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Ulam-Hyers stability for operatorial inclusions

OANA MARIA MLESNITE

ABSTRACT. The purpose of the work is to present some Ulam-Hyers stability results for the coincidence point
problem associated to single-valued and multi-valued operators. As an application, an Ulam-Hyers stability
theorem for a differential inclusion.

1. ULAM-HYERS STABILITY FOR COINCIDENCE EQUATIONS

Let (X, d) be a metric space and f : X — X an operator. We denote by
Fy = {x € X|f(x) = 2},

the fixed point set of the operator f. By definition, f is weakly Picard operator if the
sequence (f"(x))nen, of successive approximations converges for all z € X and the limit
(which may depend on z) is a fixed point of f. For example, self Caristi type operators
and self graphic contractions on complete metric spaces are examples of weakly Picard
operators.

If f is weakly Picard operator then we consider the operator f* : X — X defined by
fe(x) = nlgr;@ f"(z). Itis clear that f*°(X) = Fy. Moreover, f* is a set retraction of X to
Fy.
If f is weakly Picard operator and Fy = {z*}, then by definition f is a Picard operator.
In this case f*° is the constant operator, f>°(z) = z*, for all z € X. Self Banach contrac-
tions, Kannan contractions and Ciric-Reich-Rus contractions on complete metric spaces
are nice examples of Picard operators.

The following concepts are important in our consideration, see [6].

Definition 1.1. Let f : X — X be a weakly Picard operator and ¢ > 0 a real number. By
definition the operator f is c-weakly Picard operator if

d(z, f*(z)) < cd(z, f(z)), forall x € X.

Example 1.1. Let (X, d) be a complete metric space and f : X — X an operator with
closed graphic. We suppose that f is a graphic a-contraction, i.e.,

d(f?(z), f(z)) < ad(z, f(x)), forall z € X.
1

_a'

Then f is a c-weakly Picard operator, with ¢ =

Definition 1.2. Let (X, d) be a metric space and f : X — X be an operator. By definition,
the fixed point equation

z = f(z) (1.1)
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is Ulam-Hyers stable if there exists a real number c; > 0 such that for each £ > 0 and each
solution y* of the inequation

dly, f(y)) <e (1.2)
there exists a solution z* of the equation (1.1) such that
d(y*,z*) < cye.
The following abstract result was proved in [6].

Lemma 1.1. If f is a c-weakly Picard operator, then the fixed point equation (1.1) is Ulam-Hyers
stable.

More generally, in [6] the following concept was introduced.

Definition 1.3. ([6]) Let ¢ : Ry — R be an increasing function which is continuous in
0 and #(0) = 0. An operator f : X — X is said to be a 1)-weakly Picard operator if it is
nonself weakly Picard operator and

d(z, f>(z)) < ¢(d(z, f(x))), forallz € X.

In the case that ¢(t) := ct (with ¢ > 0), for each t € R, we say that f is c-weakly Picard
operator.

Let (X,d) and (Y, p) be two metric spaces and f,g : X — Y two operators. Let us
consider the following coincidence point problem

f(z) =g(x) (1.3)
We denote by C(f, g) the set of coincidence points of f and g.

Definition 1.4. ([6]) Let (X, d) and (Y, p) be two metric spaces and f,g : X — Y be two
operators. The coincidence problem (1.3) is called generalized Ulam-Hyers stable if and
only if there exists ¢ : R, — R increasing, continuous in 0 and (0) = 0 such that for
every € > 0 and for each solution u* of the inequality

p(f(u),g(u) <e (1.4)

there exists a solution z* of (1.3) such that

d(u*,z*) < ¥(e).

If there exists ¢ > 0 such that ¥(t) := ct, for each ¢t € R then the coincidence point (1.3)
is said to be Ulam-Hyers stable.

Definition 1.5. ([6]) Let (X, d) and (Y, p) be two metric spaces. Then the operators f, g
X — Y form a y-weakly Picard pair, denoted by [f, g] if ¢ : R4 — R increasing, contin-
uous in 0 and %(0) = 0 and there exists an operator p : X — X such that:

(i) pisaweakly Picard operator;

(i) Fiz(p) = C(f.9);

(iil) d(w, £ (2)) < $(p(f(x), g())), for each a € X.

If there exists ¢ > 0 such that ¢(t) := ct, for each t € R, then the operators f,g : X —
Y form a c-weakly Picard pair.

A result on Ulam-Hyers stability of a coincidence point problem is the following theo-
rem.
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Theorem 1.1 ([6]). Let (X, d) and (Y, p) be two metric spaces and f,g : X — Y be two opera-
tors such that [f, g] forms a vp-weakly Picard pair (respectively a c-weakly Picard pair). Then

the coincidence point problem (1.3) is generalized Ulam-Hyers stable (respectively Ulam-Hyers
stable).

Another result of this type, useful for applications, is the following theorem.

Theorem 1.2. Let (X,d) and (Y, p) be two metric spaces and f,g : X — Y be two operators.
Suppose that ¢ : Ry — Ry is increasing, continuous in 0, 1(0) = 0 and there exists an operator
p: X — X such that:

(i) p is a yp-weakly Picard operator;

(ii) Fix(p)=C(f.g);

(iii) d(z, p(z)) < p(f(x), g(z)) for each x € X.

Then the coincidence point problem (1.3) is generalized Ulam-Hyers stable (respectively Ulam-
Huyers stable).

Proof. Lete > 0 and u* € X be a solution of (1.4), i.e. p(f(u*), g(u*)) < e. Then by (iii), for
u” € X we have d(u”, p(u”)) < p(f(u*), g(u")).
Since p is a -weakly Picard operator, we get that

d(z,p™(z)) < ¢¥(d(z,p(x))), foreach z € X.
If we denote z* := p>(u*), then by (i) and (iii), we obtain that 2* € C(f, ¢g) and
d(u*, ") = d(u”, p>(u")) < P(d(u”, p(u”))) < Y(p(f(u"), g(u"))) < ¥(e). O

We will present now a consequence of the above abstract result.
The following auxiliary lemma is quite obvious.

Lemma 1.2. Let X, Y be two nonempty sets and let f,g : X — Y be two operators. Suppose that
f (respectively g) is onto. Then C(f, g) = Fixz(p), where p := f~'o g (respectively p := g—'o f).

By Lemma 1.2 and the above theorems we get the following result.

Theorem 1.3. Let (X, d) and (Y, p) be two metric spaces and f,g : X — Y be two operators
such that:
(i) f is onto;
(ii) f~1 o g is an a-contraction;
(iii) for each x € X we have d(z, f~1(g(z))) < p(f(z), g(x)).
Then the coincidence point problem (1.3) is Ulam-Hyers stable.
Proof. By (i) and (ii) we get that p := f~! o g is a c-weakly Picard operator with ¢ :=
1
——. Moreover, by Lemma 1.2 we have that Fiz(p) = C(f, g). By (iii) we obtain that the

condition (iii) in Theorem 1.2 holds. The conclusion follows now by Theorem 1.2, |
Example 1.2. If f, g : [0,1] — [0, 3] are given by f(x) = 3z, g(x) = 2z, for each = € [0, 1],
then fis onto, f~1og: [0,1] — [0,1], given by (f~! o g)(z) = 2?3; is ;—contraction and

C(f,9) ={0}.
Notice also that for each = € [0, 1] there exists y € [0, 1] such that f(y) = g(z) and

2
[z =yl < p(f(x). g(a)). We have g(z) = 2z € [0,2) and f(y) =3y € [0.2] > y € [0.5] C
[0,1]. Thus, in this case, the coincidence point problem (1.3) is Ulam-Hyers stable.

We will present now a result on Ulam-Hyers stability for the case of Goebel coincidence
theorem.
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Theorem 1.4. Let A # () be an arbitrary set and let (M, d) be a metric space. Let S,T : A — M
such that S(A) C T(A) and (T'(A), d) is a complete subspace of M. Suppose that exists 0 < k < 1
such that d(Sz, Sy) < kd(Tz,Ty), forall x,y € A. Then:

a) C(S,T) # 0 (Goebel’s Theorem, see [4]);

b) If additionally:

d(y, S(T~(y))) < d(Ty,Sy), forall y € T(A), (1.5)
then the coincidence point problem (1.3) is Ulam-Hyers stable.

Proof. a) Let f := S o T~!. The proof is organized in several steps. We prove:

i) f is a singlevalued operator on T'(A);

Lety1,y2 € f(x). We gety; € S(T~!(x)) and yo € S(T~1(x)). So exists u1,us € T~ (x)
such that y; = S(u;) and y2 = S(ug). Because uy,us € T-1(z) we have T'(u;) = z and
T'(uz) = . Then we have:

d(yl,yg) = d(Sul, S’ILQ> S k‘d(T’U,l,TUQ) =0.

So y1 = y2 and thus f(z) is a single point.

i) f: T(A) = T(4);

Let z € T(A). Then exists a € A such that z = T'(a). So we have a € T~ !(z) = S(a)
S(T~Y(x)) = S(a) C f(x). Since f is a siglevalued operator we get S(a) = f(z) = f(z)
S(a) C S(A) CT(A).

iii) f : T(A) — T(A) is k-contraction;

Let 71,70 € T(A) and uy,us € A such that uy € T(x;) and us € T !(x). Then
we have: d(f(xl),f(xg)) = d(S(Tﬁl(Il)),S(T71($2))) = d(Sul,Su2) < kd(TUl,TUQ) =
kd(x1,x2). So f is a k-contraction.

iv) we apply Banach contraction principle for f and thus there exists a unique y* €
T(A) such that y* = f(y*) = S(T(y*)).

Let z* = T} (y*) = y* = T(z*). We get y* = S(z*). Then we have S(z*) = T'(z*) =

*

Y

[l

b) Because f : T(A) — T(A), f(z) = SoT~!isa contraction then Fiz(f) = {y*} and f
is a Picard operator. So exists ¢y > 0 such that for all ¢ > 0 and for all u* € T'(A) such that
1
d(u*, f(u*)) < e wehave d(u”,y*) < T %
We proof that the coincidence point problem is Ulam-Hyers stable.
Lete > 0 and © € A such that d(Tz, Sz) < e. Then we take account (1.5) we have
d(u*, f(u*)) < d(Tu*, Su*) < e. So we get

d(u®,y") = d(u", f(y*)) = d(f(y"), f(u")) + d(f(u"),u") = kd(u",y") +e.
Then d(u*,y*) = 1fk. O

- E.

2. ULAM-HYERS STABILITY FOR OPERATORIAL INCLUSIONS

The aim of this section is to prove an Ulam-Hyers stability result for a Cauchy prob-
lem associated to a differential inclusion of first order. We introduce first some notations
and concepts.

Definition 2.6. (see [7], [5] and [6]) Let (X, d) be a metric space, and F' : X — P, (X)bea
multivalued operator. By definition, F' is a multivalued weakly Picard operator if for each
x € X and each y € F(x) there exists a sequence (x,,)nen such that:

(i) zo=z,21=1y;
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(ii)) zpy1 € F(x,), foreachn € N;
(iil) the sequence (zy,)nen is convergent and its limit is a fixed point of F'.

Let F': X — P(X) be a multi-valued weakly Picard operator. Denote
Graph(F) ={(z,y) e X x X :x € X andy € F(z)}.

Then, we consider the multi-valued operator F*>° : Graph(F') — P(Fiz(F')) defined by
the following formula:

F>(z,y) := { the set of all fixed points of F that are limits of a successive approximations
sequence starting from (z,y)}.

Definition 2.7. Let (X, d) be a metric space and let ¢ : Ry — R be an increasing function
which is continuous in 0 and ¢ (0) = 0. Then F' : X — P(X) is said to be a multi-valued
1-weakly Picard operator if it is a multi-valued weakly Picard operator and there exists a
selection f*° : Graph(F) — Fixz(F) of F*° such that

d(z, f<(z,y)) < ¢(d(z,y)), for all (z,y) € Graph(F).

If there exists ¢ > 0 such that ¢(t) := ct for each ¢ € R, then we say that F' is a multi-
valued c-weakly Picard operator.

Definition 2.8. Let (X, d) be a metric space and F' : X — P(X) be a multi-valued operator.
The fixed point inclusion

zx € F(z), z€Y (2.6)

is called generalized Ulam-Hyers stable if and only if there exists ¢) : R, — R increasing,
continuous in 0 and (0) = 0 such that for each ¢ > 0 and for each solution y* € X of the
inequation

D(y, F(y)) <« (27)

there exists a solution z* of the fixed point inclusion (2.6) such that
d(y*, z%) < ¢(e).

If there exists ¢ > 0 such that ¢(t) := ct, for each ¢ € R, then the fixed point inclusion
(2.6) is said to be Ulam-Hyers stable.

The following abstract result has given in [2].

Lemma 2.3. Let (X,d) be a metric space and F' : X — P.p(X) be a multi-valued «)-weakly
Picard operator. Then the fixed point inclusion (2.6) is generalized Ulam-Hyers stable.

The aim of this section is, based on the above result, to prove an Ulam-Hyers stability
theorem for a multi-valued Cauchy problem corresponding to a first order differential
inclusion.

Let us consider the following multi-valued Cauchy problem:

/ .

{ 2'(t) € F(t,z(t)), a.e. t € [a,b]; 2.8)

z(a) = a,

where @ € R" and F : [a,b] X R" — P, ¢, (R™) is a multi-valued operator. We will denote
b

by / F(s,x(s))ds (where z : [a,b] — R™ is a given function) the multi-valued integral in

a
Aumann’ sense, see [1].
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Definition 2.9. Let F' : [a,b] xR" — P,, .,(R™) a multi-valued operator, « € Rand o € R™.

A function ¢ : [a,T] — R" is called solution to problem (2.8) if and only if T < b, ¢ is
absolutely continuous on [a, T'] and satisfy the relations:

{ ¢'(t) € F(t, (1), ae onla,TJ;
pla) = a.

The equivalence between the above differential inclusion and an integral inclusion is
given by the following lemma:

Lemma 2.4. Let I C Ran interval and F : I x R" — Py, ., (R™) be an upper semi-continuous
multi-valued operator. Then x : I — R is a solution for differential inclusion

7' (t) € F(t,z(t)) (2.9)
if and only if
to
x(t2) € x(t1) +/ F(t,x(t))dt, foreachty,ts € I. (2.10)

ty
Taking into account of Lemma 2.4 we deduce that the problem (2.8) is equivalent to an
integral inclusion of Volterra type:

z(t) € a+ /t F(s,z(s))ds, t € [a,b]. (2.11)

The result with respect to the Ulam-Hyers stability of the Cauchy problem (2.8) is the
following theorem.

Theorem 2.5. Let F' : [a,b] x R™ — Py ,(R™) such that:

(a) there exists an integrable function M : [a,b] — Ry such that for each w € R™ we have
F(s,u) C M(s)B(0,1), a.e. s € [a,b)];

(b) for each v € R™, F(-,u) : [a,b] = Pey o (R™) is measurable;

(c) foreach u € R™, F(-,u) : [a,b] = Py co(R™) is lower semi-continuous;

(d) there exists a continuous function p : [a,b] — Ry such that for each s € [a,b] and each
u,v € R™ we have that:

H(F(s,u), F(s,v)) <p(s) - |u—n]. (2.12)

Then the following conclusions hold:

(i) there exists at least one solution for the Cauchy problem (2.8);

(ii) the Cauchy problem (2.8) is Ulam-Hyers stable, i.e. for each ¢ > 0 there exists c. > 0 such
that for each function y € C([a, b], R™) of the inequation

Dy (y(8), F(t,y(1)) <, t € [a,b],
wich satisfy the condition y(a) = « there exists a solution x of problem (2.8) such that
lz(t) — y(t)||rn < ce ¢, foreacht € [a,b].
Proof. We consider the multi-valued operator T : C([a, b],R") — P(C([a,b],R™)) defined
by
t
T(x) := {v € C([a,b,R")|v(t) € & +/ F(s,z(s))ds,t € [a,b]}.

Then (2.8) is equivalent to (2.11) and, by the above notation, equivalent to the fixed point
inclusion
z €T (z), x € C([a,b],R™). (2.13)

The proof is organized in several steps:
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1). T(x) € Pep(C([a, b], R™)).
From Theorem 2 in Rybinski [8] we have that for each z € C([a,b],R") there exists
f(s) € F(s,x(s)), forall s € [a, ], such that f(s) is integrable.
t

Then v(t) :== a + / f(s)ds has the property v € T'(x). Moreover, from (a) and (b), via
Theorem 8.6.3. in Aubin and Frankowska [1], we get that T'(x) is a compact set, for each

z € C([a,b],R™).

2). T is a multi-valued contraction on C(]a, b], R™).
Notice first that one may suppose (without affecting the generality of the Lipschitz
condition) that the inequality (2.12) is strict. Let z1,22 € C([a,b],R") and v1 € T'(z1).
¢

Then vy (t) € a + / F(s,z1(s))ds, t € [a,b]. It follows that

a

vi(t) € a+ /t f1(s)ds, t € [a,b], for some fi(s) € F(s,z1(s))ds, s € [a,b].

From (d) we have H(F(s,z1(s)), F(s,z2(s))) < p(s) - |z1(s) — z2(s)|. Thus there exists
w € F(s,x2(s) such that |f1(s) —w| < p(s) - |z1(s) — z2(s)|, for s € [a, b].
Let as define U : [a,b] — P(R"), by

U(s) == {wl [f1(s) —w| < p(s) - [z1(s) — 22(s)[}.
Since the multi-valued operator V (s) := U(s) N F (s, z2(s)) is measurable, so exists fa(s)
a selection for V, measurable (and hence integrable in s). Hence f2(s) € F(s,z2(s)) and
|f1(s) = fa(s)| < p(s) - |x1(st) — x5(s)|, for each s € [a, b].

Consider vs(t) = a + / fa(s), t € [a,b]. We denote by || - || 5 a Bielecki-type norm in
C([a,b],R™), given by ‘
t
el = SFP]Oh%an-eTﬂ“>,wﬂunequ>:=t/‘p<@ds
tela,b a
Then for each ¢ € [a, b], we have:

jor t —w|</v1 m</p@m@—u@m=

t
:/ p(s)e 1 (s) — 22(s)|e ™1 ds S/ p(s)e™" ) ||z1 — za pds =
1
= ~[lz1 — 22| p(e™®) — 7)) < *||$1 — 25| pe™®).
-

1
Thus we immediately get ||v; — v2|p < —|lz1 — z2||5. A similar relation can be ob-

tained by interchanging the role of x; and xz,. By choosing now 7 > 1 we get that

Hyp(T(21),T(22)) < —|lz1 — 22|, which prove that 7" is a multi-valued contraction
T

with constant « := —. Hence, conclusion (i) follows by Covitz-Nadler’s fixed point theo-
T
rem [3].
For the second conclusion, let ¢ > 0 and y € C([a,b],R") for which there exits u €
t

C([a,b],R™) such that u(t) € « + / F(s,y(s))ds, t € [a,b] and |Ju(t) — y(t)]

a

re <6
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for each t € [a,b]. Notice that || - ||z < || - lc < || - |54, where || - |c denotes the
Cebagev norm in C([a, b], R") defined by |z|c = m[a>l<)](||x(t)\ g~ ). Then we obtain that
t€la,

lu—ylls < llu—ylc <e Thus, Dy, (y,T(y)) < e. Moreover, since T is a multi-valued
a-contraction with respect to || - || g, we obtain that T is a multi-valued c-weakly Picard

1
operator with ¢ := 1—a The conclusion (ii) is a consequence of Lemma 2.3. Hence, there
@

1
exists ¢ := . and a solution z* of the Cauchy problem (2.8) such that ||y —z*||p < c-e.

-«
Hence |y(t) — z*(t)] < ¢-e™4®) . ¢, for each t € [a, b]. O
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