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A new homogeneous inequality and a few of its
applications

MARIN BANCOŞ

ABSTRACT. An original homogeneous inequality, written for 2 sets of n variables, represents the starting
point of the paper. This inequality is the key to the other theoretical results, and could be considered as a simple,
but new and powerful mathematical tool.

1. INTRODUCTION

Every year new problems enrich the large chapter of inequalities, and many of them
are proposed in different math contests and olympiads. Proving inequalities can be often
very difficult. Frequently, some famous inequalities are cited and applied without proof
in a certain solution.

The main result of this article allows us to obtain some important inequalities, which
are usually considered as consequences of Hölder’s inequality, Chebyshev’s inequality
and Cauchy-Schwarz’s inequality. But for proving the theoretical results emphasized in
the paper I do not use any classical inequality.

2. AN IMPORTANT INEQUALITY

Theorem 2.1. For ai ≥ 0, bi > 0, i = 1, 2, . . . , n, n ∈ N, n ≥ 1, and k > 0, the following
inequality holds
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or in the simplified form

n∑
i=1

ak+1
i

bki
≥

n∑
i=1

ai

n∑
i=1

bi

·
n∑

i=1

aki
bk−1i

(2.1)

Proof. If a1 + a2 + ...+ an = 0, then a1 = a2 = ... = an = 0, and the inequality is ”trivial”.
For a1 + a2 + ... + an > 0, because (2.1) is homogenious in a1, a2, ..., an, we obtain by
normalization that a1 + a2 + ...+ an = 1.

Similarly, because (2.1) is homogenious in b1, b2, ..., bn and b1 + b2 + ... + bn > 0, we
obtain by normalization that b1 + b2 + ...+ bn = 1.

Therefore, without loss of generality, we can suppose that

a1 + a2 + . . .+ an = b1 + b2 + . . .+ bn.
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The initial inequality becomes
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This inequality is equivalent to(
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There is no difficulty to prove that for a ≥ 0, b > 0 and k > 0, the following inequality
holds (a

b

)k
· (a− b) ≥ a− b.

Using this inequality for ai ≥ 0, bi > 0, i = 1, 2, . . . , n, n ∈ N, n ≥ 1 and k > 0, and
adding all these n inequalities, which are obtained for each pair (ai, bi), we get the desired
inequality. �

3. SOME INTERESTING RESULTS

Corollary 3.1. For ai ≥ 0, bi > 0, i = 1, 2, . . . , n, and k, n ∈ N, with n, k ≥ 1, the following
inequality holds
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Proof. Using the inequality 2.1 (see the steps [1], [2], ...,[p],...,[k]), we get:
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Therefore, the inequality (3.2) is proved. �

Remark 3.1. It is easy to prove that if k is an odd natural number, then the inequality (3.2)
holds for any ai ∈ R.
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Corollary 3.2. For: ai ∈ R, bi > 0, i = 1, 2, ..., n, and n ∈ N, n ≥ 1, the following inequality
holds
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Proof. We obtain this result using the inequality (3.2), and the last remark, for the particu-
lar case k = 1. �

Lemma 3.1. For xi ≥ 0, i = 1, 2, ..., n, and n ∈ N, n ≥ 1, the following inequality holds
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Using (3.2), we obtain that this value is greater or equal to

( k−1
√
x1 + k−1

√
x2 + . . .+ k−1

√
xn)

k−1

(1 + 1 + . . .+ 1︸ ︷︷ ︸
n−times

)k−2
=

1

nk−2 · (
k−1
√
x1 + k−1

√
x2 + . . .+ k−1

√
xn)

k−1.

Therefore

x1 + x2 + . . .+ xn ≥
1

nk−2 · (
k−1
√
x1 + k−1

√
x2 + . . .+ k−1

√
xn)

k−1,

which is equivalent to (3.4). �

Corollary 3.3. For ai ≥ 0, bi > 0, i = 1, 2, ..., n and n, k ∈ N, with n ≥ 1, k ≥ 2, the following
inequality holds
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Proof. For k = 2, the inequality (3.5) reduces to the inequality (3.3).
Let us consider that k ∈ N, k ≥ 3. In this case, the left hand side of the inequality (3.5) is
equal to
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Using the inequality (3.2), we get that this value is greater or equal to
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But, from (3.4), we get
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and the inequality (3.5) is proved. �
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Corollary 3.4. For ai ≥ 0, i = 1, 2, ..., n, and n, k ∈ N, with n, k ≥ 2, then the following
inequality holds

k

√
ak1 + ak2 + . . .+ akn
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n
(3.6)

Proof. Using (3.2), for b1 = b2 = ... = bn = 1, and k → (k − 1), the inequality becomes
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Therefore, using this inequality we get (3.6) immediately. �

Corollary 3.5. For ai ≥ 0, i = 1, 2, . . . , n, and n ∈ N, n ≥ 1, and k > 0, the following inequality
holds

ak+1
1 + ak+1

2 + . . .+ ak+1
n ≥ a1 + a2 + . . .+ an

n
· (ak1 + ak2 + . . .+ akn) (3.7)

Proof. Using the main inequality (2.1), for b1 = b2 = ... = bn = 1, we get the inequality
(3.7) immediately. �

4. TWO BEAUTIFUL GENERALIZATIONS OF NESBITT’S INEQUALITY

A well known result, which is called Nesbitt’s inequality, has the following statement.
J. NESBITT’s inequality (1903): For a, b, c > 0, the following inequality holds

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
. (4.8)

My examples consist in two beautiful generalizations of this inequality. For both general-
izations, in the particular case k = 1, we obtain Nesbitt’s inequality.

Example 4.1. For a, b, c > 0, and k ∈ N, k ≥ 1, the following inequality holds
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Proof. The left hand side of the inequality is equal to
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which can be rewritten as
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Taking into account the ”trivial” inequality

(a+ b+ c)2 ≥ 3(ab+ bc+ ca) > 0,
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which implies that
1
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,
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and the inequality (4.9) is proved. �

Remark 4.2. For k = 2 in (4.9), we get a well known inequality, whose author is Darij
Grinberg (see the problem no. 7, from [4]).

Example 4.2. For a, b, c > 0, and k ∈ N, k ≥ 1, the following inequality holds

ak

b+ c
+

bk

c+ a
+

ck

a+ b
≥ ak−1 + bk−1 + ck−1

2
(4.10)

Proof. Setting a+ b+ c = s, the left hand side of the inequality is equal to
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�

Remark 4.3. Using the same steps, we can prove the following beautiful generalization
of the inequality (4.10)

For a1, a2, . . . , an > 0, s = a1 + a2 + . . . + an, and n, k ∈ N,n ≥ 2, k ≥ 1, the following
inequality holds:

ak1
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+
ak2

s− a2
+ · · ·+ akn

s− an
≥ ak−11 + ak−12 + · · ·+ ak−1n

n− 1
.

Remark 4.4. The inequality (4.10) is one of the problems proposed in [5] (see the pro-
blem no. 69, Chapter 7 - Inequalities), and the solution proposed by the author is different
than our solution.
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5. CONCLUSIONS

The inequality (2.1) represents the key to the other theoretical results. But, many au-
thors use some classical inequalities for proving the theoretical results emphasized in this
article.

For example, in [1], the author uses Hölder’s inequality for proving the content of
Corollary 3.1.

The content of Corollary 3.2 was proposed by Titu Andreescu, in ”Revista de Matem-
atică din Timişoara”, in 1979, for the particular case n = 2 (see [2]). After that, using this
starting point, the author proves the general case. Let us notice that the inequality (3.3)
can be immediately proved using Cauchy - Schwarz’ s inequality. The inequality (3.3) is
known as Titu Andreescu’s inequality, or T2

′s lemma, or Cauchy-Schwarz’s inequality in
Engel’s form.

The inequality (3.6), which is contained in Corollary 3.4, is the inequality between the
power mean, with exponent k, and the arithmetic mean, for the non-negative real num-
bers a1, a2, ..., an. In [3], the author uses this inequality for proving Corollary 3.3.

And finally, Corollary 3.5 is often considered as a direct consequence of Chebyshev’s
inequality.

We can conclude that the article provides to the reader some valuable results which can
be used to solve a lot of difficult inequalities.
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