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A simple simulation technique for gravitational lenses

CRISTIAN EDUARD RUSU and BETRIA SILVANA ROSSA

ABSTRACT. The present article discusses the simulation of Gravitational Lensing with an algorithm devel-
oped in C++ and using the EasyBMP library. The algorithm numerically solves the general gravitational lens
equation in the astrophysically significant weak field case, for any single-plane lens configuration. Examples
of execution are considered, and a discussion is carried out on the advantages and disadvantages of the direct
simulation technique employed.

1. INTRODUCTION

The Gravitational Lensing phenomenon ([6], [11], [12]) is a topic of intense research
in modern Astrophysics. There is a large variety of techniques and algorithms ([1], [5],
[7] and others) available for the simulation of Gravitational Lensing. One of the features
these techniques have in common is that they try to solve the so-called “forward prob-
lem”: given a distant background source (for example a quasar) and a foreground mass
distribution (a galaxy or a galaxy cluster), how will the lensed image of the source look
like?

In fact, since so many techniques are available, the following question arises: why does
a simple and straightforward ray-tracing method that uses the rectangular pixel grid in a
BMP (a bitmap, which is a very simple picture format) for representing data, along with
the gravitational lens equation, not suffice? Are there any advantages to this technique at
all?

This article tries to answer the question by presenting how this technique was imple-
mented as a C++ application, as well as showing some results and necessary considera-
tions.

2. FORMALISM OF GRAVITATIONAL LENSING

In order to simulate Gravitational Lensing, a basic introduction to the physical phe-
nomenon is required.

Here, we are only concerned with Gravitational Lensing in weak fields, normally en-
countered in the proximity of galaxies and galaxy clusters. For the case of strong fields
such as in the close vicinity of black holes, the reader is referred to the theory presented,
for example, in [10]. The fundamental theory of Gravitational Lensing uses the following
assumption, known as the “thin lens approximation”: most of the light deflection occurs
within Az ~ +b (Figure 1) of the point of closest approach between the light ray and a
point mass acting as the lens. This Az can typically be ignored in comparison to the much
larger distances between observer and lens, and between lens and source. In effect, the
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lens can be considered as thin compared to the total extent of the light path. A quanti-
tative justification of this approximation for relevant astrophysical cases is provided in
[12].

FIGURE 1. The deflection angle of light =~ FIGURE 2. Lensing geometry. The dis-

by a point mass M, with impact param-  tances D;, Dg and Dyg are from ob-

eter b. server to the lens plane, to the source
plane, and between the lens and source
plane, respectively. See the text for de-
tails.

The ”thin lens approximation” allows to project the mass distribution of the lens along
the line of sight, replacing it with a mass sheet perpendicular to the line-of-sight. The
plane of this mass sheet is called the lens plane. The mass sheet corresponding to the lens
is characterized by its surface mass density

5(E) = / p(E, 2)dz, @.1)

where £ is a two-dimensional vector in the lens plane and p is the volume density.
The deflection angle of light due to a mass point M is directed towards the point mass

(Figure 1) and given by [9]:

. AGM

=5 (2.2)
where G is the gravitational constant, c is the speed of light and b is the impact parameter.
In the presence of the mass sheet, the deflection angle at every position € is the sum of the
deflections due to all the mass elements in the lens plane, and is given by

0%

This is simply the integral of (2.2), where the variable is a vector. A more thorough
proof of this relation is given in [8].
In order to obtain the lens equation, consider the lens geometry in Figure 2. A light

ray from source S is deflected by the angle @ at the position of the lens and reaches the

Q>1

) &€ (2.3)
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observer at O. The angle between the (arbitrarily chosen) optic axis and the true source
position is j3, and the angle between the optic axis and the image is f. The (angular-
diameter) distances between observer and lens, lens and source, and observer and source
are Dy, Drg and Dg, respectively. We are only interested in angular distances, so we
consider the source and the image to be in the same plane perpendicular to the optic axis.
We also employ the approximation that the deflection angle is small, so that for example
tan § = sin § = 6, where the angle is in radians.
From Figure 2, we introduce the reduced deflection angle

a==E4, (2.4)

and by noting the simple relation §Dg = SDg + &Drg, we get the following general
gravitational lens equation (for a single lens plane):

B=0-a). (2.5)
If we consider cosmological scales, the distances D;, D and Dg must be taken as
angular-diameter distances, as explained in [3].

3. IMPLEMENTATION

The algorithm developed for the purpose of this paper is, to the author’s knowledge,
the only one that simulates gravitational lensing by using BMP files for input/output (via
the EasyBMP script; [4]). The advantage is that sources and lenses of any desired shape or
mass (the latter being implemented via the pixel color palette) may be used as input data,
and they can easily be edited in widely available applications such as Microsoft Paint.
The disadvantage is that, especially at low resolutions, various errors due to the pixel
grid system occur.

Apart from the physical parameters, which are specified from inside the algorithm, the
input data consists of two bitmaps, depicting the distribution of the sources and the lenses,
respectively. The output data is the bitmap showing the lensed images of the sources.

The principles of the technique are as follows. First, it is a natural choice to codify
the mass distribution of the lens into pixel colors. This may be inspired, for instance, by
the mass-to-light ratios for galaxies (from [2]). There are 256° colors and 256 values of
transparency available for each pixel in an 8 or more bpp (bits per pixel) BMP file, and
thus as many distinct values can be attributed to the surface density of the portion of the
lens that we represent by an individual pixel.

Secondly, it is difficult both analytically and numerically to solve the lens equation
from left to right (trying to find the images that correspond to each source point). The
difficulties are presented in [5]. So the idea is to solve the equation from right to left
(to map each image into its corresponding source). Roughly put, the algorithm finds
the defection angle of each possible image point (each pixel of the BMP representing the
image plane) by employing (2.3) for the given lens distribution, and then checks if the
position of its source, given by (2.5), actually corresponds to a point on the source (a pixel
on the bitmap representing the source plane). The number of calculations for such an
algorithm is strongly dependent on the resolution of the input bitmaps and the size of the
lens (but not on the size of the source), and this is reflected in the running time (shown in
the captions to the simulation bitmaps in the next chapter).
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4. APPLICATIONS AND CONSIDERATIONS

We present some simulation examples and the corresponding conclusions about the
simulation method. The execution times correspond to running the C++ algorithm on a
commercial machine with 2 GHz Intel Core 2 Duo processor and 1Gb RAM. These include
the time required to write the 24bit BMP files (this size has been considered as offering
an appropriate balance between the richness of the color palette and the rapidity of the
writing process).

The first example (Figure 3) represents a point source mapped into an Einstein Ring
by a foreground point lens lying on the line of sight. The diagonal symmetry due to
the rectangular grid (coordinate system) and the incompleteness of the ring are clearly
apparent. As the resolution is increased, the result of this simulation is more accurate, at
the expense of computation time.

As can be seen, the nonlinear lens equation may map a single source into a collection
of image points. The magnification of the source is also contained in the lens equation,
and in this algorithm it is understood as the ratio of the number of pixels of the images
to the number of pixels of the source. This convention is justified by the surface bright-
ness conservation theorem in Gravitational Lensing (explained in [11]). In this particular
example, the theoretical magnification from the lens equation is infinity, which would
require infinite resolution in order to be reproduced by the algorithm.

FIGURE 3. Incomplete Einstein Ring in the case of small resolution (8 sec
execution time, 100 x 100 pixels, 9 pixels Einstein ring radius).

The second example shows the appearance of the Andromeda Galaxy if it were lensed
through a black hole lying on the line of sight (Figure 4). Analytically, this case corre-
sponds to deflection by a point mass lens and the Gravitational Lensing equation in the
week field limit still applies, if we are not concerned with light passing very close to the
black hole (i.e. very close to its Schwarzschild radius). The parameters are shown in the
figure caption. In this case, when just a visual representation of the lensing phenomenon
is requested, the simulation may be considered as accurate.

The last example is a circular source (Figure 5) lensed through two constant surface
density “galaxies” (represented by uniform black color) of elliptical and circular shape, in
the foreground. Again, if just a visual representation is aimed at, then the result (Figure
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FIGURE 4. Inverted color image of the Andromeda Galaxy (public do-
main, left) and the simulation result (right) if a point mass (black hole)
lens were on the line of sight. 229 sec execution time, 500 x 340 pixels
(the version shown here is shrunk), parameters: pixel length 29 arcsec,
M = 1x10® Mg, (solar mass), D5 = 7.7x 10° pc (parsec), Dg = 7.8 x 10°
pc, D, = 1.2x10* pc. Black hole Schwarzschild radius 16 arcsec. Einstein
Ring radius 44 arcmin.
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FIGURE 5. Circular source (left) and the result of the lensing (right)
through the two galaxies in black. The position of the circular source
(left figure) is indicated by the central black disk. 7 images are visible.
500x500pixels (the version reproduced here is shrunk), 572 sec execution
time. Parameters: M= 105M, (the mass represented by an individual
pixel), Dgs = 3 x 10° pc, Dy = 3 x 10% pc, Dy = 3 x 10° pc, pixel length:
0.01 arcsec.
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7) is accurate, in the sense that it gives a reasonable visual approximation of the relative
positions, magnifications and number of images of the source.

It is important to keep in mind the following observation when using such a simulation
technique. Although a source/lens comprised of a collection of neighboring pixels looks
like a continuous mass distribution when displayed on the input bitmap (such as the two
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lenses in Figure 5), the algorithm treats it as a collection of point masses positioned at the
center of each pixel. Care must thus be taken as to what physical model we attach to the
lenses depicted in the input lens plane BMP. Comparing the results obtained with this
algorithm to simulations using analytical methods (for continuous mass distribution in
lenses), it has been noticed that a discrete mass distribution lens (where individual mass
points are distributed in a grid), acts approximately like an equivalent continuous mass
distribution lens with a different (higher/lower) surface mass density. Should the lens
model be interpreted as having a continuous mass distribution, a detailed mathematical
investigation is required to calibrate the value of the corresponding density, as a function
of resolution.

5. COMPARISON WITH OTHER TECHNIQUES

A brief introduction to more advanced numerical simulation techniques for gravita-
tional lensing is provided in [11]. The technique presented here is the most straightfor-
ward to implement of the so-called “grid search methods”. A more careful approach
would use the grid to map triangular tiles between the planes of the images and the source
(as described in [11] and implemented in [5]), whereas in the present method the tiles de-
generate into pixels. The tile method gives the possibility to increase the resolution of the
mapping to specific regions of interest (close to caustics/critical curves — locations in the
source/lens plane where magnification is infinite in the geometrical-optics limit), where
two or more images may be found close together, yet may be unresolved by the present
algorithm.

Other simulation techniques, such as [1], concentrate on implementing analytical solu-
tions to the lens equation, for particularly simple lens density distributions.

6. CONCLUSIONS

This article has considered a technique for the simulation of Gravitational Lensing,
technique which is straightforward to implement in a programming language such as
C++. This is, to the authors knowledge, the only technique that simulates the Gravita-
tional Lensing phenomenon by using bitmap files for direct data input and output.

It has been shown that, similar to other methods, the precision of the technique in-
creases with the input bitmap resolution, at the expense of execution time.

The technique may be used to approximate Gravitational Lensing, in the week field
case, for arbitrary distributions of sources and lenses, provided that the lenses lie in a
single plane. As compared to more advanced techniques, the present method is easier to
implement, but does not permit locally adjustable resolution. This means that it does not
work very well for the study of critical lines and caustics, but it is appropriate to use when
an approximate visual simulation, for a given global resolution, is needed.
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