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The natural connectivity of colored random graphs

YILUN SHANG

ABSTRACT. The natural connectivity as a robustness measure of complex network has been proposed re-
cently. It can be regarded as the average eigenvalue obtained from the graph spectrum. In this paper, we
introduce an inhomogeneous random graph model, G(n, {ci}, {pi}), and investigate its natural connectivity.

Binomial random graph G
(
n,

m∑
k=1

c2kpk

)
is a tight approximation for G(n, {ci}, {pi}). Simulations are per-

formed to validate our theoretical results.

1. INTRODUCTION

The classical approaches for determining robustness of networks stem from graph the-
ory. For example, the vertex/edge connectivity of a graph is a fundamental measure of
robustness of a network [3]. Recently, the concept of natural connectivity is proposed in
[11, 16] as a novel spectral measure of robustness in networks. The natural connectivity
is expressed as the weighted sum of closed walks of all lengths. The authors consider the
redundancy of walks as the root of robustness, which ensures that the connection between
vertices still remains possible in spite of damage to the network. The work [10, 17] ana-
lyze the natural connectivity in Erdős-Rényi random graph G(n, p) [4] and show that the
natural connectivity has acute discrimination in measuring the robustness of networks.

In this paper, we introduce a kind of inhomogeneous random graph model
G(n, {ci}, {pi}), which we refer to as colored random graph, and study its robustness
based on the natural connectivity. The natural connectivity of colored random graph can
be tuned by assigning different color probabilities ci as well as link probabilities pi (see
Section 2 for details). In addition, the natural connectivity result we derived in the present
paper slightly improves that in [17] for G(n, p) by a factor n−ε. Simulations are provided
to validate and illustrate our results.

The rest of this paper is organized as follows. Section 2 contains the definition of col-
ored random graph model and some preliminaries for natural connectivity. The analytical
results and simulation studies are given in Section 3 and 4, respectively. We conclude the
paper in the final section.

2. MODEL AND PRELIMINARIES

In this section, we present some necessary preliminaries leading to the natural connec-
tivity and colored random graphs.

LetG = (V,E) be a simple undirected graph with vertex set V and edge setE ⊆ V ×V .
Let |V | = n be the number of vertices. Let A(G) = (aij)n×n be the adjacency matrix of G,
where aij = aji = 1 if (i, j) ∈ E, and aij = aji = 0 otherwise.
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Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix A since it is real and
symmetric. The set {λ1, λ2, · · · , λn} is called the spectrum of A (or G).

A weighted sum of numbers of closed walks is defined in [16] by

S =
∞∑
k=0

nk/k!, (2.1)

where nk is the number of closed walks of length k in G. Since nk =
n∑

i=1

λki [2], we have

S =

∞∑
k=0

n∑
i=1

λki
k!

=

n∑
i=1

∞∑
k=0

λki
k!

=

n∑
i=1

eλi . (2.2)

Note that (2.2) corresponds to the Estrada index of the graph [5, 12], which has been
developed for the study of bipartivity [7] and subgraph centrality [6, 8]. The natural
connectivity of G is then defined as

λ̄(G) = ln

(
S

n

)
= ln

(
1

n

n∑
i=1

eλi

)
, (2.3)

which corresponds to a kind of average eigenvalue of A since λn ≤ λ̄ ≤ λ1.
Next we introduce our random graph model. Let m be a natural number and ci, pi ∈

[0, 1] for i = 1, · · · ,m. Suppose that
m∑
i=1

ci = 1, and V is a set of n vertices. The colored

random graph G(n, {ci}, {pi}) on V is defined as follows.
Let {1, 2, · · · ,m} bem sorts of colors, and we consider a random coloring of the vertices

in V by
f : V → {1, 2, · · · ,m}. (2.4)

For each vertex v ∈ V , we define P (f(v) = i) = ci and the coloring of a vertex is inde-
pendent with that of other vertices. In other words, n vertices are assigned colors inde-
pendently and identically distributed. For each pair of different vertices (vi, vj), an edge
occurs with probability pk if and only if f(vi) = f(vj) = k. There is no edges between vi
and vj if f(vi) ̸= f(vj). We make a reference to the work [13], where the hyperbolicity of
colored random graphs has been studied.

Clearly, the binomial random graph model G(n, p) can be viewed as the special case
of m = 1, i.e., G(n, 1, p). It is straightforward to show that, for a pair of different vertices

(vi, vj), the edge is present with probability
m∑

k=1

c2kpk. In the sequel, our analysis will based

on the binomial random graph model G
(
n,

m∑
k=1

c2kpk

)
, and our simulation results in Sec-

tion 4 implies that it is a sharp approximation for large n as far as the natural connectivity
is concerned.

3. MAIN RESULT

Our main result in this section is the following result.

Theorem 3.1. For random graph G
(
n,

m∑
k=1

c2kpk

)
with

lnn

n
≪

m∑
k=1

c2kpk < 1− lnn

n
, (3.5)
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the natural connectivity is

λ̄
(
G
(
n,

m∑
k=1

c2kpk

))
= n

m∑
k=1

c2kpk − lnn+ o(1) (3.6)

almost surely, as n→ ∞.

A key technique in the proof is a spectral density representation of random graph
G(n, p). It is shown [9] that the largest eigenvalue λ1 ofG(n, p) is almost surely (1+o(1))np
provided that np ≫ lnn. Furthermore, Wigner’s semicircular law [14, 15] says that the
spectral density of G(n, p) converges to the semicircular distribution

ρ(λ) =


2
√
r2 − λ2

πr2
, |λ| ≤ r

0, |λ| > r

(3.7)

as n→ ∞, where r = 2
√
np(1− p) is the radius of the bulk part of the spectrum.

For
m∑

k=1

c2kpk ≫ (lnn)/n and n → ∞, by continuous approximation for λi in (2.3), the

natural connectivity of G
(
n,

m∑
k=1

c2kpk

)
can be reformulated in the spectral density form

λ̄
(
G
(
n,

m∑
k=1

c2kpk

))
= ln

(∫ r

−r

ρ(λ)eλdλ+
eλ1

n

)
(3.8)

= ln
(
ψ(1) +

e
n

m∑
k=1

c2kpk

n

)
= n

m∑
k=1

c2kpk − lnn+ ln

1 +
nψ(1)

e
n

m∑
k=1

c2kpk


where ψ(t) is the moment generating function of density ρ(λ) and

ψ(1) =

∫ r

−r

2
√
r2 − λ2

πr2
eλdλ =

2

π

∫ π

0

er cos θ sin2 θdθ. (3.9)

The following lemma can be proved by involving a modified Bessel function [1].

Lemma 3.1. ([17]) The function

g(p) = nψ(1)/enp ∼ n

√
2

π

er−np

r3/2
(3.10)

is monotonically decreasing for (lnn)/n < p < 1 − (lnn)/n as n → ∞, where ψ(1) is given by
(3.9) and r is defined in (3.7).

Now we are on the stage to prove our main result.
Proof of Theorem 3.1. Let p = pc = (lnn)/n. Therefore, 1−pc → 1 as n→ ∞, and r ∼ 2

√
lnn

from the definition in (3.7). By (3.10) we get

g(pc) ∼ n

√
2

π

er−npc

r3/2
∼ n

√
2

π
· e

2
√
lnn−lnn

(2
√
lnn)3/2

=
n

2
√
π
· e

− lnn+2
√
lnn

(lnn)3/4
=

e2
√
lnn

2
√
π(lnn)3/4

(3.11)
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FIGURE 1. Natural connectivity λ̄ of random graphs versus number of
vertices n for different p. The lines represent λ̄(G(n, p)) and the triangles
and circles are for λ̄(G(n, {ci}, {pi})). Each quantity is an average over
1000 realizations.

which tends to 0 as n→ ∞.
By Lemma 3.1, for pc ≤ p ≤ 1− pc, we have g(p) ≤ g(pc) → 0 as n → ∞. Combining this
with (3.8) and (3.10), we then conclude the proof of Theorem 3.1. �

Notice that Theorem 3.1 improves the result in [17] (Theorem 3.3) by a factor of n−ε.

4. SIMULATION STUDY

Firstly, we are interested in how well the approximation ofG
(
n,

m∑
k=1

c2kpk

)
behaves. We

consider m = 3 colors. Let c1 = 0.1, c2 = 0.3, c3 = 0.6.

(i) Take p1 = 0.5, p2 = 0.6, p3 = 0.2. Then, we have p =
3∑

k=1

c2kpk = 0.131.

(ii) Take p1 = 0.3, p2 = 0.7, p3 = 0.8. Then, we have p =
3∑

k=1

c2kpk = 0.354. For both

cases, we simulate 1000 independent G(n, p) and G(n, {ci}, {pi}), and then we compute
the average natural connectivity λ̄(G(n, p)) and λ̄(G(n, {ci}, {pi})) for different n.

Figure 1 shows the natural connectivities of G(n, p) and G(n, {ci}, {pi}). We observe
that the two models agree well with each other.

Next, we illustrate the tunable natural connectivity for colored random graph
G(n, {ci}, {pi}). We consider the following two kinds of adjustment: color probabilities
{ci} and link probabilities {pi}.

(iii) Take m = 2 colors. Let p1 = 0.4 and p2 = 0.9. Therefore, the natural connectivity
λ̄(G(n, {ci}, {pi})) can be viewed as a function of color probability c1 (with c2 = 1 − c1).
In Figure 2, we plot the natural connectivity versus c1 for n = 1000. We observe that the
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FIGURE 2. Natural connectivity λ̄(G(n, {ci}, {pi})) versus color probabil-
ity c1 for n = 1000. Each quantity is an average over 1000 realizations.

natural connectivity changes with c1 like a quadratic function and attains the minimum
at c1 ≈ 0.7. This agrees with our theory since we have λ̄ ∼ (c21p1+(1− c1)2p2)n from (3.6).

(iv) Take m = 3 colors. Let c1 = 0.4, c2 = 0.5, c3 = 0.1, p2 = 0.5 and p3 = 0.8.
Therefore, the natural connectivity λ̄(G(n, {ci}, {pi})) may be viewed as a function of link
probability p1. In Figure 3, we plot the natural connectivity versus p1 for n = 1000. We
observe from Figure 3 that the natural connectivity increases with p1 linearly. This agrees

with our theory since we have λ̄ ∼
( 3∑

i=1

c2i pi

)
n from (3.6). Compared with Figure 2,

we know that the robustness of networks has a much more intricate relation with color
probabilities {ci} than link probabilities {pi}. This insight will be useful in the design and
control of complex networks.

5. CONCLUSION

In this paper, we propose an inhomogeneous random graph model G(n, {ci}, {pi})
through coloring each vertex of a graph and connecting vertices with the same colors
with certain probabilities. Classical random graph G(n, p) can be regarded as a special
case of mono-colored random graph. We derive the natural connectivity of colored ran-
dom graphG

(
n, {ci}, {pi}

)
, which shows enough flexibility as for the parameters. This is

of great theoretical and practical significance to the network robustness design and opti-
mization. Extensive simulations are performed, which imply that binomial random graph

G
(
n,

m∑
k=1

c2kpk

)
is an excellent approximation for G(n, {ci}, {pi}).
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FIGURE 3. Natural connectivity λ̄(G(n, {ci}, {pi})) versus link probabil-
ity p1 for n = 1000. Each quantity is an average over 1000 realizations.
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