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The generalization of some results for Bernstein and Stancu
operators

DAN MICLĂUŞ and PETRU I. BRAICA

ABSTRACT. In the present paper we generalize some results for Bernstein and Stancu operators. Firstly,
we establish a relationship between two results concerning calculation of test functions by Bernstein operators.
Secondly, using this relationship and some known results we prove in every case a Voronovskaja type theorem,
the uniform convergence and the order of approximation for Bernstein and Stancu operators.

1. INTRODUCTION

Let N be the set of positive integers and N0 = N ∪ {0}.
The operators Bn : C([0, 1])→ C([0, 1]) given by

Bn(f ;x) =

n∑
k=0

pn,k(x)f

(
k

n

)
, (1.1)

where pn,k(x) are the fundamental Bernstein’s polynomials defined by

pn,k(x) =

(
n

k

)
xk(1− x)n−k, (1.2)

for any x ∈ [0, 1], any k ∈ {0, 1, . . . , n} and any n ∈ N, are called Bernstein operators and
were first introduced in [4].
In what follows, let the real parameters α, β be given, such that 0 ≤ α ≤ β. The operators
P

(α,β)
n : C([0, 1])→ C([0, 1]) defined by

P (α,β)
n (f ;x) =

n∑
k=0

pn,k(x)f

(
k + α

n+ β

)
, (1.3)

for any x ∈ [0, 1], any k ∈ {0, 1, . . . , n} and any n ∈ N, where pn,k(x) are the fundamental
Bernstein’s polynomials given at (1.2), are called Stancu operators [19].

Remark 1.1. More results and properties concerning (1.1) and (1.3) can be found also in
monographs [2], [3].

The aim of this paper is to generalize some results for the presented operators. Firstly,
we establish a general formula concerning calculation of the test functions by Bernstein
operators and next, taking this into account we will prove a Voronovskaja type theo-
rem in every case for Bernstein and Stancu operators. Using some known results, which
will be cited at the adequate moment we shall prove the uniform convergence, general
Voronovskaja type formulas and the order of approximation up to twice continuously
differentiable function for Bernstein type operators.
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2. PRELIMINARIES

Of the greatest utility in the calculus of finite differences, in number theory, in the sum-
mation of series, in the calculation of the Bernstein polynomials, some numbers are intro-
duced in 1730 by J. Stirling in his Methodus differentialis [20], subsequently called ”Stirling
numbers” of the first and second kind.

For any x ∈ R and any n ∈ N0, let (x)n :=
n−1∏
i=0

(x − i), where (x)0 := 1 be the falling

factorial denoted by Pochhammer symbol. It is well known that

xj =

j∑
i=0

S(j, i)(x)i (2.4)

holds, for any x ∈ R and any j ∈ N0, where S(j, i) are the Stirling numbers of second
kind. Now, let i, j ∈ N0 be natural numbers, then the Stirling numbers of second kind
have the following properties:

S(j, i) :=


1, if j = i = 0; j = i or j > 1, i = 1

0, if j > 0, i = 0

0, if j < i

i · S(j − 1, i) + S(j − 1, i− 1), if j, i > 1.

(2.5)

Let ej(x) = xj , with j ∈ N0 and x ∈ [0, 1] be the test functions.
The main result established in [14], by O. T. Pop and M. Farcaş concerning calculation of
the test functions in general case by Bernstein operators is given by the following:

Proposition 2.1. [14] If n, j ∈ N, then

Bn(ej ;x) =
1

nj

j∑
i=1

S(j, i)(n)ix
i. (2.6)

During the preparation of the present paper, making some researches we discovered
that, the relation (2.6) had been proved earlier by S. Karlin and Z. Ziegler in [12]. As a spe-
cial case, we can find the same relation in the article [1], where the asymptotic expansion
of multivariate Bernstein polynomials on a simplex are considered. Later, in [17] the au-
thors O. T. Pop, D. Bărbosu and P. I. Braica proved another result concerning calculation of
the test functions by Bernstein operators. Before to mention the result we set

(
n
k

)
= 0 and

Akn = 0,whereAkn are arrangements of n taken k, for any n ∈ N0 and k ∈ Z\{0, 1, 2, . . . , n}.

Theorem 2.1. [17] For any j, n ∈ N and any x ∈ [0, 1], the following holds

Bn(ej ;x) =
1

nj

j−1∑
i=0

a
(i)
j Aj−in xj−i, (2.7)

where

a
(i)
j > 0, i = 1, j − 2, a

(0)
j = a

(j−1)
j = 1 (2.8)

and

a
(i)
j+1 = (j − i+ 1)a

(i−1)
j + a

(i)
j , for 1 ≤ i ≤ j − 1. (2.9)
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Corollary 2.1. [17] If j ∈ N and i ∈ {1, 2, . . . , j − 1}, then the coefficients a(i)j , which appear in
(2.7) are expressed by

a
(i)
j =

j−i∑
ki=1

ki ·
ki∑

ki−1=1

ki−1 . . .

k4∑
k3=1

k3 ·
k3∑
k2=1

k2 ·
k2∑
k1=1

k1. (2.10)

In this section we recall some results from [15] and [16], which we shall use in the
present paper. Let I, J be real intervals and I ∩ J 6= ∅. For any n, k ∈ N0, n 6= 0 consider
the functions ϕn,k : J → R, with the property that ϕn,k(x) ≥ 0, for any x ∈ J and the
linear positive functionals An,k : E(I)→ R.
For any n ∈ N define the operator Ln : E(I)→ F (J), by

Ln(f ;x) =

n∑
k=0

ϕn,k(x)An,k(f), (2.11)

where E(I) is a linear space of real-valued functions defined on I and F (J) is a subset of
the set of real-valued functions defined on J .

Remark 2.2. [15] The operators (Ln)n∈N are linear and positive on E(I ∩ J).

For n ∈ N and i ∈ N0 define T ∗n,i by

T ∗n,i(Ln;x) = niLn(ψ
i
x;x) = ni

n∑
k=0

ϕn,k(x)An,k(ψ
i
x), x ∈ I ∩ J, (2.12)

where ψix(t) = (t− x)i, t ∈ I ∩ J .
In what follows s ∈ N0 is even and we assume that the next two conditions hold:

• there exists the smallest αs, αs+2 ∈ [0,+∞), so that

lim
n→∞

T ∗n,j(Ln;x)

nαj
= Bj(x) ∈ R, (2.13)

for any x ∈ I ∩ J and j ∈ {s, s+ 2},

αs+2 < αs + 2 (2.14)

• I ∩ J is an interval.

Theorem 2.2. [15, 16] If f ∈ E(I) is a function s times differentiable in a neighborhood of
x ∈ I ∩ J , then

lim
n→∞

ns−αs

(
Ln(f ;x)−

s∑
i=0

f (i)(x)

i! · ni
T ∗n,i(Ln;x)

)
= 0. (2.15)

Assume that f is s times differentiable function on I and there exists an interval K ⊆ I ∩ J , such
that, there exist n(s) ∈ N and the constants kj ∈ R depending on K, so that for n ≥ n(s) and
x ∈ K, the following inequality

T ∗n,j(Ln;x)

nαj
≤ kj , (2.16)
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holds, for j ∈ {s, s+ 2}.
Then, the convergence expressed by (2.15) is uniform on K and moreover

ns−αs

∣∣∣∣∣Ln(f ;x)−
s∑
i=0

f (i)(x)

i! · ni
T ∗n,i(Ln;x)

∣∣∣∣∣ (2.17)

≤ 1

s!
(ks + ks+2)ω1

(
f (s);

1√
n2+αs−αs+2

)
,

for any x ∈ K and n ≥ n(s), where ω1(f ; δ) denotes the modulus of continuity of the function f .

3. MAIN RESULTS

Firstly, we want to get an answer to the following question:
Is it possible to exist a relationship between (2.6) and (2.7)? By comparing both the rela-
tions we can get an answer.

Bn(ej ;x) =
1

nj

j∑
i=1

S(j, i)(n)ix
i

=
1

nj
(
S(j, 1)(n)1x+ S(j, 2)(n)2x

2 + . . .+ S(j, j − 1)(n)j−1x
j−1 + S(j, j)(n)jx

j
)

=
1

nj

j∑
i=1

S(j, j + 1− i)(n)j+1−ix
j+1−i =

1

nj

j−1∑
i=0

S(j, j − i)(n)j−ixj−i.

In conclusion

Bn(ej ;x) =
1

nj

j−1∑
i=0

S(j, j − i)(n)j−ixj−i (3.18)

holds. One observes that

Aj−in =
n!

(n− (j − i))!
= n(n− 1) · . . . · (n− (j − i− 1)) = (n)j−i. (3.19)

Taking (3.19) into account, it follows that the coefficients a(i)j and S(j, j − i) of xj−i from
(2.7) and (3.18) are equal, for any j ∈ N and i ∈ {0, 1, . . . , j − 1}.

Proposition 3.2. For any j, n ∈ N and any x ∈ [0, 1], the following holds:

Bn(ej ;x) =
1

nj

j−1∑
i=0

S(j, j − i)(n)j−ixj−i. (3.20)

The Stirling numbers which appear in (3.20) admit the following representation:

Corollary 3.2. If j ∈ N and i ∈ {1, 2, . . . , j−1}, then the coefficients S(j, j− i) can be expressed
by

S(j, j − i) =
j−i∑
ki=1

ki ·
ki∑

ki−1=1

ki−1 . . .

k4∑
k3=1

k3 ·
k3∑
k2=1

k2 ·
k2∑
k1=1

k1.

Proof. It follows immediately, because of (2.10) a(i)j = S(j, j − i), for any j ∈ N and i ∈
{0, 1, 2, . . . , j − 1}. �

Remark 3.3. In the following, we assume that the first three cases concerning calculation
of the test functions by Bernstein, respectively Stancu operators are well known.
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3.1. Bernstein operators. Using the construction form preliminaries, we assume that I =
J = [0, 1], E(I) = C([0, 1]), F (J) = C([0, 1]). Then the functions ϕn,k : [0, 1] → R let be
defined by ϕn,k(x) := pn,k(x), for any x ∈ [0, 1], any n, k ∈ N0, n 6= 0 and the functionals
An,k : C([0, 1])→ R let be defined by An,k(f) := f

(
k
n

)
, for any n, k ∈ N0, n 6= 0.

In this case one obtains the Bernstein operators, with

T ∗n,i(Bn;x) = ni
n∑
k=0

pn,k(x)An,k(ψ
i
x) = ni

n∑
k=0

pn,k(x)

(
k

n
− x
)i

(3.21)

=

n∑
k=0

pn,k(x)(k − nx)i =: Tn,i(x).

Application 3.1. For j ∈ {3, 4} we present the calculation of test functions by Bernstein
operators, taking (3.20) into account.

Case 1. j = 3

Bn(e3;x) =
1

n3

2∑
i=0

S(3, 3− i)(n)3−ix3−i

=
1

n3
(
S(3, 3)(n)3x

3 + S(3, 2)(n)2x
2 + S(3, 1)(n)1x

)
=

1

n3
(
n(n− 1)(n− 2)x3 + 3n(n− 1)x2 + nx

)
,

where S(3, 2) = 2 · S(2, 2) + S(2, 1) = 3.
Case 2. j = 4

Bn(e4;x) =
1

n4

3∑
i=0

S(4, 4− i)(n)4−ix4−i

=
1

n4
(
S(4, 4)(n)4x

4 + S(4, 3)(n)3x
3 + S(4, 2)(n)2x

2 + S(4, 1)(n)1x
)

=
1

n4
(
n(n− 1)(n− 2)(n− 3)x4 + 6n(n− 1)(n− 2)x3 + 7n(n− 1)x2 + nx

)
,

where S(4, 2) = 2 · S(3, 2) + S(3, 1) = 7 and S(4, 3) = 3 · S(3, 3) + S(3, 2) = 6.

Remark 3.4. Concerning the polynomials Tn,i(x) = T ∗n,i(Bn;x), which were first intro-
duced in [13], we shall give a proof relied on Application 3.1.

Lemma 3.1. For any x ∈ [0, 1] and any n ∈ N, the following hold:
T ∗n,0(Bn;x) = 1,
T ∗n,1(Bn;x) = 0,
T ∗n,2(Bn;x) = nx(1− x),
T ∗n,3(Bn;x) = nx(1− x)(1− 2x),

T ∗n,4(Bn;x) = 3n2x2(1− x)2 + n
(
x(1− x)− 6x2(1− x)2

)
.

Proof. Taking into account (2.12), (3.21) and Application 3.1, we get:

T ∗n,0(Bn;x) = Bn(e0;x) = 1;

T ∗n,1(Bn;x) = nBn(ψx;x) = n(Bn(e1;x)− xBn(e0;x)) = 0;

T ∗n,2(Bn;x) = n2Bn
(
ψ2
x;x
)
= n2

(
Bn(e2;x)− 2xBn(e1;x) + x2Bn(e0;x)

)
= nx(1− x);
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T ∗n,3(Bn;x) = n3Bn
(
ψ3
x;x
)

= n3
(
Bn(e3;x)− 3xBn(e2;x) + 3x2Bn(e1;x)− x3Bn(e0;x)

)
= nx(1− x)(1− 2x);

T ∗n,4(Bn;x) = n4Bn
(
ψ4
x;x
)

= n4
(
Bn(e4;x)− 4xBn(e3;x) + 6x2Bn(e2;x)− 4x3Bn(e1;x) + x4Bn(e0;x)

)
= 3n2x2(1− x)2 + n

(
x(1− x)− 6x2(1− x)2

)
.

�

Lemma 3.2. For any x ∈ [0, 1], the following

lim
n→∞

T ∗n,0(Bn;x) = 1, (3.22)

lim
n→∞

T ∗n,2(Bn;x)

n
= x(1− x), (3.23)

lim
n→∞

T ∗n,4(Bn;x)

n2
= 3(x(1− x))2 (3.24)

hold, and there exist
T ∗n,0(Bn;x) = 1 = k0, (3.25)

T ∗n,2(Bn;x)

n
≤ 1

4
= k2, (3.26)

T ∗n,4(Bn;x)

n2
≤ 3

16
= k4, (3.27)

for any x ∈ [0, 1] and any n ∈ N.

Proof. The identities (3.22)–(3.24) follow immediately from Lemma 3.1, while (3.25)–(3.27)
yield from (3.22)–(3.24). �

Theorem 3.3. Let f ∈ C([0, 1]) be a function. If x ∈ [0, 1] and f is s times differentiable in a
neighborhood of x, then

lim
n→∞

Bn(f ;x) = f(x), (3.28)

for s = 0;

lim
n→∞

n(Bn(f ;x)− f(x)) =
x(1− x)

2
f (2)(x), (3.29)

for s = 2;

lim
n→∞

n2
(
Bn(f ;x)− f(x)−

x(1− x)
2n

f (2)(x)

)
(3.30)

=
x(1− x)(1− 2x)

6
f (3)(x) +

(x(1− x))2

8
f (4)(x)

for s = 4 and

lim
n→∞

ns−αs

(
Bn(f ;x)−

s∑
i=0

f (i)(x)

i! · ni
T ∗n,i(Bn;x)

)
= 0, (3.31)
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for s ≥ 4.
Assume that f is s times differentiable on [0, 1]. Then the convergence from (3.28)–(3.31) is uni-
form on [0, 1]. Moreover, we get

|Bn(f ;x)− f(x)| ≤
5

4
· ω1

(
f ;

1√
n

)
, (3.32)

for s = 0 and

n

∣∣∣∣Bn(f ;x)− f(x)− x(1− x)
2n

f (2)(x)

∣∣∣∣ ≤ 7

32
· ω1

(
f (2);

1√
n

)
, (3.33)

for s = 2.

Proof. It follows from Theorem 2.2, with α0 = 0, α2 = 1 and α4 = 2, taking into account
Lemma 3.1 and Lemma 3.2. �

Remark 3.5. The above theorem, by the relation (3.31) generalizes the asymptotic behav-
ior of the Bernstein operators and by some particular cases we recover formula (3.29), for
twice continuously differentiable function, proved first by E. V. Voronovskaja [21], respec-
tively formula (3.30), for four continuously differentiable function, proved first by S. N.
Bernstein [5].
Concerning quantitative form of Voronovskaja result in terms of modulus of continuity
we recover the well known estimate (3.32), obtained by G. G. Lorentz [13] and for twice
continuously differentiable function we get a good estimate for a neighborhood of the

point
1

2
. It is worth mentioning that the first (3.32) type estimation was obtained by T.

Popoviciu [18]. Various quantitative forms of Voronovskaja’s 1932 result dealing with the
asymptotic behavior of the Bernstein operators are discussed in several recently papers
[6], [7], [8], [9], [10] and [11], where better estimate close to the endpoints 0 and 1 then the
global one was established.

3.2. Stancu operators. Using the same construction form preliminaries, if we assume that
I = J = [0, 1], E(I) = C([0, 1]), F (J) = C([0, 1]), then the functions ϕn,k : [0, 1] → R are
defined by ϕn,k(x) := pn,k(x), for any x ∈ [0, 1], any n, k ∈ N0, n 6= 0 and the functionals

An,k : C([0, 1])→ R are defined by An,k(f) := f

(
k + α

n+ β

)
, for any n, k ∈ N0, n 6= 0.

In this case one obtains the Stancu operators, with

T ∗n,i

(
P (α,β)
n ;x

)
= ni

n∑
k=0

pn,k(x)An,k(ψ
i
x) = ni

n∑
k=0

pn,k(x)

(
k + α

n+ β
− x
)i

=

(
n

n+ β

)i n∑
k=0

pn,k(x)(k − nx+ α− βx)i

=

(
n

n+ β

)i n∑
k=0

pn,k(x)

i∑
l=0

(
i

l

)
(k − nx)l(α− βx)i−l

=

(
n

n+ β

)i i∑
l=0

(
i

l

)
(α− βx)i−lTn,l(x). (3.34)

Lemma 3.3. For any x ∈ [0, 1] and any n ∈ N, the following hold:
T ∗n,0

(
P

(α,β)
n ;x

)
= 1,
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T ∗n,1

(
P

(α,β)
n ;x

)
= n

n+β (α− βx),

T ∗n,2

(
P

(α,β)
n ;x

)
=
(

n
n+β

)2 (
(α− βx)2 + nx(1− x)

)
,

T ∗n,3

(
P

(α,β)
n ;x

)
=
(

n
n+β

)3 (
(α− βx)3 + 3(α− βx)nx(1− x) + nx(1− x)(1− 2x)

)
,

T ∗n,4

(
P

(α,β)
n ;x

)
=
(

n
n+β

)4 (
(α− βx)4 + 6(α− βx)2nx(1− x)

+4(α− βx)nx(1− x)(1− 2x) + 3n2x2(1− x)2 + n
(
x(1− x)− 6x2(1− x)2

))
.

Proof. Taking (3.34), (3.21) and Lemma 3.1 into account, we get:

T ∗n,0

(
P (α,β)
n ;x

)
= Tn,0(x) = 1;

T ∗n,1

(
P (α,β)
n ;x

)
=

n

n+ β

1∑
l=0

(
1

l

)
(α− βx)1−lTn,l(x) =

n

n+ β
(α− βx);

T ∗n,2

(
P (α,β)
n ;x

)
=

(
n

n+ β

)2 2∑
l=0

(
2

l

)
(α− βx)2−lTn,l(x) =(

n

n+ β

)2 (
(α− βx)2 + nx(1− x)

)
;

T ∗n,3

(
P (α,β)
n ;x

)
=

(
n

n+ β

)3 3∑
l=0

(
3

l

)
(α− βx)3−lTn,l(x)

=

(
n

n+ β

)3 (
(α− βx)3 + 3(α− βx)nx(1− x) + nx(1− x)(1− 2x)

)
;

T ∗n,4

(
P (α,β)
n ;x

)
=

(
n

n+ β

)4 4∑
l=0

(
4

l

)
(α− βx)4−lTn,l(x)

=

(
n

n+ β

)4 (
(α− βx)4 + 6(α− βx)2nx(1− x)

+4(α− βx)nx(1− x)(1− 2x) + 3n2x2(1− x)2 + n
(
x(1− x)− 6x2(1− x)2

))
.

�

Lemma 3.4. For any x ∈ [0, 1], the following

lim
n→∞

T ∗n,0

(
P (α,β)
n ;x

)
= 1, (3.35)

lim
n→∞

T ∗n,2

(
P

(α,β)
n ;x

)
n

= x(1− x), (3.36)

lim
n→∞

T ∗n,4

(
P

(α,β)
n ;x

)
n2

= 3(x(1− x))2 (3.37)

hold, and there exist
T ∗n,0

(
P (α,β)
n ;x

)
= 1 = k0, (3.38)

T ∗n,2

(
P

(α,β)
n ;x

)
n

≤ 1

4
= k2, (3.39)
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T ∗n,4

(
P

(α,β)
n ;x

)
n2

≤ 3

16
= k4, (3.40)

for any x ∈ [0, 1] and any n ∈ N.

Proof. The identities (3.35)–(3.37) follow immediately from Lemma 3.3, while (3.38)–(3.40)
yield from (3.35)–(3.37). �

Theorem 3.4. Let f ∈ C([0, 1]) be a function. If x ∈ [0, 1] and f is s times differentiable in a
neighborhood of x, then

lim
n→∞

P (α,β)
n (f ;x) = f(x), (3.41)

for s = 0;

lim
n→∞

n
(
P (α,β)
n (f ;x)− f(x)

)
= (α− βx)f (1)(x) + x(1− x)

2
f (2)(x), (3.42)

for s = 2;

lim
n→∞

n2
(
P (α,β)
n (f ;x)−f(x)− α−βx

n+β
f (1)(x)− (α−βx)2 + nx(1−x)

2(n+β)2
f (2)(x)

)
=

3(α−βx)x(1−x) + x(1−x)(1−2x)
6

f (3)(x) +
(x(1−x))2

8
f (4)(x), (3.43)

for s = 4 and

lim
n→∞

ns−αs

(
P (α,β)
n (f ;x)−

s∑
i=0

f (i)(x)

i! · ni
T ∗n,i

(
P (α,β)
n ;x

))
= 0, (3.44)

for s ≥ 4.
Assume that f is s times differentiable on [0, 1]. Then the convergence from (3.41)–(3.44) is uni-
form on [0, 1]. Moreover, we get∣∣∣P (α,β)

n (f ;x)− f(x)
∣∣∣ ≤ 5

4
· ω1

(
f ;

1√
n

)
, (3.45)

for s = 0 and

n

∣∣∣∣P (α,β)
n (f ;x)− f(x)− α− βx

n+ β
f (1)(x)− (α− βx)2 + nx(1− x)

2(n+ β)2
f (2)(x)

∣∣∣∣
≤ 7

32
· ω1

(
f (2);

1√
n

)
, (3.46)

for s = 2.

Proof. It follows from Theorem 2.2, with α0 = 0, α2 = 1 and α4 = 2, taking into account
Lemma 3.3 and Lemma 3.4. �

Remark 3.6. The above theorem, by the relation (3.44) generalizes the asymptotic behav-
ior of the Stancu operators and in the particular case, for s = 2 we recover formula (3.42),
for twice continuously differentiable function, proved first by D. D. Stancu [19]. We also
get the asymptotic behavior in the particular case s = 4 and quantitative forms in terms
of modulus of continuity, for the same operators.
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