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Computing two special cases of Gauss hypergeometric
function

MOHAMMAD MASJED-JAMEI and WOLFRAM KOEPF

ABSTRACT. In this paper, a computational technique is given to re-obtain the explicit forms of two cases of
the Gauss hypergeometric function 2F1(a, b, c;x) for b = a+ 1/2 and c = 1/2, 1/3. Some special identities re-
lated to the two aforesaid cases are also introduced. Finally a special Maple package, called FormalPowerSeries
(FPS), is used to automatically compute some results given in the paper.

1. INTRODUCTION

Let us begin with the Gauss hypergeometric differential equation [2, 8]:

(1.1) x(1− x) y′′(x) + (γ − (α+ β + 1)x) y′(x)− αβ y(x) = 0,

where α, β and γ are constant parameters. Since the indicial equation of (1.1), i.e.

(1.2) r2 − (1− γ) r = 0,

has two roots r1 = 0 and r2 = 1− γ, by using the Frobenius method the series solution of
the Gauss equation for r1 = 0 can be expressed as

(1.3) y1(x)=1+
αβ

γ

x

1 !
+
α(α+1)β(β+1)

γ(γ+1)

x2

2 !
+
α(α+1)(α+2)β(β+1)(β+2)

γ(γ+1)(γ+2)

x3

3 !
+ ...,

where γ 6= 0,−1,−2,−3, ... and the series converges for −1 < x < 1. This Taylor se-
ries expansion at x = 0 is called Gauss hypergeometric series and its sum, denoted by

2F1

(
α, β

γ

∣∣∣∣∣x
)

or 2F1(α, β, γ;x), is called Gauss hypergeometric function. So, we have

(1.4) y1(x) = 2F1

(
α, β

γ

∣∣∣∣∣x
)

=

∞∑
k=0

(α)k(β)k
(γ)k

xk

k!
where (α)n =

n−1∏
i=0

(α+ i).

A solution basis of differential equation (1.1) is given by [2]

(1.5) y1 = 2F1

(
α, β

γ

∣∣∣∣∣x
)

and y2 = x1−γ 2F1

(
α+ 1− γ, β + 1− γ

2− γ

∣∣∣∣∣x
)

in which γ, α− β and γ − α− β are all non-integers so that the general solution of (1.1) is
given as linear combination y = Ay1 +B y2 where A,B are two constants.

Received: 10.12.2010. In revised form: 06.06.2011. Accepted: 31.07.2011.
2000 Mathematics Subject Classification. Primary 33C05, Secondary 33C90.
Key words and phrases. Gauss hypergeometric function, symmetric orthogonal polynomials, Euler identity, Le-

gendre’s duplication formula, Kummer formula.

137



138 Mohammad Masjed-Jamei and Wolfram Koepf

The importance of the Gauss hypergeometric function is that many elementary and spe-
cial functions of mathematical physics can directly be expressed in terms of it, see e.g.
[3, 5, 6, 9, 13]. Some examples are respectively:

(1.6) 2F1(−p, 1, 1;x) = (1− x)p,

(1.7) 2F1(1, 1, 2;−x) =
ln(1 + x)

x
,

(1.8) 2F1(a, 1− b, a+ 1;x) = ax−aBx(a, b) = ax−a
∫ x

0

ta−1(1− t)b−1dt ,

(1.9) 2F1

(
1

2
,

1

2
,

3

2
;x

)
=

arcsin
√
x√

x
,

(1.10) 2F1

(
1

2
, 1,

3

2
;−x

)
=

arctan
√
x√

x
,

classical orthogonal polynomials such as the Jacobi polynomials

(1.11)
(
n+ α
n

)
2F1

(
−n, n+ α+ β + 1

α+ 1

∣∣∣∣ 1− x
2

)
= P (α,β)

n (x),

and

(1.12) xn2F1

(
−[n/2] , (q−s)/2q−[(n+1)/2]

−(r+(2n−3)p)/2p

∣∣∣∣ − q

px2

)
= S̄n

(
r s
p q

∣∣∣∣ x) ,
where S̄n(p, q, r, s ;x) is the monic form of a basic class of symmetric orthogonal polyno-
mials, see [12], and

(1.13) x(n+
1−(−1)n

2 (θ−1))
2F1

(
−[n/2] , 2−θ+(−1)n(θ−1)

2 − s
2q − [(n+ 1)/2]

(4− θ − 2n+ (−1)n(θ − 1))/2− r/2p

∣∣∣∣∣ − q
px2

)

= S(θ)
n

(
r s
p q

∣∣∣∣ x) ,
where S(θ)

n (p, q, r, s ;x) is a basic class of symmetric orthogonal functions [11] that gener-
alizes the polynomials (1.12) for θ = 1 and finally

(1.14) J (p,q)
n (x; a, b, c, d) = (−1)n((ab+ cd) + i (ad− bc))n(n+ 1− 2p)n×

n∑
k=0

(
n
k

)(
a2+c2

(ab+cd)+i(ad−bc)

)k
2F1

(
k −n p−n−iq/2

2p− 2n

∣∣∣∣∣ 2(ad−bc)
(ad−bc)− i(ab+cd)

)
xk,

which is a class of real polynomials orthogonal with respect to the generalized T student

distribution weight function ((ax+ b)2 + (cx+ d)2)−p exp

(
q arctan

ax+ b

cx+ d

)
on (−∞,∞),

see [10].
There are also special formulas of the Gauss hypergeometric function including constant
parameters. For instance, the Kummer and Gauss formulas [8] are two well-known ex-
amples:

(1.15) 2F1(a, b,−a+ b+ 1 ;−1) =
Γ( 1

2b+ 1)Γ(b− a+ 1)

Γ(b+ 1)Γ( 1
2b− a+ 1)

(Kummer formula),
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(1.16) 2F1(a, b, c ; 1) =
Γ(c) Γ(c− a− b)
Γ(c− a)Γ(c− b)

(Gauss formula).

It should be added that at a number of very special points, the Gauss hypergeometric
function can assume specific values. For example in [14, 15] it is shown that

(1.17) 2F1

(
1

6
,

1

3
,

1

2
;

25

27

)
=

3

4

√
3,

(1.18) 2F1

(
1

6
,

1

2
,

2

3
;

125

128

)
=

4

3
6
√

2,

(1.19) 2F1

(
1

12
,

5

12
,

1

2
;

1323

1331

)
=

3

4
4
√

11.

In this reviewing article, we present a computational method for re-obtaining two other
special cases of Gauss hypergeometric function, i.e.

2F1

(
a, a+ 1/2

1/2

∣∣∣∣∣x
)

and 2F1

(
a, a+ 1/2

3/2

∣∣∣∣∣x
)

[1, p. 556, Re. 15.1.9 and Re. 15.1.10] in which a ∈ R in the convergence region−1 < x < 1,
and then introduce some special identities related to these two special cases. We also im-
plement the Formal Power Series (FPS) algorithm, which was designed and constructed
by W. Koepf in 1992 [7], in Maple on our computational results in the next section.

2. COMPUTING 2F1(a , a+ 1/2 , 1/2 ; x) AND 2F1(a , a+ 1/2 , 3/2 ; x)

Due to Euler’s identity [1, 2]

(2.20) exp(it) = cos t+ i sin t (i =
√
−1),

and Moivre’s identity (exp(it))p = exp(i(pt)) for p ∈ R, one gets first

(2.21) cos pt+ i sin pt = (cos t+ i sin t)p =

∞∑
k=0

(
p
k

)
ik sink t cosp−k t,

which results in

(2.22)


cos pt =

∞∑
k=0

(−1)k
(

p
2k

)
sin2k t cosp−2k t ,

sin pt =
∞∑
k=0

(−1)k
(

p
2k + 1

)
sin2k+1 t cosp−(2k+1) t .

The two above formulas can be rewritten as

(2.23)


cos pt

cosp t
=
∞∑
k=0

(
p
2k

)
(− tan2 t)k,

1

cosp−1 t

sin pt

sin t
=
∞∑
k=0

(
p

2k + 1

)
(− tan2 t)k.

On the other hand, the coefficients C(p, 2k) and C(p, 2k + 1) in (2.23) can be written in
terms of the Pochhammer symbol

(2.24) (p)k = p(p+ 1)...(p+ k − 1) =
Γ(p+ k)

Γ(p)
,
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in which Γ(p) =

∫ ∞
0

xp−1 exp(−x) dx denotes the Gamma function [1, 2, 8]. For this

purpose, we should first note that

(2.25)
(

p
2k

)
=

p!

(2k)!(p− 2k)!
=

Γ(p+ 1)

Γ(2k + 1)Γ(p+ 1− 2k)
.

Now, according to Legendre’s duplication formula [2]

(2.26) Γ(2z) =
22z−1√

π
Γ(z) Γ(z +

1

2
),

and the two identities

(2.27) Γ(β + k) = Γ(β) (β)k and Γ(β − k) =
Γ(β)(−1)k

(1− β)k
,

following from (2.24) the denominator term in the fraction (2.25) is simplified as

Γ(2k + 1)Γ(p+ 1− 2k) =
2p

π
Γ(k + 1) Γ

(
k +

1

2

)
Γ

(
p+ 1

2
− k
)

Γ

(
p+ 2

2
− k
)

=
2p

π
k! Γ

(
1

2

) (
1

2

)
k

Γ

(
p+ 1

2

)
Γ

(
p+ 2

2

)/(1− p
2

)
k

(
−
p

2

)
k

.(2.28)

Therefore we have

(2.29)
(
p

2k

)
=

√
π2−pΓ(p+ 1)

Γ
(
p+1
2

)
Γ
(
p+2
2

) ( 1−p2 )k (−p2)k(
1
2

)
k
k!

=

(
1−p
2

)
k

(
−p2
)
k(

1
2

)
k

1

k!
.

Note in (2.29) that the Legendre formula implies

√
π2−pΓ(p+ 1) = Γ

(
p+ 1

2

)
Γ

(
p+ 2

2

)
Consequently, substituting (2.29) into the first relation of (2.23) yields:

(2.30) 2F1

(
−
p

2
,

1− p
2

1/2

∣∣∣ − tan2 t

)
=

cos pt

cosp t
.

If for simplicity −p/2 = a and − tan2 t = x, identity (2.30) is finally transformed to

(2.31) 2F1

(
a , a+ 1/2

1/2

∣∣∣∣ x) = (1− x)−a cos(2a arctan
√
−x).

But as we pointed out in (1.3), the convergence region of the Gauss hypergeometric series
is −1 < x < 1 and since arctan

√
−x is just defined on the real line for x ≤ 0, formula

(2.31) should only be considered for −1 < x ≤ 0. Therefore we also compute the explicit
form of 2F1(a , a + 1/2 , 1/2 ; x) for positive 0 ≤ x < 1. To reach this goal, we use two
different ways. The first way is as follows:

Let z = (a, b) = a+ ib =
√
a2 + b2 exp

(
i arctan

b

a

)
and set a = 1 and b = ix for x ≥ 0. So

(2.32) 1−x=
√

1−x2 exp(i arctan ix) ⇒ arctan
√
−x=arctan i

√
x=− i

2
ln

1−
√
x

1+
√
x
.
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By substituting this result in (2.31) one gets for x ≥ 0
(2.33)

2F1

(
a, a+ 1/2

1/2

∣∣∣∣∣x
)

= (1− x)−a cos

(
2a arctan

√
−x) = (1− x)−a cos(−ia ln

1−
√
x

1 +
√
x

)

= (1− x)−a cosh

(
a ln

1−
√
x

1 +
√
x

)
=

1

2

(
(1 +

√
x)−2a + (1−

√
x)−2a

)
,

which is valid for 0 ≤ x < 1 and a ∈ R. The second way is to use the Taylor expansion

(2.34)
(1 + x)p + (1− x)p

2
=

∞∑
k=0

(
p
2k

)
x2k ,

which subsequently yields

(2.35)
(1+
√
x)−2a+(1−

√
x)−2a

2
=

∞∑
k=0

(
−2a
2k

)
xk = 2F1

(
a, a+ 1/2

1/2

∣∣∣∣∣x
)

(0≤x<1).

Combining (2.31) and (2.35) gives the following well-known identity:

(2.36) 2F1

(
a, a+ 1/2

1/2

∣∣∣∣∣x
)

=


(1− x)−a cos(2a arctan

√
−x) if − 1 < x ≤ 0 ,

1

2

(
(1 +

√
x)−2a + (1−

√
x)−2a

)
if 0 ≤ x < 1 .

For instance, for x = −1/3, 1/2 (2.36) yields

(2.37)


2F1

(
a, a+ 1/2

1/2

∣∣∣∣∣−1

3

)
=

(
4

3

)−a
cos

(
a
π

3

)
,

2F1

(
a, a+ 1/2

1/2

∣∣∣∣∣−1

3

)
= 22a−1

(
(2 +

√
2)−2a + (2−

√
2)−2a

)
.

It is interesting to notice that (2.36) is also valid for the two boundary points x = −1 and
x = 1, because according to Gauss’s formula (1.16) we have

(2.38) 2F1

(
a , a+ 1/2

1/2

∣∣∣∣ 1

)
=

√
π Γ(−2a)

Γ(1/2− a)Γ(−a)
= 2−2a−1,

which can directly be proved for a < 0 if one applies Legendre’s duplication formula.
Similarly, for x = −1, according to Kummer’s formula (1.15) we have

(2.39) 2F1

(
a, a+ 1/2

1/2

∣∣∣∣∣−1

)
=

√
π Γ(a/2 + 1)

Γ(a+ 1)Γ((1− a)/2)
= 2−a cos

(
a
π

2

)
which again can be proved for −1 < a < 1 if one applies Legendre’s duplication formula
and furthermore the well-known identity Γ(q)Γ(1− q) = π/sin(qπ) (0 < q < 1).
Similarly, to compute 2F1(a , a+1/2 , 3/2 ; x), the coefficient C(p, 2k+1) can be rewritten
as

(2.40)
(

p
2k + 1

)
=

(
2−p
2

)
k

(
1−p
2

)
k(

3
2

)
k

p

k!
,
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which changes the second formula of (2.23) to

(2.41) 2F1

 1− p
2

, 1−
p

2
3/2

∣∣∣∣∣∣ − tan2 t

 =
sin(pt)

p sin t

1

cosp−1 t
.

Now if for simplicity (1− p)/2 = a and − tan2 t = x, (2.41) becomes

(2.42) 2F1

(
a , a+ 1/2

3/2

∣∣∣∣ x) = (1− x)−a
sin((2a− 1) arctan

√
−x)

(2a− 1) sin( arctan
√
−x)

,

which holds for −1 < x ≤ 0 because arctan
√
−x is defined on x ≤ 0.

Again, to compute the explicit form of 2F1(a , a + 1/2 , 3/2 ; x) for positive 0 ≤ x < 1,
there are two different ways. The first way is to substitute (2.32) in (2.42), i.e.
(2.43)

2F1

(
a, a+ 1/2

3/2

∣∣∣∣∣x
)

= (1− x)−a
sin((2a−1) arctan

√
−x)

(2a−1) sin( arctan
√
−x)

= (1− x)−a
sin

(
−(a− 1

2 ) i ln 1−
√

x

1+
√

x

)
(2a−1) sin

(
− i

2 ln 1−
√

x

1+
√

x

)
= (1− x)−a

sinh
(
(a− 1

2 ) ln 1−
√

x

1+
√

x

)
(2a−1) sinh

(
1
2 ln 1−

√
x

1+
√

x

) =
(1+
√
x)

1−2a−(1−
√
x)

1−2a

2 (1−2a)
√
x

.

The second way is to apply the Taylor expansion

(2.44)
(1 + x)p − (1− x)p

2x
=

∞∑
k=0

(
p

2k + 1

)
x2k,

which results in

(2.45)
(1+
√
x)1−2a−(1−

√
x)1−2a

2
√
x

=

∞∑
k=0

(
1−2a
2k+1

)
xk = (1−2a) 2F1

(
a, a+ 1/2

3/2

∣∣∣∣∣x
)
.

Combining (2.42) and (2.45) gives the second well-known identity as:
(2.46)

2F1

(
a, a+ 1/2

3/2

∣∣∣∣∣x
)

=


(1− x)−a

sin((2a− 1) arctan
√
−x)

(2a− 1) sin( arctan
√
−x)

if − 1 < x ≤ 0 ,

(1 +
√
x)1−2a − (1−

√
x)1−2a

2 (1− 2a)
√
x

if 0 ≤ x < 1 .

For instance, if x = −1/3, 1/4 then (2.46) is reduced to

(2.47)


2F1

(
a , a+ 1/2

3/2

∣∣∣∣ − 1

3

)
=

3a

22a−1(2a− 1)
sin

(
(2a− 1)

π

6

)
,

2F1

(
a , a+ 1/2

3/2

∣∣∣∣ 1

4

)
=

1− 3(1−2a)

2(1−2a)(2a− 1)
.

Moreover, for a = 1/2 there exists a limiting case in (2.46) which directly generates iden-
tity (1.10), because we have
(2.48)

2F1

(
1/2, 1

3/2

∣∣∣∣∣x
)

= lim
a→1/2

(1− x)−a

sin( arctan
√
−x)

sin((2a− 1) arctan
√
−x)

(2a− 1)
=

arctan
√
−x√

−x
.
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Note that the result (2.46) is also valid for the two boundary points x = −1 and x = 1,
because according to (1.16) the identity

(2.49) 2F1

(
a, a+ 1/2

3/2

∣∣∣∣∣ 1
)

=
Γ(3/2) Γ(1− 2a)

Γ(3/2− a)Γ(1− a)
=

2−2a

1− 2a
,

can be proved for a < 1/2 if one applies Legendre’s duplication formula, and also accord-
ing to (1.15) identity

(2.50) 2F1

(
a, a+ 1/2

3/2

∣∣∣∣∣−1

)
=

Γ(5/4 + a/2) Γ(3/2)

Γ(5/4− a/2) Γ(3/2 + a)
=

2(1/2−a)

2a− 1
sin

(
(2a− 1)

π

4

)
,

can be proved for −3 < 2a < 5 if Legendre’s duplication formula and the relation
Γ(q)Γ(1− q) = π/sin(qπ) are used simultaneously.

3. SOME IDENTITIES RELATED TO 2F1(a , a+ 1/2 , 1/2 ; x) AND 2F1(a , a+ 1/2 , 3/2 ; x)

Since relations (2.30) and (2.41) have trigonometric forms, various identities can be de-
rived for the two mentioned hypergeometric functions. Here we introduce three examples
of these identities.
i) By referring to (2.30) and (2.41) one can first conclude

(3.51)

2F1

(
1−p
2 , −p2

1/2

∣∣∣∣ − tan2 t

)
2F1

(
1−p
2 , 1− p

2
3/2

∣∣∣∣ − tan2 t

)

=
sin(2p)t

(2p) sin t

1

cos2p−1 t
= 2F1

(
1/2− p , 1− p

3/2

∣∣∣∣ − tan2 t

)
.

Clearly this relation is simplified as follows if one assumes −p/2 = a and − tan2 t = x:

(3.52) 2F1

(
a, a+ 1/2

1/2

∣∣∣∣∣x
)

2F1

(
a+ 1, a+ 1/2

3/2

∣∣∣∣∣x
)

= 2F1

(
2a+ 1, 2a+ 1/2

3/2

∣∣∣∣∣x
)
.

ii) Since we have
(3.53)

2F1

(
1−p
2 , −p2

1/2

∣∣∣∣ − tan2 t

)2

=
cos2 pt

cos2p t
=

1

2 cos2p t
+

1

2
2F1

(
1−2p

2 , −p
1/2

∣∣∣∣ − tan2 t

)
,

by taking − tan2 t = x and −p = a in (3.53) and noting the well-known identity [1, 2]

(3.54) cos2a(arctan
√
−x) = (1− x)−a = 2F1

(
a , 1/2

1/2

∣∣∣∣ x) ,
we finally obtain

(3.55) 2F1

(
a, 1/2

1/2

∣∣∣∣∣x
)

+ 2F1

(
a, a+ 1/2

1/2

∣∣∣∣∣x
)

= 2 2F1

(
a/2, (a+ 1)/2

1/2

∣∣∣∣∣x
)2

iii) Since

(3.56) 2F1

 1− p
2

, 1−
p

2
3/2

∣∣∣∣∣∣− tan2 t

2

=
sin2 pt

p2 sin2 t cos2p−2 t
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=
1

2p2 tan2 t cos2p t
−

1

2p2 tan2 t
2F1

(
1−2p

2 , −p
1/2

∣∣∣∣ − tan2 t

)
,

again taking − tan2 t = x and −p = a in (3.56) yields

(3.57) 2F1

(
1, 1/2

1/2

∣∣∣∣∣x
)
− 2F1

(
1, a+ 1/2

1/2

∣∣∣∣∣x
)

= (2a2x) 2F1

(
a/2 + 1, (a+ 1)/2

3/2

∣∣∣∣∣x
)2

.

4. APPENDIX: FPS ALGORITHM YIELDS PREVIOUS RESULTS

In 1992, W. Koepf introduced the FormalPowerSeries (FPS) algorithm [7] and imple-
mented it in the Maple software. The algorithm is accessible via the Maple command
convert(..., FormalPowerSeries), see also [4]. In this section, using this special
package, we wish to directly compute some results given in the paper and point out that
they can be determined completely automatically from right to left by the FPS algorithm,
see also [9]. Similarly note that the algorithmic procedure given by Roach in [13], which
is also partially implemented in Maple, yields the conversion from left to right.

5. MAPLE COMPUTATIONS

> read "hsum13.mpl":

Package “Hypergeometric Summation“, Maple V − Maple 13

Copyright 1998 − 2009 , Wolfram Koepf , University of Kassel

(6)
> fps:=convert((1-x)ˆp,FPS,x);

fps :=
∞∑

k=0

pochhammer(−p, k)xk

k!
> hyper:=Sumtohyper(op(1,fps),k);

hyper := Hypergeom([−p], [], x)
> simplify(subs(Hypergeom=hypergeom,hyper));

(1− x)p

(9)
> fps:=convert(arcsin(sqrt(x))/sqrt(x),FPS,x);

fps :=
∞∑

k=0

(2 k)! 4(−k) xk

(k!)2 (2 k + 1)
> hyper:=Sumtohyper(op(1,fps),k);

hyper := Hypergeom([
1

2
,
1

2
], [

3

2
], x)

> simplify(subs(Hypergeom=hypergeom,hyper));

arcsin(
√
x)√

x

(10)
> fps:=convert(arctan(sqrt(x))/sqrt(x),FPS,x);

fps :=
∞∑

k=0

(−1)k xk

2 k + 1
> hyper:=Sumtohyper(op(1,fps),k);

hyper := Hypergeom([
1

2
, 1], [

3

2
], −x)

> simplify(subs(Hypergeom=hypergeom,hyper));
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1

2

ln(− 1 +
√
−x

−1 +
√
−x

)

√
−x

(11)
> fps:=convert(JacobiP(n,alpha,beta,x),FPS,x=1);

fps :=
∞∑

k=0

binomial(n+ α, n) (−1)k 2(−k) pochhammer(−n, k)

pochhammer(1 + β + α+ n, k) (−1 + x)k/(pochhammer(1 + α, k) k!)
> hyper:=convert(Sumtohyper(op(1,fps),k),binomial);

hyper :=

Hypergeom([−n, 1 + β + α+ n], [1 + α],
1

2
− x

2
) binomial(n+ α, α)

(30)
> fps:=convert(cos(p*arctan(x))/cos(arctan(x))ˆp,FPS,x);

fps :=
∞∑

k=0

(−1)k pochhammer(−p, 2 k)x(2 k)

(2 k)!
> hyper:=Sumtohyper(op(1,fps),k);

hyper := Hypergeom([−p
2
,
1

2
− p

2
], [

1

2
], −x2)

> simplify(subs(Hypergeom=hypergeom,hyper)) assuming x>0;

(1 + x I)p

2
+

(1 + x2)p (1 + x I)(−p)

2
(31)

> fps:=convert((1-x)ˆ(-a)*cos(2*a*arctan(sqrt(-x))),FPS,x);

fps :=
∞∑

k=0

pochhammer(2 a, 2 k)xk

(2 k)!
> hyper:=Sumtohyper(op(1,fps),k);

hyper := Hypergeom([
1

2
+ a, a], [

1

2
], x)

> simplify(subs(Hypergeom=hypergeom,hyper)) assuming x>0;

(1− x)(−1/2−a) cos(2 a arcsin(

√
1

−1 + x

√
x))√

− 1

−1 + x

(35)
> fps:=convert(1/2*((1+sqrt(x))ˆ(-2*a)+(1-sqrt(x))ˆ(-2*a)),FPS,x);

fps :=
∞∑

k=0

pochhammer(2 a, 2 k)xk

(2 k)!
> hyper:=Sumtohyper(op(1,fps),k);

hyper := Hypergeom([
1

2
+ a, a], [

1

2
], x)

> simplify(subs(Hypergeom=hypergeom,hyper)) assuming x>0;

(1− x)(−1/2−a) cos(2 a arcsin(

√
1

−1 + x

√
x))√

−
1

−1 + x



146 Mohammad Masjed-Jamei and Wolfram Koepf

(46)
> fps:=convert((1-x)ˆ(-a)*sin((2*a-1)*arctan(sqrt(-x)))/
> ((2*a-1)*sin(arctan(sqrt(-x)))),FPS,x);

fps :=
∞∑

k=0

pochhammer(2 a, 2 k)xk

(2 k + 1)!
> hyper:=Sumtohyper(op(1,fps),k);

hyper := Hypergeom([
1

2
+ a, a], [

3

2
], x)

> simplify(subs(Hypergeom=hypergeom,hyper)) assuming x>0;

(1− x)(−a) sin((2 a− 1) arcsin(

√
1

−1 + x

√
x))

√
x (2 a− 1)

√
1

−1 + x
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