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Blending surfaces generated using the Bernstein operator

MARIUS BIROU

ABSTRACT. In this paper we construct blending surfaces using the univariate Bernstein operator. The sur-
faces have the properties that they stay on a curve (the border of the surfaces domain) and have a fixed height
in a point from the domain. The surfaces are generated using a curve network, instead of the control points
from the case of classical Bezier surfaces. We study the monotonicity and we give conditions to obtain concave
surfaces.

1. INTRODUCTION

The blending surfaces are surfaces which contain some given contours (curves, seg-
ments, points). They have been created by Coons S.A. [3]. In some previous papers (see
[1, 2] and references therein), there were constructed blending surfaces that stay on a rec-
tangle or a triangle (the border of the surfaces domain) and having a fixed height in the
point (0,0). In this paper we use the univariate Bernstein polynomial to get the surfaces
which stay on a curve (the surfaces domain are bounded by this curve). We assume that
the point (0, 0) belongs to the surfaces domains and we fix the height of the surfaces in
this point. We construct two families of surfaces for which we study the monotonicity
and we give conditions to obtain concave surfaces. These surfaces can be used in civil
engineering (roof surfaces) or in Computer Aided Geometric Design (CAGD).

2. PRELIMINARIES

The univariate Bernstein polynomial of a function f : [0, 1] → R is given by

(Bnf)(t) =
n∑

j=0

bjn(t)f

(
j

n

)
, (2.1)

where the functions bjn are given by formula

bjn(t) =

(
n

j

)
tj(1− t)n−j

for j = 0, ..., n. It has the interpolation properties

(Bnf)(0) = f(0), (Bnf)(1) = f(1)

and the shape properties given by the following two theorems (see [7])

Theorem 2.1. If the function f : [0, 1] → R is increasing (decreasing) then the function Bnf is
increasing (decreasing).

Theorem 2.2. If the function f : [0, 1] → R is convex (concave) then the function Bnf is convex
(concave).
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Next we give some definitions and remarks about the monotonicity and convexity of
the bivariate functions (see [5, 6, 4]).

Definition 2.1. The bivariate function G : A → R, A ⊆ R2 is increasing (decreasing) in a
direction d = (d1, d2) ∈ R2 if and only if

G(x+ λd1, y + λd2) ≥ (≤)G(x, y),

for every (x, y) ∈ A and every λ > 0.

Remark 2.1. If G is a C1 function on the set A we have that the function G is increasing
(decreasing) in the direction d = (d1, d2) if

DdG ≥ (≥ 0)

on A, where DdG is the first order directional derivative in the direction d = (d1, d2) of
the function G, i.e.

DdG = d1Gx + d2Gy.

Definition 2.2. The bivariate function G : A → R, A ⊆ R2 is convex (concave) on the
convex set A if and only if

G(λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≤ (≥)λG(x1, y1) + (1− λ)G(x2, y2)

for every (x1, y1), (x2, y2) ∈ A and every λ ∈ [0, 1].

Remark 2.2. If G is a C2 function on the convex set A we have that the function G is
convex (concave) if

D2
dG ≥ (≤)0 (2.2)

on A for every (d1, d2) ∈ R2, where D2
dG is the second order directional derivative in the

direction d = (d1, d2) of the function G

D2
dG = d21Gxx + 2d1d2Gxy + d22Gyy.

The condition (2.2) holds if and only if

Gxx ≥ (≤)0, Gyy ≥ (≤)0, GxxGyy −G2
xy ≥ 0.

We note
∆1hj = hj+1 − hj , j = 0, ..., n− 1,

∆2hj = hj+2 − 2hj+1 + hj , j = 0, ..., n− 2.

3. THE FIRST FAMILY OF SURFACES

Let n ∈ N, n ≥ 2 and hi, h ∈ R, i = 1, ..., n− 1 such that

0 = hn < ... < h1 < h0 = h

and let f : [0, 1] → R be a function with the properties

f(0) = h,

f( j
n ) = hj , j = 1, ..., n− 1,

f(1) = 0.
(3.3)

From (2.1) and (3.3), we obtain

(Bnf)(t) = b0n(t)h+
n−1∑
j=1

bjn(t)hj . (3.4)
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The function in (3.4) has the properties

(Bnf)(0) = h, (Bnf)(1) = 0.

Let u(x, y) be a bivariate positive function such that the curve C : u(x, y) = 1 is simple
and closed. Let

D = {(x, y) ∈ R2 : 0 ≤ u(x, y) ≤ 1}

the domain bounded by the curve C. We assume that D is a convex set with (0, 0) ∈ D
and that the curve u(x, y) = 0 is reduced at the point (0, 0).

If we make the substitution
t = u(x, y)

in (3.4), we obtain the bivariate function

F (x, y) = (Bnf)(u(x, y)) = (3.5)

= b0n(u(x, y))h+
n−1∑
j=1

bjn(u(x, y))hj , (x, y) ∈ D.

The function F from (3.5) has the properties

F |∂D = 0, F (0, 0) = h.

It follows that the surfaces z = F (x, y) match the curve u(x, y) = 1, z = 0 (the surfaces
stay on the border of domain D), and the height of the surfaces in the point (0, 0) is h.

Next theorem gives conditions for the monotonicity of the function F .

Theorem 3.3. If the function u is increasing (decreasing) in the direction (d1, d2) then the func-
tion F is decreasing (increasing) in the same direction.

Proof. Taking into account that ∆1hj < 0, j = 0, ..., n− 1 and Theorem 2.1 we have

F (x+ λd1, y + λd2) = (Bnf)(u(x+ λd1, y + λd2)) ≤ (≥)(Bnf)(u(x, y)) = F (x, y)

for every (x, y) ∈ D and every λ ∈ [0, 1]. Thus F is decreasing (increasing) in the direction
(d1, d2). �

We give sufficient conditions for the concavity of the function F .

Theorem 3.4. If ∆2hj ≤ 0, j = 0, ..., n− 2 and the function u is convex then the function F is
concave.

Proof. Using Theorem 2.1 and Theorem 2.2 together with the conditions ∆1hj < 0, j =
0, ..., n− 1 and ∆2hj ≤ 0, j = 0, ..., n− 2 we have

F (λx1+(1−λ)x2, λy1+(1−λ)y2) = (Bnf)(u(λx1 + (1−λ)x2, λy1 + (1− λ)y2))

≥ (Bnf)(λu(x1, y1) + (1− λ)u(x2, y2))

≥ λ(Bnf)(u(x1, y1)) + (1− λ)(Bnf)(u(x2, y2))

= λF (x1, y1) + (1− λ)F (x2, y2))

for every (x1, y1), (x2, y2) ∈ D and every λ ∈ [0, 1].
Thus the function F is concave. �
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4. THE SECOND FAMILY OF SURFACES

Let n ∈ N, n ≥ 2 and h̃i, h ∈ R, i = 1, ..., n− 1 such that

0 = h̃0 < h̃1 < ...h̃n−1 < h̃n = h

and let f̃ : [0, 1] → R be a function with the properties

f̃(0) = 0,

f̃( j
n ) = h̃j , j = 1, ..., n− 1,

f̃(1) = h.

(4.6)

From (2.1) and the conditions (4.6) we get

(Bnf̃)(t) =

n−1∑
j=1

bjn(t)h̃j + bnn(t)h. (4.7)

The function in (4.7) has the properties

(Bnf̃)(0) = 0, (Bnf̃)(1) = h.

Let ũ(x, y) be a bivariate positive function such that the curve C̃ : u(x, y) = 0 is simple
and closed. Let

D̃ = {(x, y) ∈ R2 : 0 ≤ ũ(x, y) ≤ 1}

the domain bounded by the curve C̃. We assume that D̃ is a convex set with (0, 0) ∈ D̃
and that the curve ũ(x, y) = 1 is reduced at the point (0, 0).

If we make the substitution
t = ũ(x, y)

in (4.7) we obtain the bivariate function

F̃ (x, y) = (Bnf̃)(ũ(x, y))

=
n−1∑
j=1

bjn(ũ(x, y))h̃j + bnn(ũ(x, y))h, (x, y) ∈ D̃. (4.8)

The function F̃ from (4.8) has the properties

F̃ |∂D̃ = 0, F̃ (0, 0) = h.

It follows that the surfaces z = F̃ (x, y) match the curve ũ(x, y) = 0, z = 0 (the surfaces
stay on the border of domain D̃), and the height of the surfaces in the point (0, 0) is h.

Next theorems give conditions for monotonicity and concavity of the function F̃ .

Theorem 4.5. If the function ũ is increasing (decreasing) in direction (d1, d2) then the function
F̃ is increasing (decreasing) in the same direction.

Theorem 4.6. If ∆2h̃j ≤ 0, j = 0, ..., n− 2 and the function ũ is concave then the function F̃ is
concave.

The proofs of Theorem 4.5 and Theorem 4.6 are analogous with the proofs of Theorem
3.3 and Theorem 3.4 respectively.
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5. EXAMPLES

Example 5.1. We take

u(x, y) =
x2

a2
+

y2

b2

and the domain bounded by a ellipse

D = {(x, y) ∈ R2 :
x2

a2
+

y2

b2
≤ 1}.

We obtain the surfaces

F (x, y) = b0n

(
x2

a2
+

y2

b2

)
h+

n−1∑
j=1

bjn

(
x2

a2
+

y2

b2

)
hj , (x, y) ∈ D. (5.9)

The first order directional derivative of the function u is

Ddu = 2

(
d1x

a2
+

d2y

b2

)
.

From Theorem 3.3 it follows that if
d1x

a2
+

d2y

b2
≥ 0(≤ 0) then the function F is decreasing

(increasing) in the direction (d1, d2). We have

uxx =
2

a2
> 0, uyy =

2

b2
> 0, u2

xy − uxxuyy = − 4

a2b2
< 0.

Using Remark 2.2 it follows that the function u is convex. From Theorem 3.4 we have that
if ∆2hj ≤ 0, j = 0, ..., n− 2 then the surface F is concave.

In Figure 5.a we plot the surface F for a = 3, b = 2, n = 3 and {h0, h1, h2, h3} =
{4, 3, 1.7, 0}.

Example 5.2. We take

ũ(x, y) =

(
1− x2

a2
− y2

b2

)1/2

.

The function ũ generates the same domain as in Example 5.1

D̃ = {(x, y) ∈ R2 :
x2

a2
+

y2

b2
≤ 1}.

We get the surfaces

F̃ (x, y)=bnn

((
1− x2

a2
− y2

b2

)1/2
)
h+

n−1∑
j=1

bjn

((
1− x2

a2
− y2

b2

)1/2
)
h̃j , (x, y) ∈ D̃. (5.10)

The first order directional derivative of the function ũ is

Ddu = − 1(
1− x2

a2 − y2

b2

)1/2 (d1x

a2
+

d2y

b2

)
.



40 Marius Birou

-2

0

2

-2

-1

0

1

2

0

1

2

3

4

-2

0

2

-2

-1

0

1

2

0

1

2

3

4

(a) z = F (x, y) (b) z = F̃ (x, y)

From Theorem 4.5 it follows that if
d1x

a2
+

d2y

b2
≥ 0(≤ 0) then the function F̃ is decreasing

(increasing) in the direction (d1, d2). We have

ũxx(x, y) =
y2 − b2

a2b2
(
1− x2

a2 − y2

b2

)3/2 < 0, ũyy(x, y) =
x2 − a2

a2b2
(
1− x2

a2 − y2

b2

)3/2 < 0,

ũ2
xy − ũxxũyy = − 1

a2b2
(
1− x2

a2 − y2

b2

)2 < 0.

Using the Remark 2.2 it follows that the function ũ is concave. From Theorem 4.6 we have
that if ∆2h̃j ≤ 0, j = 0, ..., n− 2 then the surface F̃ is concave.

In Figure 5.b we plot the surface F̃ for a = 3, b = 2, n = 3 and {h̃0, h̃1, h̃2, h̃3} =
{0, 1.7, 3, 4}.
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