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Asymptotic expressions for the remainder term in the
quadrature formula of Gauss-Jacobi type

ANA MARIA ACU and DANIEL FLORIN SOFONEA

ABSTRACT. In this paper we have considered error analysis for a quadrature formula which is obtained by
integration of linear positive operator. The asymptotic expressions for remainder term of Gauss-Jacobi type
quadrature formula are also given.

1. INTRODUCTION

Many authors have considered error analysis for known and new quadrature rule. In
[12] N. Ujević, N. Bilić obtained the following asymptotic expressions for error terms of
the mid-point, trapezoid and Simpson′s quadrature rule:

Denote by F =

{
f ∈ C∞[a, b]

∣∣∣∣sup
n∈N

∣∣∣∣ f (n)(a)

f (n−1)(a)

∣∣∣∣ ≤M <∞
}
.

Theorem 1.1. [12] If f ∈ F , then∫ b

a

f(t)dt = f

(
a+ b

2

)
(b− a) +

∞∑
k=3

2k−1 − k
2k−1k!

f (k−1)(a)(b− a)k.

Theorem 1.2. [12] If f ∈ F , then∫ b

a

f(t)dt =
f(a) + f(b)

2
(b− a)− 1

2

∞∑
k=3

k − 2

k!
f (k−1)(a)(b− a)k.

Theorem 1.3. [12] If f ∈ F , then∫ b

a

f(t)dt=
b−a

6

[
f(a)+4f

(
a+b

2

)
+f(b)

]
+

1

3

∞∑
k=5

k+(k−6) · 2k−3

2k−2k!
f (k−1)(a)(b−a)k.

In this paper we will consider a class of quadrature formulas which are obtained by
integration of linear positive operator. The asymptotic expressions for remainder term of
these quadrature formulas are given. The above representations for remainder term of the
mid-point and trapezoid rules are particular cases of our results.

The error analysis for quadrature formulas of Gauss type has occupied the attention
of many authors ( [5],[6]). An interesting asymptotical expansion of the remainder from
Gauss type quadrature formulas was given by I. Gavrea in [7]. These results motivated us
to give an asymptotical expansion of the remainder term from Gauss-Jacobi type quadra-
ture formula.

In the next two sections we will recall some properties of Schurer-Stancu, respectively
Gauss-Jacobi type quadrature formulas, which will be essentially used in the present pa-
per and we will consider error analysis of these kind of quadrature formulas.
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2. THE REMAINDER TERM IN THE QUADRATURE FORMULA OF SCHURER-STANCU TYPE

Let p be a given non-negative integer and let α, β be real parameters satisfying condi-
tions 0 ≤ α ≤ β.

The Schurer-Stancu operators ([1]) S̃(α,β)
m,p : C[0, 1 + p]→ C[0, 1] are defined by(

S̃(α,β)
m,p f

)
(x) =

m+p∑
k=0

p̃m,k(x)f

(
k + α

m+ β

)
, (2.1)

where m is an positive integer and

p̃m,p(x) =

(
m+ p

k

)
xk(1− x)m+p−k

are the fundamental Schurer’s polynomials.
Note that many approximation properties of operators (2.1) were investigated by D.

Bărbosu in [3].
By integration the Schurer-Stancu approximation formula ([2], [3]),

f = S̃(α,β)
m,p f + R̃α,βm,pf,

was obtained the following quadrature formula∫ 1

0

f(x)dx =

m+p∑
k=0

1

m+ p+ 1
f

(
k + α

m+ β

)
+ r(α,β)m,p (f),

which it’s called the Schurer-Stancu quadrature formula. Can be noted that the above
quadrature formula ([9], [10]), in the case α = β = 0 and p 6= 0 is the Schurer’s quadrature
formula, while for α = β = p = 0 is the Bernstein’s quadrature formula.

In what follows, we are dealing with the Schurer-Stancu quadrature fomula ([4]):∫ 1

0

f(x)dx =

m+p∑
k=0

1

m+ p+ 1
f

(
k + α

m+ p+ 2α

)
+ r(α,2α+p)m,p (f), (2.2)

having the degree of exactness 1.
In [4] was proved that the remainder term of quadrature formula (2.2) has the following

representation

r(α,2α+p)m,p (f) =
(2α− 1)m+ 2α2 + (2α− 1)p

12(m+ p+ 2α)2
f ′′(ξ),

where f ∈ C2[0, 1] and 0 < ξ < 1.

Lemma 2.1. [8] If −∞ < α < β < +∞ and w is a weight function on (α, β) and∫ β

α

f(t)w(t)dt =

m∑
i=0

Aif(xi) + rm[f ] , f ∈ L1
w(α, β),

then

W (x) = w

(
α+ (β − α)

x− a
b− a

)
, x ∈ (a, b), −∞ < a < b < +∞,

is a weight function on (a, b) and∫ b

a

F (x)W (x)dx =
b− a
β − α

m∑
i=0

AiF

(
a+ (b− a)

xi − α
β − α

)
+Rm[F ],
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where F ∈ L1
w(a, b) and

Rm[F ] =
b− a
β − α

rm[F̃ ], F̃ (t) = F

(
a+ (b− a)

t− α
β − α

)
.

Using Lemma 2.1 the quadrature formula (2.2) can be written in the following form∫ b

a

f(x)dx =

m+p∑
k=0

b− a
m+ p+ 1

f

(
a+ (b− a)

k + α

m+ 2α+ p

)
+Rm[f ], (2.3)

where

Rm[f ] = (b− a)3f ′′(ξ) · (2α− 1)m+ 2α2 + (2α− 1)p

12(m+ p+ 2α)2
, a < ξ < b. (2.4)

In this section we will give an asymptotic expressions for remainder term of Schurer-
Stancu type quadrature formula (2.3).

Theorem 2.4. Let f ∈ C∞[a, b] and {f (i)(a)}i≥3 is a bounded and monotonic sequence, then the
remainder term of quadrature (2.3) has the following representation

Rm[f ] =

∞∑
i=3

cif
(i−1)(a), where (2.5)

ci =
(b− a)i

i!

[
1− i

m+p∑
k=0

1

m+ p+ 1

(
k + α

m+ 2α+ p

)i−1]
.

Proof. We define the function

R(x) =

∫ x

a

f(t)dt−
m+p∑
k=0

x− a
m+ p+ 1

f

(
a+ (x− a)

k + α

m+ 2α+ p

)
.

By induction to show that for i ∈ N, i ≥ 1 we have

R(i)(x) = f (i−1)(x)−i
m+p∑
k=0

1

m+p+1

(
k+α

m+2α+p

)i−1
f (i−1)

(
a+(x−a)

k+α

m+2α+p

)

−
m+p∑
k=0

x− a
m+ p+ 1

(
k + α

m+ 2α+ p

)i
f (i)

(
a+ (x− a)

k + α

m+ 2α+ p

)
.

We have

R(a) = 0

R′(a) =

(
1−

m+p∑
k=0

1

m+ p+ 1

)
f(a) = 0

R′′(a) =

(
1− 2

m+p∑
k=0

1

m+ p+ 1
· k + α

m+ 2α+ p

)
f ′(a) = 0

R(i)(a) =

(
1− i

m+p∑
k=0

1

m+ p+ 1
·
(

k + α

m+ 2α+ p

)i−1)
f (i−1)(a), i ≥ 3.

If we now write the Taylor series

R(x) =

∞∑
i=0

R(i)(a)

i!
(x− a)i,
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with the above data, we obtain

R(x) =

∞∑
i=3

cif
(i−1)(a), where

ci =
(x− a)i

i!

[
1− i

m+p∑
k=0

1

m+ p+ 1

(
k + α

m+ 2α+ p

)i−1]
.

If we substitute x = b in the above series then we get formula (2.5).
Now, we will prove that the series in (2.5) converges. In formula (2.2) we take f(x) =

xi−1, i ≥ 3, and we find

1−i
m+p∑
k=0

1

m+p+1

(
k+α

m+2α+p

)i−1
= i(i−1)(i−2) · (2α− 1)m+ 2α2 + (2α− 1)p

12(m+ p+ 2α)2
ξi−3i ,

where 0 < ξi < 1, i ≥ 3.
Using the above relation, the series (2.5) can be written

Rm[f ] =
(2α− 1)m+ 2α2 + (2α− 1)p

12(m+ p+ 2α)2
·
∞∑
i=3

(b− a)i

(i− 3)!
ξi−3i f (i−1)(a).

Since 0 ≤ 1

(i− 3)!
(b− a)iξi−3i ≤ 1

(i− 3)!
(b− a)i, and

∞∑
i=3

1

(i− 3)!
· (b− a)i is a convergent

series, it follows that
∞∑
i=3

1

(i− 3)!
(b − a)iξi−3i is a convergent series. Using the bellow

theorem, it follows that the series in (2.5) converges.
Abel′ s Theorem. If

∑
an is a convergent series and (bn) is a monotonic and bounded sequence,

then
∑
anbn is a convergent series. �

Remark 2.1. For m = p = 0, α = 1, respectively m = 1 p = 0, α = 0, we obtain the
asymptotic expressions for the remainder term of the mid-point and trapezoid quadrature
rule from Theorem 1.1, respectively Theorem 1.2.

3. THE REMAINDER TERM IN THE QUADRATURE FORMULA
OF GAUSS-JACOBI TYPE

By J (α,β)
m , where m is a nonnegative whole number and α, β > −1, we denote the mth

Jacobi polynomial. It is known that Jacobi polynomials with the same parameters α and
β are orthogonal on [−1, 1] with respect to the weight function ρ(x) = (1− x)α(1 + x)β .

The quadrature formula of Gauss-Jacobi type generalized has the form ([10])∫ b

a

(b− x)α(x− a)βf(x)dx =

m∑
k=0

Bm,kf(γk) +Rm[f ]. (3.6)

The nodes γk , k = 0,m , which appear in (3.6) are given by

γk =
b− a

2
ak +

b+ a

2
,
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where ak , k = 0,m are the zeros of the Jacobi polynomial, J (α,β)
m+1 and

Bm,k =
1

2

(b− a)α+β+1(2m+ α+ β + 2)Γ(m+ α+ 1)Γ(m+ β + 1)

(m+ 1)!Γ(m+ α+ β + 2)J
(α,β)
m (ak)

d

dx

[
J
(α,β)
m+1 (x)

]
x=ak

.

For f ∈ C2m+2[a, b] the remainder term is given by

Rm[f ]=(b−a)2m+α+β+3 f
(2m+2)(ξ)

(2m+2)!
· (m+1)!Γ(m+α+2)Γ(m+β+2)Γ(m+α+β+2)

Γ(2m+α+β+3)Γ(2m+α+β + 4)
,

a < ξ < b .

Let α = β = 0. Then∫ b

a

f(x)dx =
(b− a)

m+ 1

m∑
k=0

1

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

·f
(
b− a

2
ak +

b+ a

2

)
+Rm[f ], (3.7)

where

Rm[f ] =
(b− a)2m+3(m+ 1)!4

(2m+ 3)(2m+ 2)!3
f (2m+2)(ξ).

If a = −1 and b = 1 we obtain∫ 1

−1
f(x)dx =

2

m+ 1

m∑
k=0

1

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

· f(ak) +Rm[f ], (3.8)

where

Rm[f ] =
22m+3(m+ 1)!4

(2m+ 3)(2m+ 2)!3
f (2m+2)(ξ) ,−1 < ξ < 1.

Remark 3.2. The quadrature formula (3.6 ) has the algebric degree of exactness 2m+ 1.

If f ∈ P2m+1, then from (3.8) we have:

1

m+ 1

m∑
k=0

f(ak)

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

=
1

2

∫ 1

−1
f(t)dt. (3.9)

If f ∈ C2m+2[a, b], then for any x ∈ (a , b] there is ξx ∈ (a, x) such that∫ x

a

f(t)dt =
(x− a)

m+ 1

m∑
k=0

1

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

· f
(
x− a

2
ak +

x+ a

2

)
+Rm[f ],

(3.10)
where

Rm[f ] =
(x− a)2m+3(m+ 1)!4

(2m+ 3)(2m+ 2)!3
f (2m+2)(ξx).

Theorem 3.5. If f ∈ C∞[a, b] and {f (i)(a)}i≥2m+2 is a bounded and monotonic sequence, then
the remainder term of quadrature formula (3.7) has the following representation

Rm[f ] =

∞∑
i=2m+3

cif
(i−1)(a), (3.11)
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where

ci =
(b− a)i

i!

1− i

m+ 1

m∑
k=0

(
ak+1

2

)i−1
J
(0,0)
m (ak) ddt

[
J
(0,0)
m+1(t)

]
t=ak

 .

Proof. We define the function

R(x) =

∫ x

a

f(t)dt− (x− a)

m+ 1

m∑
k=0

1

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

· f
(
x− a

2
ak +

x+ a

2

)
.

By induction to show that for i ∈ N, i ≥ 1 we have

R(i)(x)=f (i−1)(x)− i

m+ 1

m∑
k=0

(
ak+1

2

)i−1
J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

· f (i−1)
(
x−a

2
ak+

x+a

2

)

− x− a
m+ 1

m∑
k=0

(
ak + 1

2

)i
J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

· f (i)
(
x− a

2
ak +

x+ a

2

)
.

For i = 1, 2m+ 2 , R(i)(a) is given by

R(i)(a) = f (i−1)(a)

1− i

m+ 1

m∑
k=0

(
ak + 1

2

)i−1
J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

 .

In formula (3.8) we take f(x) =

(
x+ 1

2

)i−1
, i = 1, 2m+ 2 and we find

1− i

m+ 1

m∑
k=0

(
ak + 1

2

)i−1
J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

= 0,namely R(i)(a) = 0, i = 1, 2m+ 2.

For i = 2m+ 3 we have

R(2m+3)(a) = f (2m+2)(a)

1− 2m+ 3

m+ 1

m∑
k=0

(
ak + 1

2

)2m+2

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

 .

In formula (3.8) we take f(x) =

(
x+ 1

2

)2m+2

and we find

1− 2m+ 3

m+ 1

m∑
k=0

(
ak + 1

2

)2m+2

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

− (m+ 1)!4

(2m+ 2)!2
= 0,namely
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R(2m+3)(a) =
(m+ 1)!4

(2m+ 2)!2
f (2m+2)(a).

For i ≥ 2m+ 3 we have

R(i)(a) = f (i−1)(a)

1− i

m+ 1

m∑
k=0

(
ak + 1

2

)i−1
J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

 .
If we now write the Taylor series

R(x) =

∞∑
i=0

R(i)(a)

i!
(x− a)i,

with the above data we have

R(x) =

∞∑
i=2m+3

1− i

m+ 1

m∑
k=0

(
ak + 1

2

)i−1
J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

 f (i−1)(a)
(x− a)i

i!
.

If we substitute x = b in the above series then we get the formula (3.11). Now, we want

to show that the series in (3.11) converges. In formula (3.8) we take f(x) =

(
x+ 1

2

)i−1
and we find

1− i

m+ 1

m∑
k=0

(
ak + 1

2

)i−1
J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

=
(m+ 1)!4

(2m+ 3)(2m+ 2)!3
· i!

(i− 2m− 3)!

(
ξi + 1

2

)i−2m−3
, where − 1 < ξi < 1.

Using the above relations, the series (3.11) can be written

R[f ] =
(m+ 1)!4

(2m+ 3)(2m+ 2)!3

∞∑
i=2m+3

1

(i− 2m− 3)!

(
ξi + 1

2

)i−2m−3
(b− a)if (i−1)(a).

Since
1

(i− 2m− 3)!

(
ξi + 1

2

)i−2m−3
(b− a)i ≤ 1

(i− 2m− 3)!
(b− a)i, and

∞∑
i=2m+3

1

(i− 2m− 3)!
(b− a)i is a convergent series, it follows that

∞∑
i=2m+3

1

(i− 2m− 3)!

(
ξi + 1

2

)i−2m−3
(b− a)i is a convergent series. Using Abel′ s Theo-

rem, it follows that the series in (3.11) converges. �

Theorem 3.6. If f ∈ C∞[a, b] and {f (i)(b)}i≥2m+2 is a bounded and monotonic sequence, then
the remainder term of quadrature formula (3.7) has the following representation

Rm[f ] =

∞∑
i=2m+3

c̃if
(i−1)(b), (3.12)



8 Ana Maria Acu and Daniel Florin Sofonea

where

c̃i = (−1)i−1
(b− a)i

i!

1− i

m+ 1

m∑
k=0

(
1−ak

2

)i−1
J
(0,0)
m (ak) ddt

[
J
(0,0)
m+1(t)

]
t=ak

 .

Proof. We define the function

R(x) =

∫ b

x

f(t)dt− (b− x)

m+ 1

m∑
k=0

1

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

· f
(
b− x

2
ak +

b+ x

2

)
.

By induction to show that for i ∈ N, i ≥ 1 we have

R(i)(x)=−

f (i−1)(x)− i

m+1

m∑
k=0

(
1−ak

2

)i−1
J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

f (i−1)
(
b−x

2
ak+

b+x

2

)

−x−b
m+1

m∑
k=0

(
1−ak

2

)i
J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

· f (i)
(
b−x

2
ak+

x+b

2

) .
If we now write the Taylor series

R(x) =

∞∑
i=0

R(i)(b)

i!
(x− b)i,

with the above data we have

R(x) = −
∞∑

i=2m+3

1− i

m+ 1

m∑
k=0

(
1− ak

2

)i−1
J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

 f (i−1)(b) (x− b)i

i!
.

If we substitute x = a in the above series then we get the formula (3.12). �

Theorem 3.7. Let f ∈ Cn+1[a, b]. Then for n ≥ 2m + 3 the remainder term has the following
representation

Rm[f ] =

n∑
i=2m+3

cif
(i−1)(a) +

1

n!

∫ b

a

R(n+1)(t)(b− t)ndt, (3.13)

where

R(i)(t)=f (i−1)(t)− i

m+1

m∑
k=0

(
ak+1

2

)i−1
J
(0,0)
m (ak)

d

dx

[
J
(0,0)
m+1(x)

]
x=ak

· f (i−1)
(
t−a

2
ak+

t+a

2

)

− t− a
m+ 1

m∑
k=0

(
ak + 1

2

)i
J
(0,0)
m (ak)

d

dx

[
J
(0,0)
m+1(x)

]
x=ak

· f (i)
(
t− a

2
ak +

t+ a

2

)
, for i = 1, n+ 1,
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and

Rm[f ] =

n∑
i=2m+3

c̃if
(i−1)(b) +

1

n!

∫ b

a

R̃(n+1)(t)(a− t)ndt, (3.14)

where

R̃(i)(t)=−

f (i−1)(t)− i

m+ 1

m∑
k=0

(
1−ak

2

)i−1
J
(0,0)
m (ak)

d

dx

[
J
(0,0)
m+1(x)

]
x=ak

f (i−1)
(
b−t

2
ak+

b+t

2

)

− t− b
m+ 1

m∑
k=0

(
1− ak

2

)i
J
(0,0)
m (ak)

d

dx

[
J
(0,0)
m+1(x)

]
x=ak

· f (i)
(
b− t

2
ak +

t+ b

2

) , for i = 1, n+ 1.

Proof. LetR(x) defined in the proof of Theorem 3.5. Using Taylor formula, we obtain

R(x) =

n∑
i=0

R(i)(a)

i!
(x− a)i +

∫ x

a

R(n+1)(t)

n!
(x− t)ndt.

If we substitute x = b in the above relation, we obtain the representation (3.13) of the
remainder term. In a similar way we can obtain the relation (3.14). �

Theorem 3.8. If f ∈ C∞[a, b] and {f (i)(a)}i≥2m+2 is a bounded and monotonic sequence, then
the remainder term of quadrature formula (3.7) has the following representation

Rm[f ] =
(b− a)2m+3

(2m+ 3)!
· (m+ 1)!4

(2m+ 2)!2
·
{
f (2m+2)(a) +

b− a
2

f (2m+3)(a)

}
+

∞∑
i=2m+5

cif
(i−1)(a), (3.15)

where

ci =
(b− a)i

i!

1− i

m+ 1

m∑
k=0

(
ak+1

2

)i−1
J
(0,0)
m (ak) ddt

[
J
(0,0)
m+1(t)

]
t=ak

 .

Proof. Using the relation (3.11) we can write

R[f ] = c2m+3f
(2m+2)(a) + c2m+4f

(2m+3)(a) +

∞∑
i=2m+5

cif
(i−1)(a), (3.16)

where

c2m+3 =
(b− a)2m+3

(2m+ 3)!

1− 2m+ 3

m+ 1

m∑
k=0

(
ak+1

2

)2m+2

J
(0,0)
m (ak) ddt

[
J
(0,0)
m+1(t)

]
t=ak

,
c2m+4 =

(b− a)2m+4

(2m+ 4)!

1− 2m+ 4

m+ 1

m∑
k=0

(
ak+1

2

)2m+3

J
(0,0)
m (ak) ddt

[
J
(0,0)
m+1(t)

]
t=ak

.
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From the proof of Theorem 3.5 we have

1− 2m+ 3

m+ 1

m∑
k=0

(
ak+1

2

)2m+2

J
(0,0)
m (ak) ddt

[
J
(0,0)
m+1(t)

]
t=ak

=
(m+ 1)!4

(2m+ 2)!2
.

Therefore

c2m+3 =
(b− a)2m+3

(2m+ 3)!
· (m+ 1)!4

(2m+ 2)!2
. (3.17)

We will use the following properties of Jacobi polynomials (see [11]):

J
(α,α)
2ν (x) =

Γ(2ν + α+ 1)Γ(ν + 1)

Γ(ν + α+ 1)Γ(2ν + 1)
J
(α,− 1

2 )
ν (2x2 − 1),

J
(α,α)
2ν+1 (x) =

Γ(2ν + α+ 2)Γ(ν + 1)

Γ(ν + α+ 1)Γ(2ν + 2)
xJ

(α, 12 )
ν (2x2 − 1).

(3.18)

Also, for Jacobi polynomials the following formula holds

d

dx

{
J (α,β)
m (x)

}
=

1

2
(m+ α+ β + 1)J

(α+1,β+1)
m−1 (x) . (3.19)

Let ak, k = 0,m the zeros of J
(0,0)
m+1 , the Jacobi polynomial. From [11] for ak,

k = 0,m we have the relation:
ak + am−k = 0 . (3.20)

From (3.18) and (3.19) we have:

J
(0,0)
2ν (ak)

d

dx

[
J
(0,0)
2ν+1(x)

]
x=ak

= (2ν + 1)J
(0,− 1

2 )
ν (2a2k − 1)J

(1,− 1
2 )

ν (2a2k − 1) , (3.21)

J
(0,0)
2ν+1(ak)

d

dx

[
J
(0,0)
2ν+2(x)

]
x=ak

= a2k(2ν + 3)J
(0, 12 )
ν (2a2k − 1)J

(1, 12 )
ν (2a2k − 1) . (3.22)

From (3.20) , (3.21) and (3.22) we obtain
m∑
k=0

a2m+3
k

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

= 0, therefore

m∑
k=0

(
ak+1

2

)2m+3

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

=
1

22m+3

m∑
k=0

(
2m+3
2m+3

)
a2m+3
k

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

+

m∑
k=0

2m+2∑
i=0

(
2m+ 3

i

)
aik

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

=
1

22m+3

2m+2∑
i=0

(
2m+ 3

i

) m∑
k=0

aik

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

.

From (3.8) with f(x) = xi , i = 0, 2m+ 1 we obtain
m∑
k=0

aik

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

=
m+ 1

2
· 1 + (−1)i

i+ 1
(3.23)
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and for f(x) = x2m+2 we have
m∑
k=0

a2m+2
k

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

=
m+ 1

2m+ 3

[
1− 22m+2(m+ 1)!4

(2m+ 2)!2

]
. (3.24)

By using (3.23) and (3.24) follows

m∑
k=0

(
ak + 1

2

)2m+3

J
(0,0)
m (ak)

d

dt

[
J
(0,0)
m+1(t)

]
t=ak

=
m+ 1

22m+3

{
m∑
k=0

(
2m+ 3

2k

)
· 1

2k + 1
+ 1− 22m+2(m+ 1)!4

(2m+ 2)!2

}

=
m+ 1

22m+3

{
22m+3

2m+ 4
− 22m+2(m+ 1)!4

(2m+ 2)!2

}
= (m+ 1)

{
1

2m+ 4
− (m+ 1)!4

2(2m+ 2)!2

}
.

Therefore

c2m+4 =
(b− a)2m+4

(2m+ 4)!
· (m+ 2)(m+ 1)!4

(2m+ 2)!2
. (3.25)

From relations (3.16), (3.17), (3.25) we obtain the relation (3.15). �
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