On γ-regular-open sets and γ-closed spaces

SABIR HUSSAIN

ABSTRACT. The purpose of this paper is to continue studying the properties of γ-regular open sets introduced and explored by S. Hussain and B. Ahmad in 2007. The concept of γ-closed spaces have also been defined and discussed.

1. INTRODUCTION

The concept of operation γ was initiated by S. Kasahara [7]. He also introduced γ-closed graph of a function. Using this operation, H. Ogata [8] introduced the concept of γ-open sets and investigated the related topological properties of the associated topology τ_γ and τ. He further investigated general operator approaches of close graph of mappings.

Further S. Hussain and B. Ahmad [1-6] continued studying the properties of γ-open (closed) sets and generalized many classical notions in their work. The purpose of this paper is to continue studying the properties of γ-regular open sets introduced and explored in [6]. The concept of γ-closed spaces have also been defined and discussed.

First, we recall some definitions and results used in this paper. Hereafter, we shall write a space in place of a topological space.

2. PRELIMINARIES

Throughout the present paper, X denotes topological spaces.

Definition 2.1. [7] An operation $\gamma : \tau \to P(X)$ is a function from τ to the power set of X such that $V \subseteq V^\gamma$, for each $V \in \tau$, where V^γ denotes the value of γ at V. The operations defined by $\gamma(G) = G$, $\gamma(G) = cl(G)$ and $\gamma(G) = intcl(G)$ are examples of operation γ.

Definition 2.2. [7] Let $A \subseteq X$. A point $x \in A$ is said to be γ-interior point of A, if there exists an open nbd N of x such that $N^\gamma \subseteq A$ and we denote the set of all such points by $int_\gamma(A)$. Thus

$$int_\gamma(A) = \{x \in A : x \in N \in \tau \text{ and } N^\gamma \subseteq A\} \subseteq A.$$

Note that A is γ-open [8] iff $A = int_\gamma(A)$. A set A is called γ-closed [1] iff $X-A$ is γ-open.

Definition 2.3. [1] A point $x \in X$ is called a γ-closure point of $A \subseteq X$, if $U^\gamma \cap A \neq \phi$, for each open nbd U of x. The set of all γ-closure points of A is called γ-closure of A and is denoted by $cl_\gamma(A)$. A subset A of X is called γ-closed, if $cl_\gamma(A) \subseteq A$. Note that $cl_\gamma(A)$ is contained in every γ-closed superset of A.

Definition 2.4. [7] An operation γ on τ is said to be regular, if for any open nbds U, V of $x \in X$, there exists an open nbd W of x such that $U^\gamma \cap V^\gamma \supseteq W^\gamma$.

2000 Mathematics Subject Classification. 54A05, 54A10, 54D10, 54D99.

Key words and phrases. γ-closed (open), γ-interior(closure), γ-regular-open(closed), γ-θ-open(closed), γ-extremally disconnected, γ-R-converge, γ-R-accumulate, γ-closed spaces.
Definition 2.5. [8] An operation γ on τ is said to be open, if for any open nbd U of each $x \in X$, there exists γ-open set B such that $x \in B$ and $U^\gamma \supseteq B$.

3. γ-Regular-Open Sets

Definition 3.6. [6] A subset A of X is said to be γ-regular-open (resp. γ-regular-closed), if $A = \text{int}_{\gamma}(\text{cl}_{\gamma}(A))$ (resp. $A = \text{cl}_{\gamma}(ext{int}_{\gamma}(A))$).

It is clear that $RO_{\gamma}(X, \tau) \subseteq \tau_{\gamma} \subseteq \tau$ [6].

The following example shows that the converse of above inclusion is not true in general.

Example 3.1. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. For $b \in X$, define an operation $\gamma : \tau \rightarrow P(X)$ by

$$
\gamma(A) = \begin{cases}
A, & \text{if } b \in A \\
\text{cl}(A), & \text{if } b \notin A
\end{cases}
$$

Calculations shows that $\{a, b\}, \{a, c\}, \{b\}, X, \phi$ are γ-open sets and $\{a, c\}, \{b\}, X, \phi$ are γ-regular-open sets. Here set $\{a, b\}$ is γ-open but not γ-regular-open.

Definition 3.7. [7] A space X is called γ-extremely disconnected, if for all γ-open subset U of X, $\text{cl}_{\gamma}(U)$ is a γ-open subset of X.

Proposition 3.1. If A is a γ-clopen set in X, then A is a γ-regular-open set. Moreover, if X is γ-extremely disconnected then the converse holds.

Proof. If A is a γ-clopen set, then $A = \text{cl}_{\gamma}(A)$ and $A = \text{int}_{\gamma}(A)$, and so we have $A = \text{int}_{\gamma}(\text{cl}_{\gamma}(A))$. Hence A is γ-regular-open.

Suppose that X is a γ-extremely disconnected space and A is a γ-regular-open set in X. Then A is γ-open and so $\text{cl}_{\gamma}(A)$ is a γ-open set. Hence $A = \text{int}_{\gamma}(\text{cl}_{\gamma}(A)) = \text{cl}_{\gamma}(A)$ and hence A is γ-closed set. This completes the proof. \square

The following example shows that space X to be γ-extremely disconnected is necessary in the converse of above Proposition 3.1.

Example 3.2. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Define an operation $\gamma : \tau \rightarrow P(X)$ by $\gamma(B) = \text{int}(\text{cl}(B))$. Clearly X is not γ-extremely disconnected space. Calculations shows that $\{a\}, \{a, b\}, \{b\}, X, \phi$ are γ-open as well as γ-regular-open sets. Here $\{a\}$ is a γ-regular-open set but not γ-clopen set.

Theorem 3.1. Let $A \subseteq X$, then (a) \Rightarrow (b) \Rightarrow (c), where:

(a) A is γ-clopen.

(b) $A = \text{cl}_{\gamma}(\text{int}_{\gamma}(A))$.

(c) $X - A$ is γ-regular-open.

Proof. (a) \Rightarrow (b). This is obvious.

(b) \Rightarrow (c). Let $A = \text{cl}_{\gamma}(\text{int}_{\gamma}(A))$. Then $X - A = X - \text{cl}_{\gamma}(\text{int}_{\gamma}(A)) = \text{int}_{\gamma}(X - \text{int}_{\gamma}(A)) = \text{int}_{\gamma}(\text{cl}_{\gamma}(X - A))$, and hence $X - A$ is γ-regular-open set. Hence the proof. \square

Using Proposition 3.1, we have the following theorem:

Theorem 3.2. If X is a γ-extremely disconnected space. Then (a) \Rightarrow (b) \Rightarrow (c), where:

(a) $X - A$ is γ-regular-open.

(b) A is γ-regular-open.

(c) A is γ-clopen.
Proof. (a) ⇒ (b). Suppose \(X \) is \(\gamma \)-extremally disconnected space. From proposition 3.1, \(X - A \) is a \(\gamma \)-open and \(\gamma \)-closed set, and hence \(A \) is a \(\gamma \)-open and \(\gamma \)-closed set. Thus \(A = \text{int}_\gamma(\text{cl}_\gamma(A)) \) implies \(A \) is \(\gamma \)-regular-open set.

(b) ⇒ (c). This directory follows from Proposition 3.1. This completes as required. \(\square \)

Combining Theorems 3.1 and 3.2, we have the following:

Theorem 3.3. If \(X \) is a \(\gamma \)-extremally disconnected space. Then the following statements are equivalent:
(a) \(A \) is \(\gamma \)-clopen.
(b) \(A = \text{cl}_\gamma(\text{int}_\gamma(A)) \).
(c) \(X - A \) is \(\gamma \)-regular-open.
(d) \(A \) is \(\gamma \)-regular-open.

Theorem 3.4. Let \(A \subseteq X \) and \(\gamma \) be an open operation. If \(\text{cl}_\gamma(A) \) is a \(\gamma \)-regular-open set. Then \(A \) is a \(\gamma \)-open set in \(X \). Moreover, if \(X \) is extremally \(\gamma \)-disconnected then the converse holds.

Proof. Suppose that \(\text{cl}_\gamma(A) \) is a \(\gamma \)-regular-open sets. Since \(\gamma \) is open, we have \(A \subseteq \text{cl}_\gamma(A) \subseteq \text{int}_\gamma(\text{cl}_\gamma(\text{cl}_\gamma(A))) = \text{int}_\gamma(\text{cl}_\gamma(A)) = \text{int}_\gamma(A) \). This implies that \(A \) is \(\gamma \)-open set.

Suppose that \(X \) is \(\gamma \)-extremally disconnected and \(A \) is \(\gamma \)-open set. Then \(\text{cl}_\gamma(A) \) is a \(\gamma \)-open set, and hence \(\gamma \)-clopren set. Thus by Theorem 3.3, \(\text{cl}_\gamma(A) \) is a \(\gamma \)-regular-open set. This completes the proof. \(\square \)

Corollary 3.1. Let \(X \) be a \(\gamma \)-extremally disconnected space. Then for each subset \(A \) of \(X \), the set \(\text{cl}_\gamma(\text{int}_\gamma(A)) \) is \(\gamma \)-clopren sets.

Definition 3.8. A point \(x \in X \) is said to be a \(\gamma \)-\(\theta \)-cluster point of a subset \(A \) of \(X \), if \(\text{cl}_\gamma(U) \cap A \neq \phi \) for every \(\gamma \)-open set \(U \) containing \(x \). The set of all \(\gamma \)-\(\theta \)-cluster points of \(A \) is called the \(\gamma \)-\(\theta \)-closure of \(A \) and is denoted by \(\gamma \text{cl}_\theta(A) \).

Definition 3.9. A subset \(A \) of \(X \) is said to be \(\gamma \)-\(\theta \)-closed, if \(\gamma \text{cl}_\theta(A) = A \). The complement of \(\gamma \)-\(\theta \)-closed set is called \(\gamma \)-\(\theta \)-open sets. Clearly a \(\gamma \)-\(\theta \)-closed (\(\gamma \)-\(\theta \)-open) is \(\gamma \)-closed(\(\gamma \)-open) set.

Proposition 3.2. Let \(A \) and \(B \) be subsets of a space \(X \). Then the following properties hold:
(1) If \(A \subseteq B \), then \(\gamma \text{cl}_\theta(A) \subseteq \gamma \text{cl}_\theta(B) \).
(2) If \(A_i \) is \(\gamma \)-\(\theta \)-closed in \(X \), for each \(i \in I \), then \(\bigcap_{i \in I} A_i \) is \(\gamma \)-\(\theta \)-closed in \(X \).

Proof. This is obvious.

(2). Let \(A_i \) be \(\gamma \)-\(\theta \)-closed in \(X \) for each \(i \in I \). Then \(A_i = \gamma \text{cl}_\theta(A_i) \) for each \(i \in I \). Thus we have \(\gamma \text{cl}_\theta(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} \gamma \text{cl}_\theta(A_i) \).
Therefore, we have \(\gamma \text{cl}_\theta(\bigcap_{i \in I} A_i) = \bigcap_{i \in I} A_i \) and hence \(\bigcap_{i \in I} A_i \) is \(\gamma \)-\(\theta \)-closed. Hence the proof. \(\square \)

Theorem 3.5. If \(\gamma \) is an open operation. Then for any subset \(A \) of \(\gamma \)-extremally disconnected space \(X \), the following hold:
\[\gamma \text{cl}_\theta(A) = \bigcap \{ V : A \subseteq V \text{ and } V \text{ is } \gamma \text{-\(\theta \)-closed} \} \]
\[= \bigcap \{ V : A \subseteq V \text{ and } V \text{ is } \gamma \text{-\(\theta \)-regular-open} \} \]

Proof. Let \(x \notin \gamma \text{cl}_\theta(A) \). Then there is a \(\gamma \)-open set \(V \) with \(x \in V \) such that \(\text{cl}_\gamma(V) \cap A = \phi \).
By Theorem 3.4, \(X - \text{cl}_\gamma(V) \) is \(\gamma \)-regular-open and hence \(X - \text{cl}_\gamma(V) \) is a \(\gamma \)-\(\theta \)-closed set containing \(A \) and \(x \notin X - \gamma \text{cl}_\theta(V) \). Thus we have \(x \notin \bigcap \{ V : A \subseteq V \text{ and } V \text{ is } \gamma \)-\(\theta \)-closed \}.

Conversely, suppose that \(x \notin \bigcap \{ V : A \subseteq V \text{ and } V \text{ is } \gamma\theta\text{-closed} \} \). Then there exists a \(\gamma\theta\text{-closed set } V \text{ such that } A \subseteq V \text{ and } x \notin V \), and so there exists a \(\gamma\text{-open set } U \text{ with } x \in U \text{ such that } U \subseteq \text{cl}_\gamma(U) \subseteq X - V \). Thus we have \(\text{cl}_\gamma(U) \cap A \subseteq \text{cl}_\gamma(U) \cap V = \phi \) implies \(x \notin \gamma\text{cl}_\phi(A) \).

The proof of the second equation follows similarly. This completes the proof. \(\square \)

Theorem 3.6. Let \(\gamma \) be an open operation. If \(X \) is a \(\gamma\)-extremally disconnected space and \(A \subseteq X \). Then the followings hold:

(a) \(x \in \gamma\text{cl}_\phi(A) \) if and only if \(V \cap A \neq \phi \), for each \(\gamma\)-regular-open set \(V \) with \(x \in V \).

(b) \(A \) is \(\gamma\theta\)-open if and only if for each \(x \in A \) there exists a \(\gamma\)-regular-open set \(V \) with \(x \in V \) such that \(V \subseteq A \).

(c) \(A \) is a \(\gamma\)-regular-open set if and only if \(A \) is \(\gamma\theta\)-copen.

Proof. (a) and (b) follows directly from Theorems 3.3 and 3.4.

(c) Let \(A \) be a \(\gamma\)-regular-open set. Then \(A \) is a \(\gamma\)-open set and so \(A = \text{cl}_\gamma(A) = \gamma\text{cl}_\phi(A) \) and hence \(A \) is \(\gamma\theta\)-closed. Since \(X - A \) is a \(\gamma\)-regular-open set, by the argument above, \(X - A \) is \(\gamma\theta\)-closed and \(A \) is \(\gamma\theta\)-open. The converse is obvious. Hence the proof. \(\square \)

It is obvious that \(\gamma\)-regular-open \(\Rightarrow \gamma\theta\)-open \(\Rightarrow \gamma\)-open. But the converses are not necessarily true as the following examples show.

Example 3.3. Let \(X = \{ a, b, c \} \), \(\tau = \{ \phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\} \} \). For \(b \in X \), define an operation \(\gamma : \tau \rightarrow P(X) \) by

\[
\gamma(A) = \begin{cases}
A, & \text{if } b \in A \\
\text{cl}(A), & \text{if } b \notin A
\end{cases}
\]

Calculations shows that \(\{a, b\}, \{a, c\}, \{b\}, X, \phi \) are \(\gamma\)-open sets as well as \(\gamma\theta\)-open sets and \(\gamma\)-regular-open sets are \(\{a, c\}, \{b\}, X, \phi \). Then the subset \(\{a, b\} \) is \(\gamma\theta\)-open but not \(\gamma\)-regular-open.

Example 3.4. Let \(X = \{ a, b, c \} \), \(\tau = \{ \phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\} \} \) be a topology on \(X \). For \(b \in X \), define an operation \(\gamma : \tau \rightarrow P(X) \) by

\[
\gamma(A) = A^\gamma = \begin{cases}
\text{cl}(A), & \text{if } b \in A \\
A, & \text{if } b \notin A
\end{cases}
\]

Calculations shows that \(\{ \phi, X, \{a\}, \{a, c\} \} \) are \(\gamma\)-open sets and \(\{ \phi, X, \{a, c\} \} \) are \(\gamma\theta\)-open sets. The the subset \(\{a\} \) is \(\gamma\)-open but not \(\gamma\theta\)-open.

4. \(\gamma\)-Closed Spaces

Definition 4.10. A filterbase \(\Gamma \) in \(X \), \(\gamma\)-R-converges to \(x_0 \in X \), if for each \(\gamma\)-regular-open set \(A \) with \(x_0 \in A \), there exists \(F \in \Gamma \) such that \(F \subseteq A \).

Definition 4.11. A filterbase \(\Gamma \) in \(X \), \(\gamma\)-R-accumulates to \(x_0 \in X \), if for each \(\gamma\)-regular-open set \(A \) with \(x_0 \in A \) and each \(F \in \Gamma \), \(F \cap A \neq \phi \).

The following theorems are direct consequence of the above definitions.

Theorem 4.7. If a filterbase \(\Gamma \) in \(X \), \(\gamma\)-R-converges to \(x_0 \in X \), then \(\Gamma \) \(\gamma\)-R-accumulates to \(x_0 \).

Theorem 4.8. If \(\Gamma_1 \) and \(\Gamma_2 \) are filterbases in \(X \) such that \(\Gamma_2 \) subordinate to \(\Gamma_1 \) and \(\Gamma_2 \) \(\gamma\)-R-accumulates to \(x_0 \), then \(\Gamma_1 \) \(\gamma\)-R-accumulates to \(x_0 \).

Theorem 4.9. If \(\Gamma \) is a maximal filterbase in \(X \), then \(\Gamma \) \(\gamma\)-R-accumulates to \(x_0 \) if and only if \(\Gamma \) \(\gamma\)-R-converges to \(x_0 \).
Definition 4.12. A space X is said to be γ-closed, if every cover $\{V_\alpha : \alpha \in I\}$ of X by γ-open sets has a finite subset I_0 of I such that $X = \bigcup_{\alpha \in I_0} \text{cl}_\gamma(V_\alpha)$.

Proposition 4.3. If γ is an open operation, then the following are equivalent:

1. X is γ-closed.
2. For each family $\{A_\alpha : \alpha \in I\}$ of γ-closed subsets of X such that $\bigcap_{\alpha \in I} A_\alpha = \phi$, there exists a finite subset I_0 of I such that $\bigcap_{\alpha \in I_0} \text{int}_\gamma(A_\alpha) = \phi$.
3. For each family $\{A_\alpha : \alpha \in I\}$ of γ-closed subsets of X, if $\bigcap_{\alpha \in I_0} \text{int}_\gamma(A_\alpha) \neq \phi$, for every finite subset I_0 of I, then $\bigcap_{\alpha \in I_0} A_\alpha \neq \phi$.
4. Every filterbase Γ in X γ-R-accumulates to $x_0 \in X$.
5. Every maximal filterbase Γ in X γ-R-converges to $x_0 \in X$.

Proof. (2) \iff (3). This is obvious.

(2) \implies (1). Let $\{A_\alpha : \alpha \in I\}$ be a family of γ-open subsets of X such that $X = \bigcup_{\alpha \in I} A_\alpha$. Then each $X - A_\alpha$ is a γ-closed subset of X and $\bigcap_{\alpha \in I} (X - A_\alpha) = \phi$, and so there exists a finite subset I_0 of I such that $\bigcap_{\alpha \in I_0} \text{int}_\gamma(X - A_\alpha) = \phi$, and hence $X = \bigcup_{\alpha \in I_0} (X - \text{int}_\gamma(X - A_\alpha)) = \bigcup_{\alpha \in I_0} \text{cl}_\gamma(A_\alpha)$. Therefore X is γ-closed, since γ is open.

(4) \implies (2). Let $\{A_\alpha : \alpha \in I\}$ be a family of γ-closed subsets of X such that $\bigcap_{\alpha \in I} A_\alpha = \phi$. Suppose that for every finite subfamily $\{A_{\alpha_i} : i = 1, 2, \ldots, n\}, \bigcap_{i=1}^n \text{int}_\gamma(A_{\alpha_i}) \neq \phi$. Then $\bigcap_{i=1}^n (A_{\alpha_i}) = \phi$ and $\Gamma = \big\{ \bigcap_{i=1}^n A_{\alpha_i} : n \in \mathbb{N}, \alpha_i \in I \big\}$ forms a filterbase in X. By (4), Γ γ-R-accumulates to some $x_0 \in X$. Thus for every γ-open set A with $x_0 \in A$ and every $F \in \Gamma$, $F \cap \text{cl}_\gamma(A) \neq \phi$. Since $\bigcap_{F \in \Gamma} F = \phi$, there exists a $F \in \Gamma$ such that $x_0 \notin F$, and so there exists $\alpha_0 \in I$ such that $x_0 \notin A_{\alpha_0}$ and hence $x_0 \in X - A_{\alpha_0}$ and $X - A_{\alpha_0}$ is a γ-open set. Thus $x_0 \notin \text{int}_\gamma(A_{\alpha_0})$ and $x_0 \in X - \text{int}_\gamma(A_{\alpha_0})$, and hence $F_0 \cap (X - \text{int}_\gamma(A_{\alpha_0})) = F_0 \cap \text{cl}_\gamma(X - A_{\alpha_0}) = \phi$, which is a contradiction to our hypothesis.

(5) \implies (4). Let Γ be filterbase in X. Then there exists a maximal filterbase ξ in X such that ξ subordinate to Γ. Since ξ γ-R-converges to x_0, so by Theorems 4.8 and 4.9, Γ γ-R-accumulate to x_0.

(1) \implies (5). Suppose that $\Gamma = \{F_\alpha : a \in I\}$ is a maximal filterbase in X which does not γ-R-converge to any point in X. From Theorem 4.9, Γ does not γ-R-accumulates at any point in X. Thus for every $x \in X$, there exists a γ-open set A_x containing x and $F_{ax} \in \Gamma$ such that $F_{ax} \cap \text{cl}_\gamma(A_x) = \phi$. Since $\{A_x : x \in X\}$ is γ-open cover of X, there exists a finite subfamily $\{A_{x_i} : i = 1, 2, \ldots, n\}$ such that $X = \bigcup_{i=1}^n \text{cl}_\gamma(A_{x_i})$. Because Γ is a filterbase in X, there exists $F_0 \in \Gamma$ such that $F_0 \subseteq \bigcup_{i=1}^n F_{ax_i}$, and hence $F_0 \cap \text{cl}_\gamma(A_{x_i}) = \phi$ for all $i = 1, 2, \ldots, n$. Hence we have that, $\phi = F_0 \cap \bigcup_{i=1}^n \text{cl}_\gamma(A_{x_i}) = F_0 \cap X$, and hence $F_0 = \phi$. This is a contradiction. Hence the proof.

Definition 4.13. A net $(x_i)_{i \in D}$ in a space X is said to be γ-R-converges to $x \in X$, if for each γ-open set U with $x \in U$, there exists i_0 such that $x_i \in \text{cl}_\gamma(U)$ for all $i \geq i_0$, where D is a directed set.

Definition 4.14. A net $(x_i)_{i \in D}$ in a space X is said to be γ-R-accumulates to $x \in X$, if for each γ-open set U with $x \in U$ and each $i, x_i \in \text{cl}_\gamma(U)$, where D is a directed set.

The proofs of following propositions are easy and thus are omitted:

Proposition 4.4. Let $(x_i)_{i \in D}$ be a net in X. For the filterbase $F((x_i)_{i \in D}) = \{\{x_i : i \leq j\} : j \in D\}$ in X,

1. $F((x_i)_{i \in D})$ γ-R-converges to x if and only if $(x_i)_{i \in D}$ γ-R-converges to x.
2. $F((x_i)_{i \in D})$ γ-R-accumulates to x if and only if $(x_i)_{i \in D}$ γ-R-accumulates to x.
Proposition 4.5. Every filterbase F in X determines a net $(x_i)_{i \in D}$ in X such that
(1) $F \gamma$-R-converges to x if and only if $(x_i)_{i \in D} \gamma$-R-converges to x.
(2) $F \gamma$-R-accumulates to x if and only if $(x_i)_{i \in D} \gamma$-R-accumulates to x.

From Propositions 4.4 and 4.5, filterbases and nets are equivalent in the sense of γ-R-
converges and γ-R-accumulates. Thus we have the following theorem:

Theorem 4.10. For a space X, the following are equivalent:
(1) X is γ-closed.
(2) Each net $(x_i)_{i \in D}$ in X has a γ-R-accumulation point.
(3) Each universal net in X γ-R-converges.

REFERENCES

DEPARTMENT OF MATHEMATICS
YANBU UNIVERSITY
P. O. BOX 31387, YANBU ALSINAIYAH
SAUDI ARABIA
E-mail address: sabiriub@yahoo.com