumulates to x if and only if (z;);cp y-R-accumulates to x.

From Propositions 4.4 and 4.5, filterbases and nets are equivalent in the sense of y-R-
converges and y-R-accumulates. Thus we have the following theorem:

Theorem 4.10. For a space X, the following are equivalent:
(1) X is v-closed.

(2) Each net (z;);ep in X has a y-R-accumulation point.
(3) Each universal net in X ~y-R-converges.
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