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A refinement of the Kittaneh-Manasrah inequality

NICUŞOR MINCULETE

ABSTRACT. The purpose of this paper is to give refinement for the Kittaneh-Manasrah inequality which
improves the inequality of Young. We also give several applications.

1. INTRODUCTION

Many results of Modern Mathematics are based on the theory of the inequalities. Im-
proving the inequality of Kittaneh-Manasrah, we obtain an improvement of Young’s in-
equality which improves other important inequalities such as the following: Bernoulli’s
inequality and the weighted power means.

Now, we present the famous Young inequality

(1.1) λa+ (1− λ)b ≥ aλb1−λ,
for positive real numbers a, b and λ ∈ [0, 1]. In [4], S. Furuichi given a reverse inequality
for Young’s inequality.

Inequality (1.1) was refined by F. Kittaneh and Y. Manasrah, in [7], thus

(1.2) λa+ (1− λ)b ≥ aλb1−λ + r(
√
a−
√
b)2,

where r = min{λ, 1− λ}. They use this inequality for the study of matrix norm inequali-
ties.

Its reverse inequality was given by M. Tominaga in [13], using the Specht’s ratio, in the
following way

(1.3) S
(a
b

)
aλb1−λ ≥ λa+ (1− λ)b,

for positive real numbers a, b and λ ∈ [0, 1], where the Specht’s ratio [3, 6, 12], was defined
by

S(h) =
h

1
h−1

e log h
1

h−1

, (h 6= 1)

for a positive real number h.
In [5], S. Furuichi improves inequality (1.1) thus

(1.4) λa+ (1− λ)b ≥ S
((a

b

)r)
aλb1−λ

where = min{λ, 1− λ} and the function S was given above.
H. Kober proved in [8] a general result related to an improvement of the inequality

between arithmetic and geometric means, which for n = 2 implies the inequality

(1.5) r(
√
a−
√
b)2 ≤ λa+ (1− λ)b− aλb1−λ ≤ (1− r)(

√
a−
√
b)2,
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where a, b are the positive real numbers, λ ∈ [0, 1] and r = min{λ, 1− λ}.
A generalization of inequality (1.5) can be found in a paper of J. M. Aldaz [1].

In [9], we present other improvement of the Young inequality and a reverse inequality as
follows

(1.6) aλb1−λ
(
a+ b

2
√
ab

)2r

≤ λa+ (1− λ)b ≤ aλb1−λ
(
a+ b

2
√
ab

)2(1−r)

,

for the positive real numbers a, b and λ ∈ (0, 1) where r = min{λ, 1− λ}.
Inequality (1.6) was obtained by the inequality

2pmin

(
f(x1) + f(x2)

2
− f

(
x1 + x2

2

))
≤ p1f(x1) + p2f(x2)

−f(p1x1 + p2x2) ≤ 2pmax

(
f(x1) + f(x2)

2
− f

(
x1 + x2

2

))
,(1.7)

where p1 + p2 = 1, pmin = min{p1, p2}, pmax = max{p1, p2}, x1, x2 > 0, and f is a convex
function, given by F. C. Mitroi [10], as a particular case of the Dragomir inequality [2].

2. MAIN RESULTS

Lemma 2.1. For all x, y positive real numbers and λ ∈ (0, 1), we have the inequality

(2.8) 2rE

(
x, y,

1

2

)
≤ E(x, y, λ) ≤ 2(1− r)E

(
x, y,

1

2

)
,

where

E(x, y, λ) = λex + (1− λ)ey − eλx+(1−λ)y − λ(1− λ)
2

(x− y)2

and r = min{λ, 1− λ}.

Proof. We consider the function

f(t) = et − 1− t− t2

2
, (t > 0).

Since f ′′(t) = et − 1 > 0, for t > 0, it follows that f is a convex function.
Applying inequality (1.7) for p1 = λ > 0, x1 = x, x2 = y and for the function f , implies
inequality (2.8). �

Theorem 2.1. For a, b ≥ 1 and λ ∈ (0, 1), we have

r(
√
a−
√
b)2 +A(λ) log2

(a
b

)
≤ λa+ (1− λ)b− aλb1−λ

≤ (1− r)(
√
a−
√
b)2 +B(λ) log2

(a
b

)
,(2.9)

where r = min{λ, 1− λ}, A(λ) = λ(1− λ)
2

− r

4
and B(λ) =

λ(1− λ)
2

− 1− r
4

.

Proof. Since a, b ≥ 1, we use Lemma 2.1 for x = log a and y = log b, which means that

E(log a, log b, λ) = λa+ (1− λ)b− aλb1−λ − λ(1− λ)
2

log2
a

b
.

and

E

(
log a, log b,

1

2

)
=

(
√
a−
√
b)2

2
− 1

8
log2

a

b
.
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Therefore, substituting the above relations in inequality (2.8), we deduce inequality of
statement. �

Remark 2.1. Since A(λ) =
λ(1− λ)

2
− r

4
≥ 0 and B(λ) =

λ(1− λ)
2

− 1− r
4
≤ 0, we obtain

a refinement of the Kittaneh-Manasrah inequality and a refinement of inequality (1.5), in
the following way:

r(
√
a−
√
b)2 ≤ r(

√
a−
√
b)2 +A(λ) log2

(a
b

)
≤ λa+ (1− λ)b− aλb1−λ

≤ (1− r)(
√
a−
√
b)2 +B(λ) log2

(a
b

)
≤ (1− r)(

√
a−
√
b)2,(2.10)

where a, b ≥ 1.

It is easy to see that inequality (2.10) established a stronger inequality then Young’s
inequality.

Theorem 2.2. For x > −1 and λ ∈ (0, 1), we have the inequality

(2.11) r(
√
x+ 1− 1)2 ≤ λx+ 1− (x+ 1)λ ≤ (1− r)(

√
x+ 1− 1)2,

where r = min{λ, 1− λ}, A(λ) = λ(1− λ)
2

− r

4
and B(λ) =

λ(1− λ)
2

− 1− r
4

.

Proof. Substituting
a

b
= t in inequality (2.10) we deduce the following inequality

(2.12) r(
√
t− 1)2 ≤ λt+ 1− λ− tλ ≤ (1− r)(

√
t− 1)2.

By replacing t with x+ 1 in relation (2.12), we find the inequality of the statement. �

Remark 2.2. Because, we have
r(
√
t− 1)2 ≥ 0,

we obtain an improvement of Bernoulli’s inequality, (x+ 1)λ ≤ λx+ 1, for λ ∈ (0, 1), and
we give also a reverse inequality for the Bernoulli inequality.

3. APPLICATIONS

Let s be a non-zero real number. For a sequence of positive weights pi, i = 1...n, we
can define weighted power means of the positive real numbers a1, ..., an as

(3.13) Ms(a, p) =


n∑
i=1

pia
s
i

n∑
i=1

pi


1/s

.

We might assume that the weights are normalized so that
n∑
i=1

pi = 1, thus relations (3.13)

becomes

Ms(a, p) =

(
n∑
i=1

pia
s
i

)1/s

.

It is known that, if q < s, then

(3.14) Mq(a, p) ≤Ms(a, p)

and the two means are equal if and only if a1 = a2 = ... = an.
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Application 3.1. There is the inequality

r[Ms(a, p)]
q−s

n∑
i=1

pi

·
n∑
i=1

pi(a
s/2
i − [Ms(a, p)]

s/2)2

+
A
(q
s

)
[Ms(a, p)]

q−s

n∑
i=1

pi

n∑
i=1

pi log
2 asi
[Ms(a, p)]s

≤ [Ms(a, p)]
q − [Mq(a, p)]

q

≤ (1− r)[Ms(a, p)]
q−s

n∑
i=1

pi

·
n∑
i=1

pi

(
a
s/2
i − [Ms(a, p)]

s/2
)2

+
B
(
q
s

)
[Ms(a, p)]

q−s

n∑
i=1

pi

·
n∑
i=1

pi log
2 asi
[Ms(a, p)]s

,(3.15)

where 0 < q ≤ s, ai ≥ 1, pi > 0, for all i ∈ {1, ..., n}, r = min
{q
s
, 1− q

s

}
, A

(q
s

)
=

q(s− q)
2s2

− r

4
and B

(q
s

)
=
q(s− q)

2s2
− 1− r

4
.

Proof. For q = s, we obtain the equality in relation (3.15).
For q < s, we take λ =

q

s
< 1 and a = asi and b = [Ms(a, p)]

s in inequality (2.9), thus, we
obtain

r

(
a
s/2
i

[Ms(a, p)]s/2
− 1

)2

+
A
(q
s

)
[Ms(a, p)]s

log2
asi

[Ms(a, p)]s
≤ qasi
s[Ms(a, p)]s

+ 1− q

s
− aqi

[Ms(a, p)]q

≤ (1− r)

(
a
s/2
i

[Ms(a, p)]s/2
− 1

)2

+
B
(q
s

)
[Ms(a, p)]s

log2
asi

[Ms(a, p)]s
.(3.16)

Multiplying by pi in inequality (3.16) and making the sum for i = 1...n, we deduce the
inequality

r[Ms(a, p)]
q−s ·

n∑
i=1

pi(a
s/2
i

−[Ms(a, p)]
s/2) +A

(q
s

)
[Ms(a, p)]

q ·
n∑
i=1

pi log
2 asi
[Ms(a, p)]s

≤

(
n∑
i=1

pi

)
([Ms(a, p)]

q − [Mq(a, p)]
q)

≤ (1− r)[Ms(a, p)]
q−s ·

n∑
i=1

pi(a
s/2
i − [Ms(a, p)]

s/2)2

+B
(q
s

)
[Ms(a, p)]

q−s ·
n∑
i=1

pi log
2 asi
[Ms(a, p)]s

.
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Dividing by
n∑
i=1

pi, we have the inequality desired. �

Remark 3.3. From relation (3.15), we obtain an improvement of inequality (3.14) in case

0 < q ≤ s. For pi =
1

n
with i = 1...n in inequality (3.14), we find the following inequality

(3.17)


n∑
i=1

aqi

n


s

≤


n∑
i=1

asi

n


q

,

where 0 < q ≤ s.

Application 3.2. For 0 < a, b ≤ 1 and λ ∈ (0, 1), we have

r(
√
a−
√
b)2 +A(λ)ab log2

(a
b

)
≤

(3.18) ≤ λa+ (1− λ)b− aλb1−λ ≤ (1− r)(
√
a−
√
b)2 +B(λ)ab log2

(a
b

)
,

where r,A(λ), B(λ) are given in Theorem 2.1.

Proof. Since 0 < a, b ≤ 1, we deduce
1

a
,
1

b
≥ 1.

Applying Theorem 2.1 for a→ 1

a
, b→ 1

b
, we obtain the relation

r(
√
a−
√
b)2 +A(λ)ab log2

(a
b

)
≤ λb+ (1− λ)a− bλa1−λ

≤ (1− r)(
√
a−
√
b)2 +B(λ)ab log2

(a
b

)
.(3.19)

For λ → 1 − λ and taking into account that A(1 − λ) = A(λ) and B(1 − λ) = B(λ) in
relation (3.19) we have relation (3.18). �

In [11], the beta function B is the real function of two variables defined by the formula

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, for x, y > 0.

Application 3.3. For x, y, z ≥ 1 and λ ∈ (0, 1), we have

r

[
B(x, z) +B(y, z)− 2B

(
x+ y

2
, z

)]
+A(λ)(x− y)2

∫ 1

0

tx+y−2(1− t)2z−2 log2 tdt

≤ λB(x, z) + (1− λ)B(y, z)−B(λx+ (1− λ)y, z)

≤ (1− r)
[
B(x, z) +B(y, z)− 2B

(
x+ y

2
, z

)]
+B(λ)(x− y)2

∫ 1

0

tx+y−2(1− t)2z−2 log2 tdt,(3.20)

where r,A(λ), B(λ) are given in Theorem 2.1.

Proof. For a = tx−1(1− t)z−1 and b = ty−1(1− t)z−1 we have 0 < a, b < 1, when x, y, z ≥ 1
and t ∈ (0, 1).
Therefore, we use Application 3.2 and we obtain an inequality which by integra-ting from
0 to 1 implies relation (3.20). �
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