CREAT. MATH. INFORM. Online version at http://creative-mathematics.ubm.ro/
21 (2012), No. 1, 73-78 Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Ulam-Hyers stability for partial differential equations

VASILE L. LAZAR

ABSTRACT. Using the weakly Picard operator technique, we will present some Ulam-Hyers stability results
for some partial differential equations.

1. INTRODUCTION

The Ulam-Hyers stability (Ulam-Hyers, Ulam-Hyers-Rassias, Ulam-Hyers-Bourgin,...)
of various functional equations have been investigated by many authors (see [1], [3], [5],
[6], [9]-[11], [18], [22], [23]). There are some results for differential equation ([12], [14], [15],
[17], [29]), integral equation ([13],[28]), and for difference equation ([2], [20], [21]).

The aim of this paper is to present Ulam-Hyers stability results for some problems
associated to partial differential equations.

2. ULAM-HYERS STABILITY VIA WEAKLY PICARD OPERATORS

We will present first some notions and results from the weakly Picard operator the-
ory (see [26]; see also [32], pp. 119-126).

Let (X, d) be a metric space and f : X — X be an operator. We denote by Fy := {z €
X | f(z) = x}, the fixed point set of the operator f. By definition, f is a weakly Picard
operator if the sequence of successive approximations, (™ (z))nen converges forall z € X
and the limit (which may depend on z) is a fixed point of f.

If f is a weakly Picard operator, then we consider the operator f* : X — X defined
by f*(z) := nl;rrgo f™(z). It is obvious that f>°(X) = Fy. Moreover, f* is a set retraction
of X to F f-

If f is a weakly Picard operator and Fy = {z*}, then by definition f is a Picard operator.
In this case > is the constant operator, f*°(z) = z*, for all z € X. The following class of
weakly Picard operators is very important in our considerations.

Definition 2.1. Let (X, d) be a metric space and let ¢) : R — R be an increasing function,
continuous in 0 and with ¢(0) = 0. An operator f : X — X is said to be a ¢-weakly Picard
operator if it is weakly Picard and

d(z, () < ¢(d(z, f(x))), forallx € X.

In the case that ¢(t) = ct, for t € R (for some ¢ > 0), then we say that f is a c-weakly
Picard operator.
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Example 2.1. Let (X,d) be a complete metric space and f : X — X an operator with
closed graphic. We suppose that f is graphic a-contraction, i.e.,

d(f?(z), f(x)) < ad(z, f(2)), forall z € X.
Then f is a c-weakly Picard operator, with ¢ = (1 — a) L.

Example 2.2. Let (X, d) be a complete metric space, ¢ : Ry — Ry afunctionand f: X —
X an operator with closed graphic. We suppose that:

(i) f is a -Caristi operator, i.e., d(z, f(z)) < ¢(z) — ¢(f(z)), forall z € X;

(ii) there exists ¢ > 0 such that ¢(z) < cd(z, f(z)), forallz € X.
Then f is a c-weakly Picard operator.

On the other hand, by the analogy with the notion of the Ulam-Hyers stability in the
theory of functional equation (see [10], [11], [3], [1], [5], [6]-[9], [18], [22], [23],...) we
consider the following concept.

Definition 2.2. Let (X, d) be a metric space and f : X — X be an operator. By definition,
the fixed point equation

x = f(z) (2.1)
is generalized Ulam-Hyers stable if there exists ¢ : R — R, increasing, continuous in 0
and ¢(0) = 0 such that for each ¢ > 0 and each solution y* of the inequation

d(y, f(y)) <e (2.2)
there exists a solution z* of the equation (2.1) such that

d(y*,z*) < 1(e).
If, in particular, there exists ¢ > 0 such that ¢ (t) := ct, for each ¢ € R, the equation (2.1)
is said to be Ulam-Hyers stable.

The following results are important for our further considerations.

Lemma 2.1 (I. A. Rus [30]). If f is a y-weakly Picard operator, then the fixed point equation
(2.1) is generalized Ulam-Hyers stable.

Lemma 2.2 (I. A. Rus [30]). Let (X, d) be a metric space, f : X — X be operator and X = U X;
iel

a partition of X such that f(X;) C X;, Vi € I. If the equation (2.1) is Ulam-Hyers stable in each

(Xi,d), ¢ € I, then it is Ulam-Hyers stable in (X, d).

3. ULAM-HYERS STABILITY FOR PARTIAL DIFFERENTIAL EQUATIONS

We will consider first the Dirichlet problem associated to a nonlinear elliptic equa-
tion.
Let © be a bounded domain in R™ with sufficiently smooth border 0. Consider the
following problem:

Au = f(x,u(x)) (3.3)
U|3Q = 0, (34)

where f is a continuous function on Q x R.

Throught this section we will denote by || - ||¢ the supremum norm in C(Q, R).

The following auxiliary result is well-known in the theory of partial differential equa-
tions, see for example I. A. Rus [25], page 212.
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Lemma 3.3. In the above conditions, the Dirichlet problem (3.3) + (3.4) is equivalent to the
following integral equation

u(w) = = [ Gla5)f(s,u(s))ds (35)
Q
where G denotes the usual Green function correspoonding to the Laplace operator.

We recall now some known notions and a fixed point result.

Recall that ¢ : R4 — Ry is said to be a comparison function (see [31]) if it is increasing
and ©*(t) — 0, as k — +o00. As a consequence, we also have ((t) < t, for each t > 0,
©(0) = 0 and ¢ is continuous in 0.

Theorem 3.1 (J. Matkowski [16], I. A. Rus [31]). Let (X, d) be a complete metric space and
f X — X bea p-contraction. Then Fy = {z*} and f"(xz¢) — z* when n — oo, for all
xo € X, ie., fisa Picard operator.

Notice that, if in the above result, we additionally suppose that the function ¢ : Ry —
R4, 9(t) :=t — (1) is strictly increasing and onto, then the operator f is ¢-weakly Picard.
Indeed, we have d(z, z*) < d(z, f(z)) + d(f(x), f(z*)) < d(z, f(z)) + ¢(d(z,2*)). Hence

d(z,2*) <+~ (d(z, f(x)), for eachz € X.

Our first main result is the following existence, uniqueness and stability result for the
Dirichlet problem (3.3) + (3.4).

Theorem 3.2. Let Q) be a bounded domain in R™ such that its border 0S) is sufficiently smooth.
Denote by G denotes the usual Green function correspoonding to the Laplace operator. Suppose
that:

(a) f € C(Q x R,R);

(b) there exist p € C(Q,R,) with sup/ G(z,s)p(s)ds < 1 and a comparison function

z€QJQ
¢ : Ry — Ry, such that for each s € Q and each u,v € R we have that
|f(s,u) = f(s,0)] < ps)p(u— o).

Then, the Dirichlet problem (3.3) + (3.4) has a unique solution u* € C(Q,R). Moreover, if the
function ¢ : Ry — Ry, ¢(t) := t — @(t) is strictly increasing and onto, then the Dirichlet
problem (3.3) + (3.4) is generalized Ulam-Hyers stable with function ¢—*, i.e., for each ¢ > 0 and
for each e-solution y* of the Dirichlet problem (3.3) + (3.4) we have that

|u* () — y* (z)| < ~(e), for each x € Q.
Proof. Consider the operator A : C(Q,R) — C(£, R) given by

Au(z) = —/QG(:C,s)f(s,u(s))ds.

Using this notation, by Lemma 3.3, the Dirichlet problem (3.3) + (3.4) is equivalent with
the fixed point equation u = Au. Next we have:

|[Au(a)—Av(@)| < [o |Gz, 8)||f (5, u(s))=f(s,0(s))lds < [ |G(x,5)|p(s)(Jus)—v(s)[)ds <
o(llu=vlle) Jo Glx, s)p(s)ds < o(llu = vllo).
Hence, by taking the supremum over = € () we get that
[|[Au — Av||c < o(||u — v||c), forall u,v € C(Q,R).

Now the first conclusion follows from Theorem 3.1.
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For the second conclusion, let ¢ > 0 and let y* € C(Q2,R) be an e-solution for (3.3) +
(3.4),1ie

ly* (z) + / G(z,s)f(s,y*(s))ds| < e, foreach x € Q.
Q
Since A is a 1-weakly Picard operator, the second conclusion follows from Lemma 2.1,
ie.,
ly*(z) — u*(z)| < ¢~ (), for each x € Q.
O

Remark 3.1. Theorem 3.2 generalizes some known results in the literature, see Theorem
16.2.1in I. A. Rus [25].

A second result concerns with the case of a Dirichlet problem for a partial differential
equation with modified argument.
Consider now the following problem:

Au = f(z, u(g(z))) 36)
U|BQ =0 (3.7)
where f is a continuous function on Q x R and g € C(Q, Q).

Theorem 3.3. Let €2 be a bounded domain in R™ such that its border 0SY is sufficiently smooth.
Denote by G denotes the usual Green function corresponding to the Laplace operator. Suppose
that:
(a) f e CAxR,R)and g € C(Q,Q);
(b) there exist p € C(Q,Ry) with sup | G(z,s)p(s)ds < 1 and a comparison function
zeQ /2
¢ : Ry — Ry such that, for each s € Q and each u,v € R, we have that

[f(s,u) = f(s,0)] < p(s)e(lu —v]);

Then, the Dirichlet problem (3.6) + (3.7) has a unique solution u* € C(Q,R). Moreover, if the
function vp : Ry — Ry, o(t) := t — p(t) is strictly increasing and onto, then the Dirichlet
problem (3.6) + (3.7) is generalized Ulam-Hyers stable with function ¢)~*, i.e., for each ¢ > 0 and
for each e-solution y* of the Dirichlet problem (3.6) + (3.7) we have that

lu*(z) — y*(z)| < ¢~ *(e), for each x € Q.
Proof. Consider the operator A : C(Q,R) — C(€2, R) given by

/Gms s,u(g(s)))ds.

Then, the Dirichlet problem (3.6) + (3.7) is equivalent with the fixed point equation u =
Au.
Next we have:

[Au(z) — Av(z)| < / |G, 9)||f(s,ulg(s))) = f(s,0(g(s)))lds <
Q
/ |Gz, 5)|p(s)p(ulg(s)) — v(g(s)))ds < o(||u - vllc)/ Gz, 8)p(s)ds < ¢(|u = vf|o)-
Q Q

Hence, by taking the supremum over = € Q we get that
[|[Au — Avl|c < o(||u —v||c), forall u,v € C(Q,R).
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Now the first conclusion follows from Theorem 3.1. -
For the second conclusion, let ¢ > 0 and let y* € C(£2,R) be an e-solution for (3.6) +
(3.7),1e.,

" (@) + /Q Glz,$)f (s, (g(s)))ds| < &, for each z € .

Since A is a 1-weakly Picard operator, the second conclusion follows from Lemma 2.1,
ie.,
ly* () — u*(x)] <~ *(e), for each x € Q.

REFERENCES

[1] Breckner, W. W. and Trif, T., Convex Functions and Related Functional Equations, Cluj Univ. Press, Cluj-Napoca,
2008
[2] Brzdek, J., Popa, D. and Xu, B., The Hyers-Ulam stability of nonlinear recurrences, J. Math. Anal. Appl. 335
(2007), 443449
[3] Céadariu, L., Stabilitate Ulam-Hyers-Bourgin pentru ecuatii functionale, Ed. Univ. de Vest, Timisoara, 2007
[4] Chis-Novac, A., Precup, R. and Rus, I. A., Data dependence of fixed point for non-self generalized contractions,
Fixed Point Theory 10 (2009), No. 1, 73-87
[5] Czerwik, S., Functional Equations and Inequalities in Several Variables, World Scientific, 2002
[6] Gavrutd, P., On a problem of G. Isac and Th. Rassias concerning the stability of mapping, ]. Math. Anal. Appl. 261
(2001), 543-553
[7] Gruber, P. M., Stability of isometries, Trans. Amer. Math. Soc. 245 (1978), 263-277
[8] Hirisawa, G. and Miura, T., Hyers-Ulam stability of a closed operator in a Hilbert space, Bull. Korean Math. Soc.
43 (2006), No. 1, 107-117
[9] Hyers, D. H., The stability of homomorphism and related topics, in Global Analysis-Analysis on Manifolds (Th.
M. Rassias, ed.), Teubner, Leipzig, 1983, 140-153
[10] Hyers, D. H,, Isac, G. and Rassias, Th. M., Stability of Functional Equations in Several Variables, Birkhduser,
Basel, 1998
[11] Jung, S.-M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York,
2011
[12] Jung, S.-M., Hyers-Ulam stability of first order linear differential equations with constant coefficients, J. Math. Anal.
Appl. 320 (2006), 549-561
[13] Jung, S.-M., A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl. 2007,
ID 57064, 9 pages
[14] Jung, S.-M. and Lee, K.-S., Hyers-Ulam stability of first order linear partial differential equations with constant
coefficients, Math. Ineq. Appl. 10 (2007), No. 2, 261-266
[15] Jung, S.-M. and Rassias, Th. M., Generalized Hyers-Ulam stability of Riccati differential equation, Math. Ineq.
Appl. 11 (2008), No. 4, 777-782
[16] Matkowski, J., Integrable solutions of functional equations, Dissertationes Math. (Rozprawy Mat.) 127 (1975)
68 pp.
[17] Miura, T., Jung, S.-M. and Takahasi, S.-E., Hyers-Ulam-Rassias stability of the Banach space valued linear differ-
ential equation y' = Ay, ]. Korean Math. Soc. 41 (2004), 995-1005
[18] Pales, Zs., Generalized stability of the Cauchy functional equation, Aequationes Math. 56 (1998), No. 3, 222232
[19] Petrusel, A., Multivalued weakly Picard operators and applications, Sci. Math. Jpn. 59 (2004), 167202
[20] Popa, D., Hyers-Ulam-Rassias stability of linear recurrence, ]. Math. Anal. Appl. 309 (2005), 591-597
[21] Popa, D., Hyers-Ulam stability of the linear recurrence with constant coefficients, Adv. Difference Equ. 2 (2005),
101-107
[22] Radu, V., The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), No. 1,
91-96
[23] Rassias, Th. M., On the stability of the linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978),
297-300
[24] Reich, S. and Zaslavski, A. J., A stability result in fixed point theory, Fixed Point Theory 6 (2005), No. 1, 113-118
[25] Rus, L. A., Principii si aplicatii ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca 1979



78 Vasile L. Lazar

[26] Rus, L. A., Picard operators and applications, Sci. Math. Jpn. 58 (2003), No. 1, 191-219

[27] Rus, I. A., The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory
9 (2008), No. 2, 541-559

[28] Rus, L. A., Gronwall lemma approach to the Hyers-Ulam-Rassias stability of an integral equation, in: Nonlinear
Analysis and Variational Problems, pp. 147-152 (P. Pardalos, Th. M. Rassias and A.A. Khan (Eds.)), Springer,
2009

[29] Rus, L. A., Ulam stability of ordinary differential equations, Studia Univ. Babes-Bolyai Math. 54 (2009), No. 4,
125-133

[30] Rus, L. A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10 (2009), No. 2, 305-320

[31] Rus, L. A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001

[32] Rus, L. A., Petrusel, A. and Petrusel, G., Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008

[33] Xu, M., Hyers-Ulam-Rassias stability of a system of first order linear recurrences, Bull. Korean Math. Soc. 44
(2007), No. 4, 841-849

DEPARTMENT OF MATHEMATICS

”VASILE GOLDIS” WESTERN UNIVERSITY ARAD, SATU MARE BRANCH
M. VITEAZUL 26, 440030 SATU MARE, ROMANIA

E-mail address: vasilazar@yahoo.com



