On γ -regular-open sets and γ -closed spaces

SABIR HUSSAIN

ABSTRACT. The purpose of this paper is to continue studying the properties of γ -regular open sets introduced and explored by S. Hussain and B. Ahmad in 2007. The concept of γ -closed spaces have also been defined and discussed.

1. Introduction

The concept of operation γ was initiated by S. Kasahara [7]. He also introduced γ -closed graph of a function. Using this operation, H. Ogata [8] introduced the concept of γ -open sets and investigated the related topological properties of the associated topology τ_{γ} and τ . He further investigated general operator approaches of close graph of mappings.

Further S. Hussain and B. Ahmad [1-6] continued studying the properties of γ -open (closed) sets and generalized many classical notions in their work. The purpose of this paper is to continue studying the properties of γ -regular open sets introduced and explored in [6]. The concept of γ -closed spaces have also been defined and discussed.

First, we recall some definitions and results used in this paper. Hereafter, we shall write a space in place of a topological space.

2. Preliminaries

Throughout the present paper, X denotes topological spaces.

Definition 2.1. [7] An operation $\gamma: \tau \to P(X)$ is a function from τ to the power set of X such that $V \subseteq V^{\gamma}$, for each $V \in \tau$, where V^{γ} denotes the value of γ at V. The operations defined by $\gamma(G) = G$, $\gamma(G) = cl(G)$ and $\gamma(G) = intcl(G)$ are examples of operation γ .

Definition 2.2. [7] Let $A \subseteq X$. A point $x \in A$ is said to be γ -interior point of A, if there exists an open nbd N of x such that $N^{\gamma} \subseteq A$ and we denote the set of all such points by $int_{\gamma}(A)$. Thus

$$int_{\gamma}$$
 (A) = $\{x \in A : x \in N \in \tau \text{ and } N^{\gamma} \subseteq A\} \subseteq A$.

Note that A is γ -open [8] iff A = int_{γ} (A). A set A is called γ - closed [1] iff X-A is γ -open.

Definition 2.3. [1] A point $x \in X$ is called a γ -closure point of $A \subseteq X$, if $U^{\gamma} \cap A \neq \phi$, for each open nbd U of x. The set of all γ -closure points of A is called γ -closure of A and is denoted by $cl_{\gamma}(A)$. A subset A of X is called γ -closed, if $cl_{\gamma}(A) \subseteq A$. Note that $cl_{\gamma}(A)$ is contained in every γ -closed superset of A.

Definition 2.4. [7] An operation γ on τ is said be regular, if for any open nbds U, V of $x \in X$, there exists an open nbd W of x such that $U^{\gamma} \cap V^{\gamma} \supseteq W^{\gamma}$.

Received: 14.03.2011. In revised form: 14.09.2011. Accepted: 30.09.2011.

²⁰⁰⁰ Mathematics Subject Classification. 54A05, 54A10, 54D10, 54D99.

Key words and phrases. γ -closed (open), γ -interior(closure), γ -regular-open(closed), γ - θ -open(closed), γ -extremally disconnected, γ -R-converge, γ -R-accumulate, γ -closed spaces.

132 Sabir Hussain

Definition 2.5. [8] An operation γ on τ is said to be open, if for any open nbd U of each $x \in X$, there exists γ -open set B such that $x \in B$ and $U^{\gamma} \supseteq B$.

3.
$$\gamma$$
-Regular-Open Sets

Definition 3.6. [6] A subset A of X is said to be γ -regular-open (resp. γ -regular-closed), if $A = int_{\gamma}(cl_{\gamma}(A))$ (resp. $A = cl_{\gamma}(int_{\gamma}(A))$).

It is clear that $RO_{\gamma}(X,\tau) \subseteq \tau_{\gamma} \subseteq \tau$ [6].

The following example shows that the converse of above inclusion is not true in general.

Example 3.1. Let X= $\{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $b \in X$, define an operation $\gamma : \tau \to P(X)$ by

$$\gamma(A) = \left\{ \begin{array}{ll} A, & \text{if } b \in A \\ cl(A), & \text{if } b \not\in A \end{array} \right.$$

Calculations shows that $\{a,b\},\{a,c\},\{b\},X,\phi$ are γ -open sets and $\{a,c\},\{b\},X,\phi$ are γ -regular-open sets. Here set $\{a,b\}$ is γ -open but not γ -regular-open.

Definition 3.7. [7] A space X is called γ -extremally disconnected, if for all γ -open subset U of X, $cl_{\gamma}(U)$ is a γ -open subset of X.

Proposition 3.1. If A is a γ -clopen set in X, then A is a γ -regular-open set. Moreover, if X is γ -extremally disconnected then the converse holds.

Proof. If A is a γ -clopen set, then $A = cl_{\gamma}(A)$ and $A = int_{\gamma}(A)$, and so we have $A = int_{\gamma}(cl_{\gamma}(A))$. Hence A is γ -regular-open.

Suppose that X is a γ -extremally disconnected space and A is a γ -regular-open set in X. Then A is γ -open and so $cl_{\gamma}(A)$ is a γ -open set. Hence $A=int_{\gamma}(cl_{\gamma}(A))=cl_{\gamma}(A)$ and hence A is γ -closed set. This completes the proof. \Box

The following example shows that space X to be γ -extremally disconnected is necessary in the converse of above Proposition 3.1.

Example 3.2. Let $X = \{a,b,c\}$, $\tau = \{\phi,X,\{a\},\{b\},\{a,b\}\}$. Define an operation $\gamma:\tau \to P(X)$ by $\gamma(B) = int(cl(B))$. Clearly X is not γ -extremally disconnected space. Calculations shows that $\{a\},\{a,b\},\{b\},X,\phi$ are γ -open as well as γ -regular-open sets. Here $\{a\}$ is a γ -regular-open set but not γ -clopen set.

Theorem 3.1. Let $A \subseteq X$, then $(a) \Rightarrow (b) \Rightarrow (c)$, where :

- (a) A is γ -clopen.
- (b) $A = cl_{\gamma}(int_{\gamma}(A)).$
- (c) X A is γ -regular-open.

Proof. $(a) \Rightarrow (b)$. This is obvious.

$$(b)\Rightarrow (c)$$
. Let $A=cl_{\gamma}(int\gamma(A))$. Then $X-A=X-cl_{\gamma}(int\gamma(A))=int_{\gamma}(X-int_{\gamma}(A))=int_{\gamma}(cl_{\gamma}(X-A))$, and hence $X-A$ is γ -regular-open set. Hence the proof.

Using Proposition 3.1, we have the following theorem:

Theorem 3.2. If X is a γ -extremally disconnected space. Then $(a) \Rightarrow (b) \Rightarrow (c)$, where:

- (a) X A is γ -regular-open.
- (b) A is γ -regular-open.
- (c) A is γ -clopen.

Proof. $(a) \Rightarrow (b)$. Suppose X is γ -extremally disconnected space. From proposition 3.1, X-A is a γ -open and γ -closed set, and hence A is a γ -open and γ -closed set. Thus $A=int_{\gamma}(cl_{\gamma}(A))$ implies A is γ -regular-open set.

 $(b) \Rightarrow (c)$. This directory follows from Proposition 3.1. This completes as required.

Combining Theorems 3.1 and 3.2, we have the following:

Theorem 3.3. *If* X *is a* γ -extremally disconnected space. Then the following statements are equivalent:

- (a) A is γ -clopen.
- (b) $A = cl_{\gamma}(int_{\gamma}(A)).$
- (c) X A is γ -regular-open.
- (d) A is γ -regular-open.

Theorem 3.4. Let $A \subseteq X$ and γ be an open operation. If $cl_{\gamma}(A)$ is a γ -regular-open set. Then A is a γ -open set in X. Moreover, if X is extremally γ -disconnected then the converse holds.

Proof. Suppose that $cl_{\gamma}(A)$ is a γ -regular-open sets. Since γ is open, we have $A \subseteq cl_{\gamma}(A) \subseteq int_{\gamma}(cl_{\gamma}(cl_{\gamma}(A))) = int_{\gamma}(cl_{\gamma}(A)) = int_{\gamma}(A)$. This implies that A is γ -open set.

Suppose that X is γ -extremally disconnected and A is γ -open set. Then $cl_{\gamma}(A)$ is a γ -open set, and hence γ -clopen set. Thus by Theorem 3.3, $cl_{\gamma}(A)$ is a γ -regular-open set. This completes the proof.

Corollary 3.1. Let X be a γ -extremally disconnected space. Then for each subset A of X, the set $cl_{\gamma}(int_{\gamma}(A))$ is γ -regular-open sets.

Definition 3.8. A point $x \in X$ is said to be a γ - θ -cluster point of a subset A of X, if $cl_{\gamma}(U) \cap A \neq \phi$ for every γ -open set U containing x. The set of all γ - θ -cluster points of A is called the γ - θ -closure of A and is denoted by $\gamma cl_{\theta}(A)$.

Definition 3.9. A subset A of X is said to be γ - θ -closed, if $\gamma cl_{\theta}(A) = A$. The complement of γ - θ -closed set is called γ - θ -open sets. Clearly a γ - θ -closed (γ - θ -open) is γ -closed(γ -open) set.

Proposition 3.2. *Let A and B be subsets of a space X. Then the following properties hold:*

- (1) If $A \subseteq B$, then $\gamma cl_{\theta}(A) \subseteq \gamma cl_{\theta}(B)$.
- (2) If A_i is γ - θ -closed in X, for each $i \in I$, then $\bigcap_{i \in I} A_i$ is γ - θ -closed in X.

Proof. This is obvious.

(2). Let A_i be γ - θ -closed in X for each $i \in I$. Then $A_i = \gamma cl_{\theta}(A_i)$ for each $i \in I$. Thus we have $\gamma cl_{\theta}(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} \gamma cl_{\theta}(A_i) = \bigcap_{i \in I} A_i \subseteq \gamma cl_{\theta}(\bigcap_{i \in I} A_i)$.

Therefore, we have $\gamma cl_{\theta}(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} A_i$ and hence $\bigcap_{i \in I} A_i$ is γ - θ -closed. Hence the proof.

Theorem 3.5. *If* γ *is an open operation. Then for any subset* A *of* γ -extremally disconnected space X, the following hold:

$$\gamma cl_{\theta}(A) = \bigcap \{V : A \subseteq V \text{ and } V \text{ is } \gamma - \theta \text{-closed}\} \\
= \bigcap \{V : A \subseteq V \text{ and } V \text{ is } \gamma \text{-regular-open}\}$$

Proof. Let $x \notin \gamma cl_{\theta}(A)$. Then there is a γ -open set V with $x \in V$ such that $cl_{\gamma}(V) \cap A = \phi$. By Theorem 3.4, $X - cl_{\gamma}(V)$ is γ -regular-open and hence $X - cl_{\gamma}(V)$ is a γ - θ -closed set containing A and $x \notin X - \gamma cl_{\theta}(V)$. Thus we have $x \notin \bigcap \{V : A \subseteq V \text{ and } V \text{ is } \gamma - \theta \text{-closed} \}$.

134 Sabir Hussain

Conversely, suppose that $x \notin \bigcap \{V : A \subseteq V \text{ and } V \text{ is } \gamma\text{-}\theta\text{-closed}\}$. Then there exists a $\gamma\text{-}\theta\text{-closed}$ set V such that $A \subseteq V$ and $x \notin V$, and so there exists a $\gamma\text{-open set } U$ with $x \in U$ such that $U \subseteq cl_{\gamma}(U) \subseteq X - V$. Thus we have $cl_{\gamma}(U) \cap A \subseteq cl_{\gamma}(U) \cap V = \phi$ implies $x \notin \gamma cl_{\theta}(A)$.

The proof of the second equation follows similarly. This completes the proof.

Theorem 3.6. Let γ be an open operation. If X is a γ -extremally disconnected space and $A \subseteq X$. Then the followings hold:

- (a) $x \in \gamma cl_{\theta}(A)$ if and only if $V \cap A \neq \phi$, for each γ -regular-open set V with $x \in V$.
- (b) A is γ - θ -open if and only if for each $x \in A$ there exists a γ -regular-open set V with $x \in V$ such that $V \subseteq A$.
- (c) A is a γ -regular-open set if and only if A is γ - θ -clopen.

Proof. (a) and (b) follows directly from Theorems 3.3 and 3.4.

(c) Let A be a γ -regular-open set. Then A is a γ -open set and so $A = cl_{\gamma}(A) = \gamma cl_{\theta}(A)$ and hence A is γ - θ -closed. Since X - A is a γ -regular-open set, by the argument above, X - A is γ - θ -closed and A is γ - θ -open. The converse is obvious. Hence the proof.

It is obvious that γ -regular-open $\Rightarrow \gamma$ -open $\Rightarrow \gamma$ -open. But the converses are not necessarily true as the following examples show.

Example 3.3. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $b \in X$, define an operation $\gamma : \tau \to P(X)$ by

$$\gamma(A) = \begin{cases} A, & \text{if } b \in A \\ cl(A), & \text{if } b \notin A \end{cases}$$

Calculations shows that $\{a,b\},\{a,c\},\{b\},X,\phi$ are γ -open sets as well as γ - θ -open sets and γ -regular-open sets are $\{a,c\},\{b\},X,\phi$. Then the subset $\{a,b\}$ is γ - θ -open but not γ -regular-open.

Example 3.4. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ be a topology on X. For $b \in X$, define an operation $\gamma : \tau \to P(X)$ by

$$\gamma(A) = A^{\gamma} = \begin{cases} cl(A), & \text{if } b \in A \\ A, & \text{if } b \notin A \end{cases}$$

Calculations shows that $\{\phi, X, \{a\}, \{a, c\}\}$ are γ -open sets and $\{\phi, X, \{a, c\}\}$ are γ - θ -open sets. The the subset $\{a\}$ is γ -open but not γ - θ -open.

4. γ -CLOSED SPACES

Definition 4.10. A filterbase Γ in X, γ -R-converges to $x_0 \in X$, if for each γ -regular-open set A with $x_0 \in A$, there exists $F \in \Gamma$ such that $F \subseteq A$.

Definition 4.11. A filterbase Γ in X γ -R-accumulates to $x_0 \in X$, if for each γ -regular-open set A with $x_0 \in A$ and each $F \in \Gamma$, $F \cap A \neq \phi$.

The following theorems are direct consequence of the above definitions.

Theorem 4.7. If a filterbase Γ in X, γ -R-converges to $x_0 \in X$, then Γ γ -R-accumulates to x_0 .

Theorem 4.8. If Γ_1 and Γ_2 are filterbases in X such that Γ_2 subordinate to Γ_1 and Γ_2 γ -R-accumulates to x_0 , then Γ_1 γ -R-accumulates to x_0 .

Theorem 4.9. If Γ is a maximal filterbase in X, then Γ γ -R-accumulates to x_0 if and only if Γ γ -R-converges to x_0 .

Definition 4.12. A space X is said to be *γ*-closed, if every cover $\{V_{\alpha} : \alpha \in I\}$ of X by *γ*-open sets has a finite subset I_0 of I such that $X = \bigcup_{\alpha \in I_0} cl_{\gamma}(V_{\alpha})$.

Proposition 4.3. *If* γ *is an open operation, then the following are equivalent:*

- (1) X is γ -closed.
- (2) For each family $\{A_{\alpha} : \alpha \in I\}$ of γ -closed subsets of X such that $\bigcap_{\alpha \in I} A_{\alpha} = \phi$, there exists a finite subset I_0 of I such that $\bigcap_{\alpha \in I_0} int_{\gamma}(A_{\alpha}) = \phi$.
- (3) For each family $\{A_{\alpha} : \alpha \in I\}$ of γ -closed subsets of X, if $\bigcap_{\alpha \in I_0} int_{\gamma}(A_{\alpha}) \neq \phi$, for every finite subset I_0 of I, then $\bigcap_{\alpha \in I} A_{\alpha} \neq \phi$.
- (4) Every filterbase Γ in $X \gamma$ -R-accumulates to $x_0 \in X$.
- (5) Every maximal filterbase Γ in $X \gamma$ -R-converges to $x_0 \in X$.

Proof. $(2) \Leftrightarrow (3)$. This is obvious.

- $(2)\Rightarrow (1)$. Let $\{A_{\alpha}:\alpha\in I\}$ be a family of γ -open subsets of X such hat $X=\bigcup_{\alpha\in I}A_{\alpha}$. Then each $X-A_{\alpha}$ is a γ -closed subset of X and $\bigcap_{\alpha\in I}(X-A_{\alpha})=\phi$, and so there exists a finite subset I_0 of I such that $\bigcap_{\alpha\in I_0}int_{\gamma}(X-A_{\alpha})=\phi$, and hence $X=\bigcup_{\alpha\in I_0}(X-int_{\gamma}(X-A_{\alpha}))=\bigcup_{\alpha\in I_0}cl_{\gamma}(A_{\alpha})$. Therefore X is γ -closed, since γ is open.
- $(4)\Rightarrow (2)$. Let $\{A_{\alpha}:\alpha\in I\}$ be a family of γ -closed subsets of X such that $\bigcap_{\alpha\in I}A_{\alpha}=\phi$. Suppose that for every finite subfamily $\{A_{\alpha_i}:i=1,2,...,n\}$, $\bigcap_{i=1}^n int_{\gamma}(A_{\alpha_i})\neq \phi$. Then $\bigcap_{i=1}^n (A_{\alpha_i})\neq \phi$ and $\Gamma=\{\bigcap_{i=1}^n A_{\alpha_i}:n\in N,\alpha_i\in I\}$ forms a filterbase in X. By (4), Γ γ -R-accumulates to some $x_0\in X$. Thus for every γ -open set A with $x_0\in A$ and every $F\in \Gamma, F\cap cl_{\gamma}(A)\neq \phi$. Since $\bigcap_{F\in\Gamma}F=\phi$, there exists a $F\in \Gamma$ such that $x_0\notin F$, and so there exists $\alpha_0\in I$ such that $x_0\notin A_{\alpha_0}$ and hence $x_0\in X-A_{\alpha_0}$ and $X-A_{\alpha_0}$ is a γ -open set. Thus $x_0\notin int_{\gamma}(A_{\alpha_0})$ and $x_0\in X-int_{\gamma}(A_{\alpha_0})$, and hence $F_0\cap (X-int_{\gamma}(A_{\alpha_0}))=F_0\cap cl_{\gamma}(X-A_{\alpha_0})=\phi$, which is a contradiction to our hypothesis.
- $(5) \Rightarrow (4)$. Let Γ be filterbase in X. Then there exists a maximal filterbase ξ in X such that ξ subordinate to Γ. Since ξ γ -R-converges to x_0 , so by Theorems 4.8 and 4.9, Γ γ -R-accumulate to x_0 .
- $(1)\Rightarrow (5)$. Suppose that $\Gamma=\{F_a:a\in I\}$ is a maximal filterbase in X which does not γ -R-converge to any point in X. From Theorem 4.9, Γ does not γ -R-accumulates at any point in X. Thus for every $x\in X$, there exists a γ -open set A_x containing x and $F_{a_x}\in \Gamma$ such that $F_{a_x}\cap cl_\gamma(A_x)=\phi$. Since $\{A_x:x\in X\}$ is γ -open cover of X, there exists a finite subfamily $\{A_{x_i}:i=1,2,...,n\}$ such that $X=\bigcup_{i=1}^n cl_\gamma(A_{x_i})$. Because Γ is a filterbase in X, there exists $F_0\in \Gamma$ such that $F_0\subseteq \bigcap_{i=1}^n F_{a_{x_i}}$, and hence $F_0\cap cl_\gamma(A_{x_i}))=\phi$ for all i=1,2,...,n. Hence we have that, $\phi=F_0\cap (\bigcup_{i=1}^n cl_\gamma(A_{x_i}))=F_0\cap X$, and hence $F_0=\phi$. This is a contradiction. Hence the proof.

Definition 4.13. A net $(x_i)_{i \in D}$ in a space X is said to be γ -R-converges to $x \in X$, if for each γ -open set U with $x \in U$, there exists i_0 such that $x_i \in cl_{\gamma}(U)$ for all $i \geqslant i_0$, where D is a directed set.

Definition 4.14. A net $(x_i)_{i \in D}$ in a space X is said to be γ -R-accumulates to $x \in X$, if for each γ -open set U with $x \in U$ and each i, $x_i \in cl_{\gamma}(U)$, where D is a directed set.

The proofs of following propositions are easy and thus are omitted:

Proposition 4.4. Let $(x_i)_{i \in D}$ be a net in X. For the filterbase $F((x_i)_{i \in D}) = \{\{x_i : i \leq j\} : j \in D\}$ in X,

- (1) $F((x_i)_{i \in D})$ γ -R-converges to x if and only if $(x_i)_{i \in D}$ γ -R-converges to x.
- (2) $F((x_i)_{i\in D})$ γ -R-accumulates to x if and only if $(x_i)_{i\in D}$ γ -R-accumulates to x.

136 Sabir Hussain

Proposition 4.5. Every filterbase F in X determines a net $(x_i)_{i \in D}$ in X such that

- (1) $F \gamma$ -R-converges to x if and only if $(x_i)_{i \in D} \gamma$ -R-converges to x.
- (2) $F \gamma$ -R-accumulates to x if and only if $(x_i)_{i \in D} \gamma$ -R-accumulates to x.

From Propositions 4.4 and 4.5, filterbases and nets are equivalent in the sense of γ -R-converges and γ -R-accumulates. Thus we have the following theorem:

Theorem 4.10. *For a space X, the following are equivalent:*

- (1) X is γ -closed.
- (2) Each net $(x_i)_{i \in D}$ in X has a γ -R-accumulation point.
- (3) Each universal net in $X \gamma$ -R-converges.

REFERENCES

- [1] Hussain, S. and Ahmad, B., Properties of γ -Operations on Topological Spaces, Aligarh Bull. Math. **22** (2003), No. 1, 45–41
- [2] Hussain, S. and Ahmad, B., γ -Convergence in Topological Space , Southeast Asian Bull. Math. **29** (2005), 835–842
- [3] Hussain, S. and Ahmad, B., γ^* -Regular and γ -Normal Space, Math. Today. 22 (2006), No. 1, 37–44
- [4] Hussain, S. and Ahmad, B., On γ -s-Closed Subspaces, Far East Jr. Math. Sci. 31 (2008), No. 2, 279–291
- [5] Hussain, S. and Ahmad, B., On Minimal γ-Open Sets, Eur. J. Pure Appl. Maths. 2 (2009), No. 3, 338–351
- [6] Hussain, S. and Ahmad, B., On γ -s-Closed Spaces, Sci. Magna Jr. 3 (2007), No. 4, 89–93
- [7] Kasahara, S., Operation-Compact Spaces, Math. Japon. 24 (1979), 97–105
- [8] Ogata, H., Operations on Topological Spaces and Associated Topology, Math. Japon. 36 (1991), No. 1, 175-184

DEPARTMENT OF MATHEMATICS YANBU UNIVERSITY P. O. BOX 31387, YANBU ALSINAIYAH SAUDI ARABIA E-mail address: sabiriub@yahoo.com