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The crossing number of P 2
5 × Pn

DANIELA KRAVECOVÁ

ABSTRACT. There are known several exact results concerning crossing numbers of Cartesian products of two
graphs. In the paper, we extend these results by giving the crossing number of the Cartesian product P 2

5 × Pn,
where Pn is the path of length n and P 2

5 is the second power of Pn.

1. INTRODUCTION

The crossing number cr(G) of a simple graph G with vertex set V and edge set E is
defined as the minimum number of crossings among all possible drawings of the graph
G in the plane. A drawing of G is called good if no edge crosses itself, no two edges cross
more than once, no two edges incident with the same vertex cross, and no more than two
edges cross at a point. It is easy to see that a drawing with minimum number of crossings
(an optimal drawing) is always a good drawing.

The investigation on crossing numbers of graphs is a classical and however very dif-
ficult problem. The exact values of crossing numbers are known only for several graph
classes. Most of these results concern Cartesian products of special graphs. (For a def-
inition of Cartesian product G1 × G2, see [1].) Let Cn be the cycle on n vertices and
Pm be the path on m + 1 vertices. The crossing numbers were estimated for Cartesian
products of paths with all graphs of order at most five [7, 9, 10, 11, 13] as well as for
Cartesian products of cycles and all graphs of order at most four [1, 3, 10, 22]. In addi-
tion, the crossing numbers of G×Cn are known for some graphs G on five or six vertices
[4, 17, 14, 19, 21]. In [2] Bokal proved the conjecture given by Jendrol’ and Ščerbová [7] that
cr(K1,n × Pm) = (m − 1)bn2 cb

n−1
2 c. The crossing numbers of Cartesian product of stars

and all graphs of order three or four are given in [1, 7, 9, 10]. For several graphs of order
five, the crossing numbers of Cartesian products with stars are given in [12, 16]. Using
the result of Ho [6], it was recently proved in [5] that the crossing number of the Cartesian
product of the complete tripartite graph K2,2,2 with the star Sn is 6bn2 cb

n−1
2 c+ 6n for all

n ≥ 1. Except for Cartesian products, very recently the crossing numbers of join of two
graphs were studied in [15].

For any positive integer k, the k-power graph of a graph G, denoted by Gk, is the graph
having the same vertices as G, and two vertices of Gk are adjacent if the distance between
the corresponding vertices in G is at most k. In the paper [20], Patil and Krishnnamurthy
established family of graphs for which power graphs have crossing number one. In [23],
the crossing numbers of powers of paths were studied. In [18], the crossing numbers of
Cartesian products for some second power P 2

n of path Pn with cycles are determined. We
start to determine crossing numbers of a new infinite family of graphs, concretely for the
Cartesian product P 2

5 × Pn.
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2. THE GRAPH P 2
5 × Pn

Let P5 be the path of length five. Figure 1(a) shows the power graph P 2
5 . For the

simpler labelling let F denote the graph P 2
5 , in this paper.

We assume n ≥ 1 and consider the graph P 2
5 × Pn = F × Pn in the following way: it

has 6(n+ 1) vertices and edges that are the edges in the n+ 1 copies F i, i = 0, 1, 2, . . . , n,
and in the six paths of length n. Furthermore, we call the former edges red and the latter
ones blue. For i = 0, 1, . . . , n, let ai and di be the vertices of F i of degree two, bi and ci the
vertices of degree three, and pi and qi the vertices of degree four, as shown in Figure 1.
Let Hi, i = 1, 2, . . . , n, denote the subgraph of P 2

5 × Pn = F × Pn containing the vertices
in F i−1 and F i and six edges joining F i−1 to F i.

Figure 1(b) shows the drawing of the graph P 2
5 × Pn with 4(n − 1) crossings. Hence,

we have the upper bound 4(n− 1) for the crossing number of P 2
5 × Pn.
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Fig. 1. The graph P 2
5 , and the Cartesian product P 2

5 × Pn.

For i = 1, 2, . . . , n − 1, let Qi denote the subgraph of P 2
5 × Pn induced on the vertices

of F i−1, F i, and F i+1. Thus, Qi has 27 red edges in F i−1, F i and F i+1 and 12 blue
edges in Hi and Hi+1. Clearly, Qi is isomorphic to P 2

5 × P2. For x = p, q, let Sx be the
subgraph of F = P 2

5 induced on the edges incident with the vertex x. The subgraphs
Sp and Sq contain one common edge pq. So, the graph F consists of Sp, Sq and of two
additional edges ab and cd. In the graph P 2

5 × Pn, let Si
x, x = p, q, be the corresponding

subgraph of F i, i ∈ {0, 1, . . . , n}, and similarly let Hi
x be the corresponding subgraph of

Hi, i ∈ {1, 2, . . . , n}. For x = p, q, let us denote by Qi
Sx

the subgraph of P 2
5 × Pn induced

on the vertices of Si−1
x , Si

x, and Si+1
x .

3. DRAWINGS OF P 2
5 × P2

In this section, we will discuss some properties of drawings of the graph P 2
5 × Pn and

its subgraphs Qi and Qi
Sx

. Let D = D(G) be a good drawing of the graph G. We denote
the number of crossings in D by crD(G). For a subgraph Gi of the graph G, let D(Gi)
be the subdrawing of Gi induced by D. For edge-disjoint subgraphs Gi and Gj of G, we
denote by crD(Gi, Gj) the number of crossings of edges of Gi and edges of Gj , and by
crD(Gi) the number of crossings among edges of Gi in D. In a good drawing D of the
graph G, we say that a cycle C separates the cycles C ′ and C ′′ (the vertices of a subgraph
Gi not containing vertices of C) if C ′ and C ′′ (the vertices of Gi) are contained in different
components of R2 \ C.
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Assume a good drawing D of the graph P 2
5 × P2 = F × P2 = Q1 and consider the

following types of crossings on the edges of Q1:
(1) a crossing of an edge in H1 ∪H2 with an edge in F 1,
(2) a crossing of an edge in F 0 ∪H1 with an edge in F 2 ∪H2,
(3) a self–intersection in F 1,
(4) a crossing of an edge in F 0 with an edge in F 1,
(5) a crossing of an edge in F 2 with an edge in F 1.

In the drawing D, we define the force fD(Q1) of Q1 in the following way: every crossing
of type (1), (2) or (3) contributes the value 1 to fD(Q1) and every crossing of type (4) or (5)
contributes the value 1

2 to fD(Q1). Similarly, for x = p, q, let fD(Q1
Sx
) be the corresponding

force of the subdrawing D(Q1
Sx
) induced from D(Q1).

In the next lemmas, we establish some properties of drawings of the graph Q1 = P 2
5 ×

P2 as well as for its subgraphs G1
Sx

.

Lemma 3.1. Let D = D(Q1) be a good drawing of the graph Q1 = P 2
5 × P2 in which do not

cross two different subgraphs F i and F j , i, j ∈ {0, 1, 2}. Then fD(Q1
Sp
) ≥ 2 and fD(Q1

Sq
) ≥ 2.

Proof. Assume the subgraph Q1
Sp

of the graph Q1. By hypothesis, crD(S0
p , S

1
p) = crD(S0

p , S
2
p) =

crD(S1
p , S

2
p) = 0. The subgraph Q1

Sp
contains a subdivision of the complete bipartite graph

K3,4. As cr(K3,4) = 2 [8], in D(Q1
Sp
) induced by D there are at least two crossings. For

i = 0, 2, the paths piaia1, pibib1, picic1 and piqiq1 correspond to the edges incident with
a vertex of degree four in K3,4. In any good drawing of K3,4 do not cross edges incident
with a common vertex of degree four. So, a possible crossing among the edges of S0

p ∪H1
p

joining the vertex p0 with the vertices of S1
p is not necessary crossing in D(Q1

Sp
). The same

holds for a possible crossing among the edges of S2
p ∪ H2

p joining the vertex p2 with the
vertices of S1

p . Moreover, the edges of S1
p do not cross each other in D(Q1

Sp
). Hence, the

necessary two crossings in D(Q1
Sp
) appear between the edges of H1

p and the edges of H2
p

or between the edges of S1
p and the edges of H1

p ∪ H2
p . Since every of such crossing con-

tributes the value 1 to the force of D(Q1
Sp
), fD(Q1

Sp
) ≥ 2. The similar consideration we

can repeat for the subgraph Q1
Sq

of Q1, and therefore fD(Q1
Sq
) ≥ 2, too. �

Lemma 3.2. Let D = D(Q1) be a good drawing of the graph Q1 = P 2
5 × P2 in which every

subgraphs F i, i = 0, 1, 2, has at most three crossings. Then fD(Q1) ≥ 4.

Proof. Assume that there is a good drawing D = D(Q1) in which every subgraphs F i,
i = 0, 1, 2, of Q1 has at most three crossings on its edges and that fD(Q1) < 4. The
following Claim 1 holds for the drawing D.
Claim 1. crD(F 0, F 1) = crD(F 0, F 2) = crD(F 1, F 2) = 0.

Proof of Claim 1. Let us assume that F 0 and F 2 cross each other in D. If two 2-connected
vertex-disjoint graphs F i and F j cross, then they cross at least twice. Thus, crD(F 0, F 2) ≥
2 and, in the good drawing D, F 0 separates the vertices of F 2 or F 2 separates the vertices
of F 0. Without loss of generality, let F 2 separates the vertices of F 0. The restriction of
at most three crossings on the edges of every F i, i = 0, 1, 2, forces that crD(F 0, F 1) =
crD(F 1, F 2) = 0. But, in this case, F 2 is crossed by at least one edge of H1 joining a
vertex of F 0 inside F 2 with the corresponding vertex of F 1. Hence, crD(F 0, F 2) = 2 and
the edges of F 2 are crossed three times. These three crossings contribute 3 to fD(Q1).
It is easy to verify that crD(F 0, F 2) = 2 only if the subgraph F 2 separates a vertex of
degree two of F 0 from the other five vertices of F 0. If the separated vertex of F 0 is the
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vertex a0, then F 2 is crossed by all three edges incident with the vertex a0. Consider now
the subdrawing D(Q1

Sq
) of Q1

Sq
induced from D. None of three considered crossings on

the edges of F 2 appears in D(Q1
Sq
). On the other hand, two different subgraphs Si

q and
Sj
q , i, j ∈ {0, 1, 2}, do not cross in D(Q1

Sq
). By Lemma 3.1, fD(Q1

Sq
) ≥ 2 and, together

with three crossings on the edges incident with the vertex a0, we have fD(Q1) ≥ 5. This
contradicts the assumption of fD(Q1) < 4. The same contradiction is obtained when F 2

separates the vertex d0 from the other vertices of F 0 and therefore, crD(F 0, F 2) = 0.
Assume now that F 1 is crossed in D by F 0 or F 2. Without loss of generality, let

crD(F 0, F 1) 6= 0. Hence, crD(F 0, F 1) ≥ 2 and crD(F 1, F 2) = crD(F 0, F 2) = 0. We
know that if two vertex-disjoint subgraphs F 0 and F 1 cross each other in D, then at least
one of them separates the vertices of the other. Consider first that F 0 separates the ver-
tices of F 1. In this case, at least one edge of H2 joining a separated vertex of F 1 with the
corresponding vertex of F 2 crosses F 0, too. So, crD(F 0, F 1) = 2 and the subgraph F 0

separates a vertex of degree two of F 1 from the other five vertices of F 1. If the separated
vertex of F 1 is the vertex a1, then F 0 is crossed by all three edges of F 1∪H2 incident with
the vertex a1. These three crossings contribute the value 2 to fD(Q1). The same arguments
as in the previous paragraph states that in the subdrawing D(Q1

Sq
) of Q1

Sq
induced by D,

do not cross two different Si
q and Sj

q and that, using Lemma 3.1, fD(Q1
Sq
) ≥ 2. Together

with the considered three crossings on the edges incident with the vertex a1, we have
that fD(Q1) ≥ 4, a contradiction. The same arguments can be used for the case when F 0

separates the vertex d1 from the other vertices of F 1.
Hence, the only vertices of F 0 are separated by F 1. This forces that F 0 is crossed

by only one edge of F 1, otherwise F 0 separates the vertices of F 1. If crD(F 0, F 1) = 2,
then a vertex of degree two of F 0 is separated from the other vertices of F 0. These two
crossings contribute 1 to fD(Q1). Assume that F 1 separates the vertex a0 from the other
five vertices of F 0. Let us denote by Q1

−a the subgraph of Q1 obtained by deleting of all
edges incident with the vertices a0, a1, and a2. Similarly, let F 0

−a, F 1
−a, F 2

−a, H1
−a, and

H2
−a be the corresponding subgraphs of F 0, F 1, F 2, H1, and H2, respectively. In the

subdrawing D(Q1
−a) induced by D the subgraphs F 0

−a, F 1
−a, and F 2

−a do not cross each
other. Lemma 3.1 implies that the subdrawing D(Q1

Sq
) of D(Q1

−a) contributes at least 2
to fD(Q1). Hence, fD(Q1) ≥ 3. The edges b1p1, p1c1, and c1d1 of Q1

−a are not included
in D(Q1

Sq
). Thus, they do not cross each other and also they do not cross the edges of

S1
q , otherwise this crossing adds at least 1 to fD(Q1) and fD(Q1) ≥ 4. This implies that

the edges of F 1
−a do not cross each other in D(Q1

−a). Moreover, as the edges of F 1 are
crossed twice by the edges incident with the vertex a0 in D(Q1), at least one of H1

−a and
H2
−a cannot cross F 1

−a in D(Q1
−a). Without loss of generality, let crD(F 1

−a, H
1
−a) = 0.

In D(Q1
−a), the subgraph F 0

−a is placed in the region with all five vertices of F 1
−a in the

view of the subdrawing D(F 1
−a). This is shown in Figure 2(a), where possible crossings

among the edges of F 0
−a ∪ H1

−a are considered inside the dotted cycle. Hence, in the
subdrawing D(F 0

−a∪H1
−a∪F 1

−a) there are at most two vertices of F 1
−a on the boundary of

a region outside F 1
−a. Inside F 1

−a there are at most three vertices of F 1
−a on the boundary

of every region. Assume now the subdrawing D(Q1
−a). The restriction of at the at most

three crossings on the edges of F 1 forces that F 2
−a is placed outside F 1

−a in D(Q1
−a). As

crD(F 2
−a, F

0
−a) = crD(F 2

−a, F
1
−a) = 0 the only edges of H1

−a of the subgraph F 0
−a ∪H1

−a ∪
F 1
−a can be crossed by F 2

−a in D(Q1
−a). If crD(F 2

−a, H
1
−a) = 0, then at least three edges

of H2
−a cross in the edges of F 0

−a ∪ H1
−a ∪ F 1

−a. These three crossings, together with two
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crossings between F 0 and F 1, enforce fD(Q1) ≥ 4, a contradiction. If F 2
−a is placed in two

neighbouring regions of D(F 0
−a ∪ H1

−a ∪ F 1
−a), then crD(F 2

−a, H
1
−a) ≥ 2 and at least two

edges of H2
−a cross in the edges of F 0

−a∪H1
−a∪F 1

−a. Hence, fD(Q1) ≥ 4. If F 2
−a is placed in

more than two neighbouring regions of D(F 0
−a∪H1

−a∪F 1
−a), then crD(F 2

−a, H
1
−a) ≥ 4 and

fD(Q1) ≥ 4 again. The same contradiction is obtained also in the case when F 1 separates
the vertex d0 from the other five vertices of F 0.

c1

c1

b1

b1

1

a1

1d
1d

1
p 1

p

1q
1q

(a) (b)

F 0
-a

F F
F

2 2

(c)

Fig. 2. The subdrawing of F 0
−a ∪H1

−a ∪ F 1
−a (a), the subdrawing of F 1 ∪H2 ∪ F 2 (b), and

the schematic subdrawing of F 1 ∪H2 ∪ F 2 without crossed edge of H2

(c).

Thus, the only possibility for crossings between F 0 and F 1 is that one edge of F 1 is
crossed three times by the edges of F 0. In this case, crD(F 1) = 0 and crD(F 1, H2 ∪
F 2) = 0. The unique such subdrawing of F 1 ∪ H2 ∪ F 2 is shown in Figure 2(b), where
possible crossings among the edges of H2 ∪ F 2 are considered inside the dotted cycle.
The crossings between F 0 and F 1 contribute at least 3

2 to fD(Q1). It is easy to verify that
if F 0 crosses only one edges of F 1, then F 0 is placed in D in two neighbouring regions
of D(F 1 ∪ H2 ∪ F 2) with at most three vertices of F 1 on the boundary of evry region.
So, in D, at least three edges of H1 cross the edges of H2 ∪ F 2 and every such crossing
contributes 1 to fD(Q1). Thus, fD(Q1) ≥ 4 again. This proves Claim 1.

By hypothesis, the following Claim 2 holds for the drawing D.
Claim 2. The edges of the subgraph F 1 cross each other in D.
Proof of Claim 2. Assume that crD(F 1) = 0. The subdrawing D(F 1) induced by D divides
the plane into one hexagonal and four triangular regions as shown in Figure 1(a). By
Claim 1, crD(F 0, F 1) = crD(F 1, F 2) = 0. If some of F 0 and, F 2, say F 0, is placed in some
of triangular regions of the subdrawing D(F 1), then crD(H1, F 1) ≥ 3 and F 2 is placed in
D in the hexagonal region of D(F 1) with crD(H2, F 1) = 0 as shown in Figure 2(b). It is
easy to verify that if the edges of H1 cross F 1 only three times, then they cross the edges
of H2 ∪ F 2, too. This contradicts our assumption that fD(Q1) < 4.

Thus, both subgraphs F 0 and F 2 are placed in D in the hexagonal region of the sub-
drawing D(F 1) and, by the assumption fD(Q1) < 4, at most one of H1 and H2 crosses
F 1 more than once. Without loss of generality, let crD(H2, F 1) ≤ 1. Consider first that
crD(H2, F 1) = 0. In this case, the edges of F 2∪H2 divides the hexagonal region of D(F 1)
in such a way that on the boundary of every subregion there are at most two vertices of
F 1, see Figure 2(b). If F 0 is placed in D in some of these regions, then the edges of H1

cross the edges of F 1 ∪H2 ∪ F 2 at least four times and fD(Q1) ≥ 4. If F 0 is placed in two
regions bounded by some edge of H2, then crD(H2, F 0) ≥ 2 and H1 crosses the edges
of F 1 ∪ H2 ∪ F 2 more than once. Hence, fD(Q1) ≥ 4. If F 0 is placed in more than two
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regions, then crD(H2, F 0) ≥ 4, which contradicts the assumption of fD(Q1) < 4 again.
Thus, crD(H2, F 1) = 1. Consider now the subdrawing of F 1∪H2∪F 2 without the edge of
H2 which crosses F 1. The schematic subdrawing of this subgraph without crossed edge
of P 2 is shown in Figure 2(c). Outside F 1 there is only one region with three vertices of
F 1 on its boundary. The similar analysis as above confirms that, in D, any placing of F 0

outside F 1 forces at least three crossings between F 0∪H1 and F 1∪H2∪F 2. This, together
with crD(H2, F 1) = 1, implies that fD(Q1) ≥ 4, and the proof of Claim 2 is done.

In the considered drawing D of Q1 with fD(Q1) < 4, none of F 0 and F 2 separates the
other subgraphs F i and F j . Otherwise, if F 0 separates F 1 and F 2, then crD(F 0, H2) ≥ 6,
and if F 2 separates F 0 and F 1, then crD(F 2, H1) ≥ 6. All these crossings are counted in
fD(Q1). In the rest of the proof we discuss the possible crossings between edges of H1

and edges of H2. We know that none of the subgraphs F 0 and F 2 separates F 1 from the
other and, by Claim 1, F 0 and F 2 do not cross in D.

For the case crD(H1, H2) = 0, the unique subdrawing of F 0 ∪H1 ∪H2 ∪ F 2 induced
from D is shown in Figure 3(a), where possible crossings among the edges of F 0 ∪H1 are
considered in the dotted cycle left and possible crossings among the edges of F 2 ∪H2 are
considered in the dotted cycle right. It is easy to verify that, in D, the edges of F 1 incident
with the vertex p1 cross the edges of H1∪H2 at least twice (crD(F 1, F 0∪F 2) = 0) and that
the 3-cycle of F 1 induced on the vertices q1, c1, and d1 crosses H1∪H2 at least once. These
crossings, together with the internal crossing of F 1, force fD(Q1) ≥ 4, a contradiction.

(a) (b)

F
0

F
0

F
0F

2
F

2
F

2

(c)

Fig. 1. The possible subdrawings of F 0 ∪H1 ∪H2 ∪ F 2.

Assume now that crD(H1, H2) = 1. In Figure 3(b) there is the unique such drawing
with three vertices of F 1 on the boundary of one region and with at most two vertices of
F 1 on the boundaries of the other regions. So, if the 3-cycle induced on the vertices q1, c1,
and d1 does not cross H1∪H2 in D, then it is placed in the region of D(F 0∪H1∪H2∪F 2)
with three vertices of F 1 on its boundary. But, in this case, the vertex p1 is not on the
boundary of the region with three vertices of F 1 and S1

p crosses the edges of H1 ∪H2 at
least twice. Hence, fD(Q1) ≥ 4. If the 3-cycle induced on the vertices q1, c1, and d1 crosses
H1 ∪H2 in D, then also crD(S1

p , H
1 ∪H2) 6= 0 and fD(Q1) ≥ 4 again.

The last possibility is that crD(H1, H2) ≥ 2. Thus, on the edges of H1 ∪ H2 there
are at least two crossings counted in fD(Q1). The assumption of fD(Q1) < 4 forces that
crD(S1

p , H
1 ∪ H2) = 0, and this is possible only if in D(F 0 ∪ H1 ∪ H2 ∪ F 2) there is a

region with five vertices of F 1 on its boundary. The drawing in Figure 3(c) shows that, in
such a case, crD(F 0 ∪H1, F 2 ∪H2) ≥ 3 and therefore, fD(Q1) ≥ 4. This proves that, by
the assumption of Lemma 3.2, there is no good drawing of Q1 with fD(Q1) < 4, and the
proof is done. �
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4. THE CROSSING NUMBER OF P 2
5 × Pn

It is easy to verify that the graph P 2
5 × P1 is planar. The aim of this section is to give

the crossing number of the graph P 2
5 × Pn. First we establish the crossing number of the

graph P 2
5 × P2.

Lemma 4.3. cr(P 2
5 × P2) = 4.

Proof. If there is a good drawing D = D(P 2
5 ×P2) with less than three crossings, then every

subgraph F i, i = 0, 1, 2, is crossed at most three times. Thus, by Lemma 3.2, fD(Q1) ≥ 4.
As the number of crossings in D is not less than the force of D, the proof is done. �

The next Lemma 4.4 is necessary for proving the main result of this paper.

Lemma 4.4. If D is a good drawing of P 2
5 × Pn, n ≥ 2, in which every copy of P 2

5 has at most
three crossings on its edges, then D has at least 4(n− 1) crossings.

Proof. In the drawing D of the graph P 2
5 × Pn, we define the total force of the drawing as

the sum of fD(Qi) of all subdrawings D(Qi), i = 1, 2, . . . , n−1, induced by D. It is readily
seen that, in D, every crossing of types (1), (2), and (3) appears only on the edges of the
subgraph Qi. For i = 2, 3, . . . , n − 1, every crossing of type (4) in Qi appears and also in
Qi−1 as a crossing of type (5). Similarly, for i = 1, 2, . . . , n− 2, every crossing of type (4) in
Qi appears and also in Qi+1 as a crossing of type (4). As every crossing of type (1), (2) or
(3) contributes the value 1 to fD(Qi) and every crossing of type (4) or (5) contributes the

value
1

2
to fD(Qi), it is easy to see that the number of crossings in the drawing D is not

less then the total force of the drawing. By Lemma 3.2, the total force of the drawing D is
at least 4(n− 1). Hence, in D there are at least 4(n− 1) crossings. �

Theorem 4.1. For n ≥ 2, cr(P 2
5 × Pn) = 4(n− 1).

Proof. The drawing in Figure 1(b) shows that cr(P 2
5 × Pn) ≤ 4(n− 1) for n ≥ 2. We prove

the reverse inequality by induction on n. By Lemma 4.3, cr(P 2
5 × P2) = 4, so the result is

true for n = 2. Assume that it is true for n = k, k ≥ 2, and suppose that there is a drawing
of P 2

5 ×Pk+1 with fewer than 4((k+1)−1)) = 4k crossings. By Lemma 4.4, some F i must
then be crossed at least three times. By the removal of all edges of this F i, we obtain a
subdivision of P 2

5 × Pk with fewer than 4(k − 1) crossings or the subgraph isomorphic to
P 2
5 ×Pk with fewer than 4(k−1) crossings. This contradicts the induction hypothesis. �
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[15] Klešč, M., The join of graphs and crossing numbers, Electronic Notes in Discrete Math. 28 (2007), 349–355
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