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Ulam-Hyers stability for partial differential equations

VASILE L. LAZĂR

ABSTRACT. Using the weakly Picard operator technique, we will present some Ulam-Hyers stability results
for some partial differential equations.

1. INTRODUCTION

The Ulam-Hyers stability (Ulam-Hyers, Ulam-Hyers-Rassias, Ulam-Hyers-Bourgin,...)
of various functional equations have been investigated by many authors (see [1], [3], [5],
[6], [9]-[11], [18], [22], [23]). There are some results for differential equation ([12], [14], [15],
[17], [29]), integral equation ([13],[28]), and for difference equation ([2], [20], [21]).

The aim of this paper is to present Ulam-Hyers stability results for some problems
associated to partial differential equations.

2. ULAM-HYERS STABILITY VIA WEAKLY PICARD OPERATORS

We will present first some notions and results from the weakly Picard operator the-
ory (see [26]; see also [32], pp. 119-126).

Let (X, d) be a metric space and f : X → X be an operator. We denote by Ff := {x ∈
X | f(x) = x}, the fixed point set of the operator f . By definition, f is a weakly Picard
operator if the sequence of successive approximations, (fn(x))n∈N converges for all x ∈ X
and the limit (which may depend on x) is a fixed point of f .

If f is a weakly Picard operator, then we consider the operator f∞ : X → X defined
by f∞(x) := lim

n→∞
fn(x). It is obvious that f∞(X) = Ff . Moreover, f∞ is a set retraction

of X to Ff .
If f is a weakly Picard operator and Ff = {x∗}, then by definition f is a Picard operator.

In this case f∞ is the constant operator, f∞(x) = x∗, for all x ∈ X . The following class of
weakly Picard operators is very important in our considerations.

Definition 2.1. Let (X, d) be a metric space and let ψ : R+ → R+ be an increasing function,
continuous in 0 and with ψ(0) = 0. An operator f : X → X is said to be a ψ-weakly Picard
operator if it is weakly Picard and

d(x, f∞(x)) ≤ ψ(d(x, f(x))), for all x ∈ X.

In the case that ψ(t) = ct, for t ∈ R (for some c > 0), then we say that f is a c-weakly
Picard operator.
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Example 2.1. Let (X, d) be a complete metric space and f : X → X an operator with
closed graphic. We suppose that f is graphic α-contraction, i.e.,

d(f2(x), f(x)) ≤ αd(x, f(x)), for all x ∈ X.
Then f is a c-weakly Picard operator, with c = (1− α)−1.

Example 2.2. Let (X, d) be a complete metric space, ϕ : R+ → R+ a function and f : X →
X an operator with closed graphic. We suppose that:

(i) f is a ϕ-Caristi operator, i.e., d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)), for all x ∈ X;
(ii) there exists c > 0 such that ϕ(x) ≤ cd(x, f(x)), for all x ∈ X.

Then f is a c-weakly Picard operator.

On the other hand, by the analogy with the notion of the Ulam-Hyers stability in the
theory of functional equation (see [10], [11], [3], [1], [5], [6]-[9], [18], [22], [23],...) we
consider the following concept.

Definition 2.2. Let (X, d) be a metric space and f : X → X be an operator. By definition,
the fixed point equation

x = f(x) (2.1)
is generalized Ulam-Hyers stable if there exists ψ : R+ → R+ increasing, continuous in 0
and ψ(0) = 0 such that for each ε > 0 and each solution y∗ of the inequation

d(y, f(y)) ≤ ε (2.2)

there exists a solution x∗ of the equation (2.1) such that

d(y∗, x∗) ≤ ψ(ε).

If, in particular, there exists c > 0 such that ψ(t) := ct, for each t ∈ R+, the equation (2.1)
is said to be Ulam-Hyers stable.

The following results are important for our further considerations.

Lemma 2.1 (I. A. Rus [30]). If f is a ψ-weakly Picard operator, then the fixed point equation
(2.1) is generalized Ulam-Hyers stable.

Lemma 2.2 (I. A. Rus [30]). Let (X, d) be a metric space, f : X → X be operator andX =
⋃
i∈I

Xi

a partition of X such that f(Xi) ⊂ Xi, ∀ i ∈ I . If the equation (2.1) is Ulam-Hyers stable in each
(Xi, d), i ∈ I , then it is Ulam-Hyers stable in (X, d).

3. ULAM-HYERS STABILITY FOR PARTIAL DIFFERENTIAL EQUATIONS

We will consider first the Dirichlet problem associated to a nonlinear elliptic equa-
tion.

Let Ω be a bounded domain in Rn with sufficiently smooth border ∂Ω. Consider the
following problem:

∆u = f(x, u(x)) (3.3)

u|∂Ω = 0, (3.4)

where f is a continuous function on Ω× R.
Throught this section we will denote by || · ||C the supremum norm in C(Ω,R).
The following auxiliary result is well-known in the theory of partial differential equa-

tions, see for example I. A. Rus [25], page 212.
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Lemma 3.3. In the above conditions, the Dirichlet problem (3.3) + (3.4) is equivalent to the
following integral equation

u(x) = −
∫

Ω

G(x, s)f(s, u(s))ds (3.5)

where G denotes the usual Green function correspoonding to the Laplace operator.

We recall now some known notions and a fixed point result.
Recall that ϕ : R+ → R+ is said to be a comparison function (see [31]) if it is increasing

and ϕk(t) → 0, as k → +∞. As a consequence, we also have ϕ(t) < t, for each t > 0,
ϕ(0) = 0 and ϕ is continuous in 0.

Theorem 3.1 (J. Matkowski [16], I. A. Rus [31]). Let (X, d) be a complete metric space and
f : X → X be a ϕ-contraction. Then Ff = {x∗} and fn(x0) → x∗ when n → ∞, for all
x0 ∈ X , i.e., f is a Picard operator.

Notice that, if in the above result, we additionally suppose that the function ψ : R+ →
R+, ψ(t) := t−ϕ(t) is strictly increasing and onto, then the operator f is ψ-weakly Picard.
Indeed, we have d(x, x∗) ≤ d(x, f(x)) + d(f(x), f(x∗)) ≤ d(x, f(x)) + ϕ(d(x, x∗)). Hence

d(x, x∗) ≤ ψ−1(d(x, f(x)), for each x ∈ X.
Our first main result is the following existence, uniqueness and stability result for the

Dirichlet problem (3.3) + (3.4).

Theorem 3.2. Let Ω be a bounded domain in Rn such that its border ∂Ω is sufficiently smooth.
Denote by G denotes the usual Green function correspoonding to the Laplace operator. Suppose
that:

(a) f ∈ C(Ω× R,R);

(b) there exist p ∈ C(Ω,R+) with sup
x∈Ω

∫
Ω

G(x, s)p(s)ds ≤ 1 and a comparison function

ϕ : R+ → R+, such that for each s ∈ Ω and each u, v ∈ R we have that

|f(s, u)− f(s, v)| ≤ p(s)ϕ(|u− v|).

Then, the Dirichlet problem (3.3) + (3.4) has a unique solution u∗ ∈ C(Ω,R). Moreover, if the
function ψ : R+ → R+, ψ(t) := t − ϕ(t) is strictly increasing and onto, then the Dirichlet
problem (3.3) + (3.4) is generalized Ulam-Hyers stable with function ψ−1, i.e., for each ε > 0 and
for each ε-solution y∗ of the Dirichlet problem (3.3) + (3.4) we have that

|u∗(x)− y∗(x)| ≤ ψ−1(ε), for each x ∈ Ω.

Proof. Consider the operator A : C(Ω,R)→ C(Ω,R) given by

Au(x) := −
∫

Ω

G(x, s)f(s, u(s))ds.

Using this notation, by Lemma 3.3, the Dirichlet problem (3.3) + (3.4) is equivalent with
the fixed point equation u = Au. Next we have:
|Au(x)−Av(x)| ≤

∫
Ω
|G(x, s)||f(s, u(s))−f(s, v(s))|ds ≤

∫
Ω
|G(x, s)|p(s)ϕ(|u(s)−v(s)|)ds ≤

ϕ(||u− v||C)
∫

Ω
G(x, s)p(s)ds ≤ ϕ(||u− v||C).

Hence, by taking the supremum over x ∈ Ω we get that

||Au−Av||C ≤ ϕ(||u− v||C), for all u, v ∈ C(Ω,R).

Now the first conclusion follows from Theorem 3.1.
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For the second conclusion, let ε > 0 and let y∗ ∈ C(Ω,R) be an ε-solution for (3.3) +
(3.4), i.e.,

|y∗(x) +

∫
Ω

G(x, s)f(s, y∗(s))ds| ≤ ε, for each x ∈ Ω.

Since A is a ψ-weakly Picard operator, the second conclusion follows from Lemma 2.1,
i.e.,

|y∗(x)− u∗(x)| ≤ ψ−1(ε), for each x ∈ Ω.

�

Remark 3.1. Theorem 3.2 generalizes some known results in the literature, see Theorem
16.2.1 in I. A. Rus [25].

A second result concerns with the case of a Dirichlet problem for a partial differential
equation with modified argument.

Consider now the following problem:

∆u = f(x, u(g(x))) (3.6)

u|∂Ω = 0 (3.7)

where f is a continuous function on Ω× R and g ∈ C(Ω,Ω).

Theorem 3.3. Let Ω be a bounded domain in Rn such that its border ∂Ω is sufficiently smooth.
Denote by G denotes the usual Green function corresponding to the Laplace operator. Suppose
that:

(a) f ∈ C(Ω× R,R) and g ∈ C(Ω,Ω);

(b) there exist p ∈ C(Ω,R+) with sup
x∈Ω

∫
Ω

G(x, s)p(s)ds ≤ 1 and a comparison function

ϕ : R+ → R+ such that, for each s ∈ Ω and each u, v ∈ R, we have that

|f(s, u)− f(s, v)| ≤ p(s)ϕ(|u− v|);
Then, the Dirichlet problem (3.6) + (3.7) has a unique solution u∗ ∈ C(Ω,R). Moreover, if the
function ψ : R+ → R+, ψ(t) := t − ϕ(t) is strictly increasing and onto, then the Dirichlet
problem (3.6) + (3.7) is generalized Ulam-Hyers stable with function ψ−1, i.e., for each ε > 0 and
for each ε-solution y∗ of the Dirichlet problem (3.6) + (3.7) we have that

|u∗(x)− y∗(x)| ≤ ψ−1(ε), for each x ∈ Ω.

Proof. Consider the operator A : C(Ω,R)→ C(Ω,R) given by

Au(x) := −
∫

Ω

G(x, s)f(s, u(g(s)))ds.

Then, the Dirichlet problem (3.6) + (3.7) is equivalent with the fixed point equation u =
Au.

Next we have:

|Au(x)−Av(x)| ≤
∫

Ω

|G(x, s)||f(s, u(g(s)))− f(s, v(g(s)))|ds ≤∫
Ω

|G(x, s)|p(s)ϕ(|u(g(s))− v(g(s))|)ds ≤ ϕ(||u− v||C)

∫
Ω

G(x, s)p(s)ds ≤ ϕ(||u− v||C).

Hence, by taking the supremum over x ∈ Ω we get that

||Au−Av||C ≤ ϕ(||u− v||C), for all u, v ∈ C(Ω,R).
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Now the first conclusion follows from Theorem 3.1.
For the second conclusion, let ε > 0 and let y∗ ∈ C(Ω,R) be an ε-solution for (3.6) +

(3.7), i.e.,

|y∗(x) +

∫
Ω

G(x, s)f(s, y∗(g(s)))ds| ≤ ε, for each x ∈ Ω.

Since A is a ψ-weakly Picard operator, the second conclusion follows from Lemma 2.1,
i.e.,

|y∗(x)− u∗(x)| ≤ ψ−1(ε), for each x ∈ Ω.

�
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