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Solvability of a nonlinear general third order four point
eigenvalue problem on time scales

S. NAGESWARA RAO

ABSTRACT. We consider the four point boundary value problem for third order nonlinear differential equa-
tion on time scales

3 2
vE () + Mty y®,yST) =0, t € [t 0% (ta)l
subject to the boundary conditions
y(t1) =0, y(t2) = 0, By(ts) — ay(o®(ta)) =0

where t1 < ta < t3 < 03(t4),a > 0,3 > 0. Values of the parameter A are determined for which the boundary
value problem has a positive solution by utilizing a fixed point theorem on cone.

1. INTRODUCTION

The main focus of this paper is to determine the intervals of eigenvalues, A, for which
there exist positive solutions with respect to a cone, of third order nonlinear differential
equation on time scale with four point boundary conditions. The study of the existence
of positive solutions of boundary value problems (BVPs) on optimal intervals for higher
order differential equations on time scales has gained prominence since it arises in many
applications. One goal as the result of Hilger’s [18] initial paper introducing time scales
has been the unification of the continuous and discrete calculus, and then the extension
of those results to dynamic equations on time scales. For an excellent introduction to the
overall area of dynamic equations on time scales, we refer to text book by Bohner and
Peterson [7].

One particular area receiving current attention is the question of obtaining optimal
eigenvalue intervals of boundary value problems for ordinary differential equations, as
well as for finite difference equations. Many of these works have used Krasnosel’skii
fixed point theorems [20] to obtain intervals based on a positive solutions inside a cone.
A few papers along these lines are Agarwal, Bohner, and Wong [2], Anderson and Davis
[6], Davis, Henderson, Prasad, and Yin [10], Eloe and Henderson [13], Erbe and Wang
[15], Erbe and Tang [14], Erbe and Peterson [17]. Naturally many of these methods carry
over when determining eigenvalue intervals of boundary value problems for dynamic
equations on time scales; see Agarwal, Bohner, and Wong [1], Anderson [3, 4, 5], Chyan
and Henderson [9], Davis, Henderson, Prasad and Yin [11], and Erbe and Peterson [16],
Prasad, Nageswara Rao and Murali [21].

We introduce the delta derivative y* for the function y defined on T,
y® = 4/ is the usual derivative if T = R and y® = Ay is the usual forward difference
operator if T = Z.
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In this paper, we determine the eigenvalue intervals for which there exists positive
solution for four point boundary value problem on time scales

yAS (t> + )‘f(t7yayA7yA2) = 07 te [t1,0'3(t4)]7]r, (11)

y(t1) =0, y(t2) = 0, By(ts) — ay(o®(ts)) = 0. (1.2)

We use the following notation for the convenience,

A = Btz — acd(ty), B = Bt2 — a(c®(ts))?,
t}(B—a)-B by — t}(B—a)-B

24—t —a)) T 2(t(8—a) - A)

and D = A(t? —12) — (8 — a)(t3ty — t113) + B(ta — t1).

k1=

We make the following assumptions throughout:

(A1) f:[t1,0° (ta)] % R*" s R is continuous with respect to y, where R™ is the set
of positive real numbers,

(A2) B>a>0andt; <ty <tz < o3(ty),

(A3) ty < Bt + 040'3(t4),

(A4) the pointt € [tq, 03(t4)]T is not left dense and right scattered at the same time.

We define the positive extended real numbers fo, 0, foo, £ by

2
b= - fty.y®,y™)

1 3
(y,y2,y2%)—=(0F,0+,01) te[tl’as(m)]T Y
¢ A A2
fOZ lim sup f(u%y Y )’
(.2 ,y2%)—(0+,0+,0%) te[ty ,03(t4)]']r Y
n A A2
foo = lim inf —f( Y.y Y ),
(4,92 yA%) = (00,00,00) tE[t1,0% (t4) ] Y
¢ A A2
oo = i sup [y, 9%y )7
(y.y2,y2%)—(00,00,00) t€[t1,0% (ta)] Yy

and assume that they will exist.

This paper is organized as follows. In Section 2, we estimate the bounds for the Green’s
function and established related lemma. In Section 3, we establish a criteria to determine
eigenvalue intervals for which there exist at least one positive solution of the BVP (1.1)-
(1.2) by using Krasnosel’skii fixed point theorem. Finally, as an application, we give ex-
amples to demonstrate our results.

2. GREEN’S FUNCTION AND BOUNDS

In this section, we construct the Green’s function for the homogeneous problem cor-
responding to the BVP (1.1)-(1.2) in three different intervals in twelve different cases and
we estimate the bounds for the Green’s function.
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Let G(t, s) be the Green’s function for the BVP —yA? (t) = 0 satisfying (1.2). After
computation, the Green’s function G(¢, s) can be obtained as

Gll(t,s), t1 SO‘(S)<t§t2<t3<0‘3(t4),
G(t,s) o G12(t,s), t <t <s <ty <ty < 03(t4),
te[tlat2]"]r - G13(t,5), 1 <t<ta<s<tg3<o (t4)
G14(t,8), t1<t<t2<t3<S<O' (t4)
G21(t78), t1<0()<t2§t§t3<0(t )7
_ G(t,s) . Gaa(t,s), t1 <to <o(s <t<t3<03t4,
G(t’ 8) o te[t2’t3]']r B Ggggt, Sg, t) <ta <t (<)S <tz < 0’3(t4)(, ) (2:3)
G24(t,5), t <ty <t < t3 <S<O’3(t4),
Gai1(t,s), t1 <o(s) <ta <tz <t<o3(ta),
G(t,s) Gaa(t,s), t1 <ty <o(s) <tz <t<od(ty),
t€lts, ”3(f4)]’]1‘ G33(t, S), 1 <t <tz < O’(S) <t < 0’3(t4),
G34(t, S), ) <ta <tz <t<s< 0'3(1]4),
where

Cnlt,s) = 55 (A — Bia)~t(B(5 — a) — B) ~ (A~ 1a(8 — a))t2 — o(s)]?
Cralt,5) = g5 [(AR — B +(B — (8 — ) + (128 — o) — Allt> — o(s)]?

tit3 — tit2)+H(8 — 13) + £2(t2 — t1)][(B — @)o(s)0*(s)
— Alo(s) +*(s)) + B,

1
+opl

Gialt ) = 5511283 — B2 4+1(5 — ) + (02 — 0)][(5 — @)o(s)o>(5)
— A(o(s) + 02(s)) + B,

Gha(t,s) = %[—(tltg — tita)—t(t] — 13) — t*(t2 — t1)][a(0°(ta) — 0 (s))’],
Galt,s) = %[(At% — Bta)—t(3(5 — @) — B) — (4 — ta(5 — )12 — o)
Conlt, ) = 55 (A3 — Bia)—H(B(5 — @) — B) ~ *(A— 1a(5 — o))l — o (s)]?

455 [~(AR — Bt)H(E(5 — a) — B) + (A~ 11(8 — ))]ft2 — o)),
Gas(t,s) = 219 [(#185 — tit)+(t] — 13) + £2(t2 — )] [(B — @)o(s)0*(s)
— A(o(s) + 02(s)) + B,

Goalt, ) = g~ — Bt2) (5} — ) — (02 — t1)]lalo> (1) — o ()],
Ganlt,5) = %[(At% ~ Bta)t(3(5 — 0) ~ B) ~ *(A— (5 — a))]ftr — o(5)]%,
Gaa(t, s) = @[(Atz Bta)—t(t5(8 — @) = B) = (A — t5(8 — ))][t1 — o (s)]?

1

+3pl- (A8 = Ba)+(E(B — o) = B) + (4~ (3~ )itz — o(s)],
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Gss(t,s) = L[(A?fg = Bta)—t(t3(8 — a) = B) = t*(A — t2(8 — a))][ts — o ()]

2D
bor (AR — BU)H(E(8 — a) — B) + (A~ 6(8 — o)) 6> — o(s))
o (113 = B302)H4(6% — 13) + 12(02 — 1] (85 — 0 ()],
Ganlt, ) = s [~(083 — Bt2) 10 — ) = (1 — )] [a(0%(1s) — 0(5))?]

The following graphs demonstrate the Green’s function for the BVP (1.1)-(1.2) should be
taken in the form of (2.3). Here s € [t1, t4].

s s
t<s s t<s t=s
T 4 T
6 Caa 6 Cas
14 Gy G 14 Cos
33 33
t3 -+ tg -
23 - 23 -
13 - “t 13 - s<t
2T e 2T o
1@ Ca Ca1 1@ o Ca1
4 L 11 4 L 11
1 1
| | | | | | | |
i i i I i i 1 1 G
4 t2 t3 ty L 2 t3 ty 4430
T=R T=hz, h>0

Theorem 2.1. Let G(t,s) be the Green's function for the homogeneous problem —y™’ (t) = 0
satisfying the boundary conditions (1.2). Then the inequality below holds

mG(o(s),s) < G(t,s) < G(o(s),s), forall (t,s) € [tl,og(t4)]r]r X [t1,t4], (2.4)
where
0 < m:min{ Gu(ki,s)  Gis(%,5)  Gu(%,s)
G11(0(s),8)” Gi3(o(s),s)” Gia(o(s),s)’

(2.5)

Giz(ka, s) Gaa(k2, 5) G33(%>5) <1
Gi2(0(s),8)" Gaa(o(s),s)’ Gsz(o(s),s) ’

Proof. The Green’s function G(t, s) is given in (2.3) in twelve different cases. In each case
we prove the inequality as in (2.4). Clearly

G(t,5) > 0on [tr,0° (ta)] ¥ [t1, ta]- (2.6)
Case (i). Fort; < o(s) <t <ty < t3 < o3(ty)
G(t,s) Gu(t,s) [(At3 — Bta) — t(t3(B — ) — B) — t*(A — t5(8 — «))]

G(o(s),s)  Gul(o(s),s)  [(At2 — Bty) — o(s)(12(B — ) — B) — (0(s))*(A — t2(8 — )]

From (A2) and (A3) we have G11(t, s) < G11(0(s), s). Therefore, G(t,s) < G(o(s), s). And
also, from (A2), we have

G(t, s) _ G11(t, s) S Gri(k1, )
G(o(s),s) Gii(o(s),s) — Gii(o(s),s)’
Therefore,

Glt,s) > Gi1(k1, )

> mG(a(s),s).
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Case (ii). For t; <t <ty < s < t3 < o3(t4)
Glt,s) _ Guslt,s) _ (W) +UE -5+t —t)]
G(o(s),s)  Giz(a(s),s)  [(tt2 — t3ts) + o (s) (12 — t2) + (0(5))? (b2 — t1)]

(
From (A2), we have Gi5(t,s) < Gi3(o(s),s). Therefore, G(t,s) < G(o(s),s). And also,
from (A2), we have

G(t,S) _ Gl3(t78) Glg(%,s)
G(o(s),s) Giz(o(s),s) — Gis(o(s),s)
Therefore,
GlB(%a S)
G(t,s) > S@(5).5) G(o(s),s)
Case (iii). For t; <t <ty < t3 < s < o3(t4)
G(t,s) _ Gult,s)  [=(tatd —ts) — t(t] —13) — t*(ta — t1)]

G(a(s),s)  Gra(o(s),s)  [—(t1t2 — t2ty) — o (s)(t2 — 12) — (0(s))*(ta — t1)]

From (A2), we have G14(t,s) < G14(0(s),s). Therefore, G(t,s) < G(o(s),s). And also,
from (A2), we have

G(t, S) _ G14(t78) G14(%7S)
G(o(s),s) Gia(o(s),s) = Gia(o(s),s)
Therefore,
s Gu(3.9) o(s),s
Glts) > G 0 G(o ). )

Case (iv). Fort; <t < s <ty <t3 < 03(ty)
from (A2) and case (ii) we have, G12(t, s) < G12(0(s), s). Therefore, G(t, s) < G(a(s), s).
And also, from (A2), we have

G(t,s) min G12(k‘2,8) G13(%,8)
Glo(s),s) ~ {Guw(s),s)’ Grs((s), ) }

Therefore,
Gia(ka,s)  Gis(%,s)
G12(0(s),8) Gi3(o(s), s

G(t, s) > min {

Case (v). Fort; <ty <o(s) <t <tz < o(ts)
from (A2) and case (i), we have Gas(t,s) < Gaz(o(s), s). Therefore, G(t,s) < G(a(s),s).
And also, from (A2), we have

G(t, s) s Gii(k1,5)  Gaa(ks,s)
G(o(s),s) = {011(0(8)78)7 Ga2(a(s),s) } .

Therefore,
Gn(lﬁ, 8) G22(]€27 S)
Gll(U(S), S) ’ GQQ(O’(S), S)

G(t,s) > min { } G(o(s), 5).
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Case (vi). For t; <ty <t3 <o(s) <t < o3(ts)
from (A3) and case (v), we have Gs3(t,s) < Gs3(0(s), s). Therefore, G(t,s) < G(o(s), s).
And also, from (A2), we have

G(t,S) >min{ Gn(kl,s) GQQ(k‘Q,S) G33(%,8) }
G(o(s),s) — Gi1(o(s),s)" Gaz(0(s),s) Gaz(o(s),s) ]~

Therefore,
G11(k1,s) Ggg(kg,s) Ggg(%l,s) o) s
Gu(o(s),s)’ Gm(a(s),s)’Ggg(a(s),s)}G( (5),5).

In other Cases, the inequality can be established similarly and so their arguments omitted.
By consolidating all the above cases, we get

mG(o(s),s) < G(t,s) < G(o(s),s), forall (t,s) € [t1’03(t4)]T X [t1,t4],

G(t,s) > min{

where m given in (2.5). O

Let y(t) be the solution of the BVP (1.1)-(1.2), and is given by

o(ta) R
y(t) :/\/ Glt, ) (5,9, 9> y™")As, for all t € [t1, 0% (1)) 2.7)
t1
Define
X={u:ue Cf’d[tl,ag(t4)]v]1w .

The set of functions v : T — R that are three times differentiable and whose derivative is
rd-continuous is denoted by C2,, with norm,

= t)|.
I g 235, 140

Then (X, || . ||) is a Banach space. Define a set x by
=<u€ X :u(t)>0on[t,o’(t d i t) > : 2.8
. {u u(t) = 0 on [tr, 0% (t2)]p an te[tfﬂé{tmqr““m”“”} 28)

then it is easy to see that « is a positive cone in X. Now we define the operator 7' : k — X
by

o(ta) )
Ty(t) = /\/ G(t,S)f(S,:%yA,yA )AS, le [t1u0—3(t4)]T’ (29)

ty
If y € k is a fixed point of T, then y satisfies (2.7) and hence y is a positive solution of the
BVP (1.1)-(1.2). We seek the fixed points of the operator 7" in the cone «.

Lemma 2.1. The operator T defined in (2.9) is self map on k.
Proof. Lety € . From (2.4) we have T'y(t) > O for all t € [t1,03 (ta)]-

o(ta) ) o(ta) R
Ty(t) = A / Glt,5)f (5,5, 5> )As > A / mG(o(s),5)f (5,5, 5™, y>") As
t1 ty

o(ts)
> m max G(t,s)f(s,y,yA,yAQ)As
t tEftr,0% (ta)]p

o(ta)
>m  max )\/ G(t,s)f(s,y,yA,yAz)As =m| Ty .
tE[tl,(TS(t4)]T t1
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Therefore,
min Tyt) >m | Ty || .
2 T 2 I Ty |
Also, from the positivity of G(t,s), it clear that for y € «, that Ty(¢t) > 0,4 < ¢t <
03(ty), and so Ty € k; thus T : k — k. Further arguments yield that T is completely
continuous. (]

3. EXISTENCE OF POSITIVE SOLUTIONS

In this section we determine the eigenvalue intervals for which the four point BVP
(1.1)-(1.2) possess a positive solution by using Krasnosel’skii fixed point theorem on cone.

Theorem 3.2. [Krasnosel’skii] [20] Let X be a Banach space, K C X be a cone, and suppose
that Qy,Qy are open subsets of X with 0 € Q and Q1 C Qa. Suppose further that T : K N
(Q22\Q1) — K is completely continuous operator such that either

@) | Tu|[<|ul, we KNoQyand || Tu |[|>||w ], v € KNI, or

(@) |[Tul>[|uw], ve KNIQand || Tu ||<|| u |, v € KNI

holds. Then T has a fixed point in K N (Q2\Q1).

Theorem 3.3. Assume that conditions (Al) — (A4) are satisfied and if
1 1

U(t4) <AL e .
m2[[, G(o(s), 8)ASs] feo [ G(o(s),s)As]fO

t1

Then the BVP (1.1)—(1.2) has at least one positive solution lies in k.

(3.10)

Proof. Let A be given as in (3.10) and let € > 0 be such that

1 <A< L

27 Glo(s) B8l =) U Glol) A0+ )

Let T be the cone preserving, completely continuous operator defined in (2.9). By the
definition of fY, there exist H}! > 0, i = 0,1, 2 such that

¢ A A2
sup f()yvy Y )S(f0+€)7
te[t1,03(t4)]r]r Yy

for0 <y < H}, 0<y® < HL0<yA < HL Let H' = min {H} : i =0,1,2}. It follows
that
Ftyy™ y™) < (2 + ey, for 0 < g,y y™" < H.
Let us choose y € k with || y |= H'. Then, we have from (2.9),
o(ta)

ot : :
Ty(t) = /\/ G(t,s)f(s,y,y™,y° )As < /\/ G(a(s),8)f(s,y,y™, y™ )As
t1 t1
o(ta)

o(ta)
<A [ G0 +ou@as <A [ Gla) (0 e ] As

ty1 t1
<[y, t € [tr,0°(ta)].
Therefore, | Ty ||<|| v ||. Hence, if we set
O ={ueX:|ul<HY,

then
| Ty 1<l y ||, for y € £ M OQy. (3.11)
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By the definition of f., there exist F? >0, i =0,1,2 such that

n A, A2 . . _
g JEVYSYT) )y > B > B > HR
te[t1,03(t4)]r]r Y

K]
H>. If we set H? = max{QHl,EH },and define Qy = {u € X ul|< H?}.Ify €
kN 0N, sothat | y||= H?, then

Let H = max {ﬁ2 :1=0,1, 2} it follows that f(t,y, y* ) (foo—€)y, for y,yA,yA2 >

—2
min t)>m > H .
ey YO 2 2

And we have

o(ta) a(t4
—/\/ G(t,s)f syy,y s>m)\/ f(syy y )A
o(ts) ) o(ts)
Zm/t Glo(s), s )(foow()AszmA/t G(o(5),8)(fou — ) ||y || As
>yl .

Thus, || Ty [|>]| y ||, and so
| Ty [|>]] y ||, fory € kN ONs. (3.12)

An application of Theorem 3.2 to (3.11) and (3.12) yields a fixed point of T that lies in
£ N (Q2\Q1). This fixed point is the positive solution of the BVP (1.1)-(1.2). O

Theorem 3.4. Assume that conditions (A1) — (A4) are satisfied and if
1 1
o1 (o(ta) <A< :
m2[ [, G(a(s), s)As] fo [, G(o(s),s)As] f
Then the BVP (1.1)-(1.2) has at least one solution lies in k.

(3.13)

Proof. Let A be given as in (3.13) and let € > 0 be such that

1 <A< 1

m2[ 7 $)As](fo—€) U Gla(s), $)As](f + €)

Let T" be the cone preserving, completely continuous operator defined in (2.9). By the
definition of fy, there exist J} > 0, i = 0, 1,2 such that

¢ A A2
inf MZ(‘fo—é), forO<y§J&,0<yA§J11,O<yA2§J21.
te€ftr,o?(t)lp Y
Let J' = min {J} : i =0,1,2}. It follows that

Pty y™ y™) > (fo— ey, for 0 < g,y y™ < J*
In this case, define Q; = {u € X :|| u ||< J'}.



Eigenvalue problem 179
Then, for y € kNI, we have f(s,y,yA,yAz) > (fo—e)y(s), s € [t1,t4], and moreover,
y(t) =2 m ||y |, t € [tr1,0°(ta)]p. Thus

o(ta)

ot : :
Ty(t) = A/ G(t,s)f(s,y,y°, 4> )As > /\/ mG(o(s), s)f(s,y,y%,y> )As

t1 t1
o(ts) ) o(ta)
> mA / G(o(s),5)(fo = ey(s)As = m* / Glo(s),s)(fo—) |y | As =]y |-
t1 tl
Hence,
| Ty =]y II, fory € kN Oy (3.14)

It remains for us to consider f*°. By the definition of f*°, there exist 7? >0,7=0,1,2
such that

¢ A A2 _ _ .
squp  AEVYTYT) o) oy > TR A > T A > T

t€[t1¢03(t4)}r]r Y
Let 7> = max {jf 1i=0,1, 2}. It follows that
Fty,y2, y™) < (f° + )y, fory, vy, v~ > 7°. There are two subcases.
Case (i). f is bounded. Suppose L > 0 is such that

ma. t7 9 A7 A? <La
tE[tl,ng(}t(4)]Tf( y,y=,y° ) <

forall 0 < y,y™,y2° < 0.

o(ta)
Let J? = max {2]1, L)\/ G(o(s), s)As}

t1
and let
Q={uecX:|ul<J?}.
Then, for y € kN 9, we have
o(ts)

O'(t4) 2 2
Ty(t) = A/ G(t,s)f(s,y,y%,y° )As < A/ G(a(s),s)f(s,y, ™,y )As

t1

t1
o(ta)
<IA [ Gl A <y e oty
t1

and so

| Ty <[y II, fory € kN 0. (3.15)

Case (ii). f is unbounded. Let J? > max{2Ji1,j?}, i =0,1,2be such that f(t,y,y>,y~"
< f(t,JR,J2,J2), for 0 < y < J2,0 < y® < J20 < yA" < J2. Let J2 = max{J2 : i =
0,1,2}, and let

Qo ={uecX:|ul<J?}.
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Choosing y € £ N 082y,

t4) t4) 2
—/\/ G(t,s)f(s,y,y™,y> A8</\/ L8 f(s, 0%, y™ ) As

o (ta) o(ta)
SA/ Glo(s),5)f (s, Jo,Jl,JaAsgA/ Glo(s),8)(f= + ) | J2 || As

t1 t1

J2 =y I, t € ftr, 0 (ta)] -

And so

I Ty [[<[ly I, fory € kN 0N, (3.16)
An application of Theorem 3.2, to (3.14), (3.15) and (3.16) yields a fixed point of T that lies
in £ N (Q2\Q1). This fixed point is the positive solution of the BVP (1.1)-(1.2). O

We demonstrate our results with the following examples.
Example 3.1. We consider the following boundary value problem

2
y™ 4+ Ay(25 — 24.5e713Y) (30 — 29.5¢ 7Y ) (71 — 70" ) =0,t € [0,1]nT  (3.17)

h T—012145278u12 ith the bound diti
where I’ = 9939953909 [1,2], wi e boundary conditions

y(0) = 0, y(é) =0, %y <§) — %y (c*(1)) = 0. (3.18)

The Green'’s function for the homogeneous BVP is given by

4 2
Gui(t,s), 0<o(s)<t< g<3< o3(1)
4 2
. 3
G(t,s) _ Glg(t,s), 0§t<b§§< §<0' (1)
4 4 2
tel0,—] Glg(t,s), 0<t<-—<s<=<go (1)
9 ?1 ) 3
Gua(t,s), 0<t< < §<s<03(1)
4 2
Gai(t,s), 0<o(s) < g <t < 3 < o3(1)
4 2
G _ Gaa(t,s), 0< 5 <o(s)<t< 3< o3(1)
tels.3 4 2
o Gos(t,s), 0<g<t<s<o<o(l)
4 2
Gay(t,s), 0< §§t§ §<s<03(1)
4 2
G3i(t,s), 0<o(s) < g<gsSts a3(1)
4 2
; 3
G(t,s) _ G32(t,8), 0< §<0’(b)< gStSU (1)
tel3.0%(1)] 1 2 ,
G33(t,3), O<§<§§U(S)<t§0(1)
4 2
Gsa(t,s), 0< g < §§t<s§a3(1)
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where

Gu(tS) :Ggl(t,s) = |:_21 - %t + (if?t{| [( ( ))2] = GSl(t7S)

729 243 4 2160 1215
Gia(t,s) = [8t— 2#} [(9 - a(s))ﬂ + [—HH 1 t2]

|12706)(5) — 5 (09) + a%(e) + ]

Gualt.s) =Gm(t,5) = | =200+ 2| | Za(0)0%(0) = 3 0(6) +0%(5) + 15
Gult,s) =Gui(t.9) = |10t = 2P| [(°(0) = 0(6)"] = G,

Gaalt.s) =Ganlts) = | 5 = S+ B2 + | B2 - 243#] RO
Gults) =5 - To2e+ 506 (1017 + [ 2ot - 22| [ - o101

+ [?’ﬁst— % ] [(3 —U(s))Q] :

We found that m = 0.06, fo = 53250 and f° = 0.25. Employing Theorem 3.3, we get
the eigenvalue interval 0.020254 < A < 0.38751, for which (3.17)-(3.18) has at least one
positive solution.

Example 3.2. We consider the following boundary value problem

2
y™ 4+ Ay(20 — 19.5¢7 ) (25 — 246V ) (72 — 71" ) =0,t € [0,1]nT  (3.19)

h T—012145278U12 ith the bound diti
where I = 993593909 [1,2], wi e boundary conditions

y(0) =0, y<;1> =0, gy (g) — %y (o%(1)) = 0. (3.20)

After computation, we found that m = 0.06, f, = 0.5 and f*° = 36000. Employing Theo-
rem 3.4, we get the eigenvalue interval 0.0000454 < A < 0.03739, for which (3.19), (3.20)
has at least one positive solution.
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