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A refinement of the Kittaneh-Manasrah inequality

NICUSOR MINCULETE

ABSTRACT. The purpose of this paper is to give refinement for the Kittaneh-Manasrah inequality which
improves the inequality of Young. We also give several applications.

1. INTRODUCTION

Many results of Modern Mathematics are based on the theory of the inequalities. Im-
proving the inequality of Kittaneh-Manasrah, we obtain an improvement of Young’s in-
equality which improves other important inequalities such as the following: Bernoulli’s
inequality and the weighted power means.

Now, we present the famous Young inequality

(1.1) Aa+ (1= XN)b>a b=,

for positive real numbers a,b and A € [0, 1]. In [4], S. Furuichi given a reverse inequality
for Young's inequality.
Inequality (1.1) was refined by F. Kittaneh and Y. Manasrah, in [7], thus

(1.2) Aa+ (1= X\)b>a*b' ™ + r(va — Vb)?,

where r = min{\, 1 — A}. They use this inequality for the study of matrix norm inequali-
ties.

Its reverse inequality was given by M. Tominaga in [13], using the Specht’s ratio, in the
following way

(1.3) S (%) a b > Aa+ (1 — A)b,

for positive real numbers a, b and A € [0, 1], where the Specht’s ratio [3, 6, 12], was defined
by
BT
Sh) = ———=—, (h#1)
elog h»—1
for a positive real number h.
In [5], S. Furuichi improves inequality (1.1) thus

(1.4) X+ (1—Ab> S ((%)) LA

where = min{\, 1 — A} and the function S was given above.
H. Kober proved in [8] a general result related to an improvement of the inequality
between arithmetic and geometric means, which for n = 2 implies the inequality

(1.5) r(Va—vb)? < Xa+ (1= M\b—a*b"* < (1 -r)(Va—vb)>
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where a, b are the positive real numbers, A € [0,1] and » = min{\, 1 — A}.

A generalization of inequality (1.5) can be found in a paper of . M. Aldaz [1].
In [9], we present other improvement of the Young inequality and a reverse inequality as
follows

+0\" a+b\**"
1.6 atbt = (“) <Aa+ (1=Xb<a*b= <> ,
(16) 2wab) ( < 2v/ab

for the positive real numbers a,b and A € (0,1) where r = min{\,1 — A}.
Inequality (1.6) was obtained by the inequality

2pmin (W —f (rﬂl—;bﬁ)) < puf(x) +p2f(22)

(17) —f(p1z1 + p272) < 2Pmax <f(:171) ; fez) f (ml J;@)) ;

where py +py = 1, pmin = min{p1,pa}, Pmax = max{p1,pa}, 21,72 >0, and f is a convex
function, given by E. C. Mitroi [10], as a particular case of the Dragomir inequality [2].

2. MAIN RESULTS

Lemma 2.1. For all z,y positive real numbers and X € (0, 1), we have the inequality

1 1
e8) ot (2.5 ) < Bl ) < 21 -0)E (203 )
where
E(x,y,\) = Ae® + (1 — \)e¥ — (= Dy _ M(z — )2
and r = min{\, 1 — \}.

Proof. We consider the function

f(t):etflftfg, (t>0).

Since f”(t) = e' — 1 > 0, for t > 0, it follows that f is a convex function.
Applying inequality (1.7) for py = A > 0, 1 = x, 22 = y and for the function f, implies
inequality (2.8). O

Theorem 2.1. For a,b > 1and X € (0, 1), we have
r(v/a— vb)2 + A\ log? (%) < Aa+ (1—A\)b—a b=
2.9) < (1—7)(va—vb)? + B(\)log’ (7)

b
A1=XN) r (1 W
— - Zund B(\) = .

4

Proof. Since a,b > 1, we use Lemma 2.1 for = loga and y = log b, which means that
Sy A=

where r = min{\, 1 — A}, A(\) =

2 %y

1 (f_\/B)Q 1 2 a
1 1 s)=——F———3log" .
E(oga7 ogb,Q) 5 glog” 7

E(loga,logb,\) = Xa+ (1 — M\)b—

and
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Therefore, substituting the above relations in inequality (2.8), we deduce inequality of
statement. O

Remark 2.1. Since A(\) = A=Y g >0and B(\) = AL=A) _1-r < 0, we obtain

a refinement of the Kittaneh-Manasrah inequality and a refinement of inequality (1.5), in
the following way:

r(va— Vb)? < r(va— vVb)? + A() log? (%) <Aa+ (1= Ab—a b=
(2.10) <(1-r)(Va- VB2 +BWlog® (3) < 1 —n)(va—- Vb2

where a,b > 1.

It is easy to see that inequality (2.10) established a stronger inequality then Young’s
inequality.

Theorem 2.2. For z > —1and X € (0, 1), we have the inequality

(2.11) r(WVe+1-12<X+1—(z+ D) <A -r)(Vo+1-1)%
where r = min{\,1 — A}, A(\) = w — Z and B(\) = )\(12_ A) ! ;r.

Proof. Substituting % = t in inequality (2.10) we deduce the following inequality

(2.12) r(VE—=1)2 < M+1-A—t* < (1—r)(Vi-1)>2
By replacing ¢t with & + 1 in relation (2.12), we find the inequality of the statement. O
Remark 2.2. Because, we have

T(\/E - 1)2 > 07

we obtain an improvement of Bernoulli’s inequality, (z + 1) < Az + 1, for X € (0,1), and
we give also a reverse inequality for the Bernoulli inequality.

3. APPLICATIONS

Let s be a non-zero real number. For a sequence of positive weights p;, i = 1...n, we
can define weighted power means of the positive real numbers ay, ..., a,, as
n 1/s
2. pia;
i=1

(3.13) M(a,p) = | =5
;pz‘

We might assume that the weights are normalized so that ) p; = 1, thus relations (3.13)
i=1
becomes

n 1/s
MS(‘%TQ) = (ZM@) .
i=1
It is known that, if ¢ < s, then
(3.14) M,(a,p) < Ms(a,p)

and the two means are equal if and only if a1 = a2 = ... = ay,.
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Application 3.1. There is the inequality
AT 7 a2 — a2

(315) _|_B (%) [Ms(aqp)]q_s sz IOg

n

Zpi =t
i—1

where 0 < ¢ < s, a; > 1, p; > 0, foralli € {1,....,n}, r = min{%,l—g}, A(g> =
q(s —q) —%andB(g) _ds—q) 1-r
s

252 252 4
Proof. For ¢ = s, we obtain the equality in relation (3.15).
For ¢ < s, we take A = Q < land a = aj and b = [M,(a,p)]® in inequality (2.9), thus, we
obtain

5/2 2 A(g) qas q a
r 7 _ S 10 7 1
<[Ms<a7p>ls/2 1) T DL DL(pF © sMLa@p) s PLpl

& S )
(3.16) <=7 <[M(ap)]/2 a 1) " (e, ) o [M(a,p)]*

Multiplying by p; in inequality (3.16) and making the sum for i = 1...n, we deduce the
inequality

Ms(a’vp)]q_s : Zpl(a:/2
i=1
M) + 4 (L) M Do
< (Zpi) (1M (0 ) ~ [My o, )]

< (1= r)[M,(a, p)]** - sz-(af/2 — [My(a,p)]*/?)?

+B (g) [M(a,p)]?* - ;pi log? Wﬁ@]’
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Dividing by ) p;, we have the inequality desired. O
i=1

Remark 3.3. From relation (3.15), we obtain an improvement of inequality (3.14) in case

1
0<g<s. Forp; = - with ¢ = 1...n in inequality (3.14), we find the following inequality

n s n q
> af > a
(3.17) = <=2
n n

where 0 < ¢ < s.
Application 3.2. For 0 < a,b < 1and A € (0,1), we have

r(va — vb)? + A(\)ablog? (%) <

(3.18) <a+ (1= Nb—a*b' > < (1—7)(va - Vb)? + B(\)ablog? (%) :
where 7, A(\), B(\) are given in Theorem 2.1.

11
Proof. Since 0 < a,b < 1, we deduce —, 3 > 1.
a

1
Applying Theorem 2.1 fora — —, b — 3 we obtain the relation
a

r(va— vVb)2 + A(\)ablog? (%) <A+ (1—Na—bal™>

(3.19) < (1—r)(va—vb)*+ B(\)ablog® (%) ,
For A — 1 — X and taking into account that A(1 — A) = A()\) and B(1 — A\) = B(\) in
relation (3.19) we have relation (3.18). |

In [11], the beta function B is the real function of two variables defined by the formula

B(z,y) = /01 t*7 11 —t)¥"tdt, fora,y > 0.
Application 3.3. For z,y,z > 1l and A € (0, 1), we have
2 Zﬂ + AN (z —y)? /01 T2 (1— )% log” tdt
< AB(z,z)+ (1= MN)B(y,z) — BAz + (1 — Ny, 2)

<(1—r) [B(x,z) + B(y,2) - 2B ("";yzﬂ

r+y

r|B(z,z) + B(y,z) — 2B (

1
(3.20) +BO)(@ — y)? / (=2 (1 _ 1252 o0 g,
0

where 7, A(\), B(\) are given in Theorem 2.1.

Proof. Fora =t*"1(1—-t)*"tandb=tY"1(1-t)*"' wehave 0 < a,b < 1,whenz,y,z > 1
and ¢ € (0,1).

Therefore, we use Application 3.2 and we obtain an inequality which by integra-ting from
0 to 1 implies relation (3.20). O
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