Ulam-Hyers stability for operatorial inclusions

Oana Maria Mleşniţe

Abstract

The purpose of the work is to present some Ulam-Hyers stability results for the coincidence point problem associated to single-valued and multi-valued operators. As an application, an Ulam-Hyers stability theorem for a differential inclusion.

1. Ulam-Hyers stability for coincidence equations

Let (X, d) be a metric space and $f: X \rightarrow X$ an operator. We denote by

$$
F_{f}:=\{x \in X \mid f(x)=x\},
$$

the fixed point set of the operator f. By definition, f is weakly Picard operator if the sequence $\left(f^{n}(x)\right)_{n \in \mathbb{N}}$, of successive approximations converges for all $x \in X$ and the limit (which may depend on x) is a fixed point of f. For example, self Caristi type operators and self graphic contractions on complete metric spaces are examples of weakly Picard operators.

If f is weakly Picard operator then we consider the operator $f^{\infty}: X \rightarrow X$ defined by $f^{\infty}(x):=\lim _{n \rightarrow \infty} f^{n}(x)$. It is clear that $f^{\infty}(X)=F_{f}$. Moreover, f^{∞} is a set retraction of X to F_{f}.

If f is weakly Picard operator and $F_{f}=\left\{x^{*}\right\}$, then by definition f is a Picard operator. In this case f^{∞} is the constant operator, $f^{\infty}(x)=x^{*}$, for all $x \in X$. Self Banach contractions, Kannan contractions and Ciric-Reich-Rus contractions on complete metric spaces are nice examples of Picard operators.

The following concepts are important in our consideration, see [6].
Definition 1.1. Let $f: X \rightarrow X$ be a weakly Picard operator and $c>0$ a real number. By definition the operator f is c-weakly Picard operator if

$$
d\left(x, f^{\infty}(x)\right) \leq c d(x, f(x)), \text { for all } x \in X
$$

Example 1.1. Let (X, d) be a complete metric space and $f: X \rightarrow X$ an operator with closed graphic. We suppose that f is a graphic α-contraction, i.e.,

$$
d\left(f^{2}(x), f(x)\right) \leq \alpha d(x, f(x)), \text { for all } x \in X
$$

Then f is a c-weakly Picard operator, with $c=\frac{1}{1-\alpha}$.
Definition 1.2. Let (X, d) be a metric space and $f: X \rightarrow X$ be an operator. By definition, the fixed point equation

$$
\begin{equation*}
x=f(x) \tag{1.1}
\end{equation*}
$$

Received: 31.10.2010. In revised form: 30.06.2011. Accepted: 30.11.2011
2010 Mathematics Subject Classification. 47H10, 54H25, 54C60.
Key words and phrases. Ulam-Hyers stability, weakly Picard operator, c-weakly Picard operator, fixed point, coincidence point, Cauchy problem, singlevalued operator, multivalued operator.
is Ulam-Hyers stable if there exists a real number $c_{f}>0$ such that for each $\varepsilon>0$ and each solution y^{*} of the inequation

$$
\begin{equation*}
d(y, f(y)) \leq \varepsilon \tag{1.2}
\end{equation*}
$$

there exists a solution x^{*} of the equation (1.1) such that

$$
d\left(y^{*}, x^{*}\right) \leq c_{f} \varepsilon
$$

The following abstract result was proved in [6].
Lemma 1.1. If f is a c-weakly Picard operator, then the fixed point equation (1.1) is Ulam-Hyers stable.

More generally, in [6] the following concept was introduced.
Definition 1.3. ([6]) Let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an increasing function which is continuous in 0 and $\psi(0)=0$. An operator $f: X \rightarrow X$ is said to be a ψ-weakly Picard operator if it is nonself weakly Picard operator and

$$
d\left(x, f^{\infty}(x)\right) \leq \psi(d(x, f(x))), \text { for all } x \in X
$$

In the case that $\psi(t):=c t$ (with $c>0$), for each $t \in \mathbb{R}_{+}$, we say that f is c-weakly Picard operator.

Let (X, d) and (Y, ρ) be two metric spaces and $f, g: X \rightarrow Y$ two operators. Let us consider the following coincidence point problem

$$
\begin{equation*}
f(x)=g(x) \tag{1.3}
\end{equation*}
$$

We denote by $C(f, g)$ the set of coincidence points of f and g.
Definition 1.4. ([6]) Let (X, d) and (Y, ρ) be two metric spaces and $f, g: X \rightarrow Y$ be two operators. The coincidence problem (1.3) is called generalized Ulam-Hyers stable if and only if there exists $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$increasing, continuous in 0 and $\psi(0)=0$ such that for every $\varepsilon>0$ and for each solution u^{*} of the inequality

$$
\begin{equation*}
\rho(f(u), g(u)) \leq \varepsilon \tag{1.4}
\end{equation*}
$$

there exists a solution x^{*} of (1.3) such that

$$
d\left(u^{*}, x^{*}\right) \leq \psi(\varepsilon)
$$

If there exists $c>0$ such that $\psi(t):=c t$, for each $t \in \mathbb{R}_{+}$then the coincidence point (1.3) is said to be Ulam-Hyers stable.

Definition 1.5. ([6]) Let (X, d) and (Y, ρ) be two metric spaces. Then the operators f, g : $X \rightarrow Y$ form a ψ-weakly Picard pair, denoted by $[f, g]$ if $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$increasing, continuous in 0 and $\psi(0)=0$ and there exists an operator $p: X \rightarrow X$ such that:
(i) p is a weakly Picard operator;
(ii) $\operatorname{Fix}(p)=C(f, g)$;
(iii) $d\left(x, f^{\infty}(x)\right) \leq \psi(\rho(f(x), g(x)))$, for each $x \in X$.

If there exists $c>0$ such that $\psi(t):=c t$, for each $t \in \mathbb{R}_{+}$, then the operators $f, g: X \rightarrow$ Y form a c-weakly Picard pair.

A result on Ulam-Hyers stability of a coincidence point problem is the following theorem.

Theorem 1.1 ([6]). Let (X, d) and (Y, ρ) be two metric spaces and $f, g: X \rightarrow Y$ be two operators such that $[f, g]$ forms a ψ-weakly Picard pair (respectively a c-weakly Picard pair). Then the coincidence point problem (1.3) is generalized Ulam-Hyers stable (respectively Ulam-Hyers stable).

Another result of this type, useful for applications, is the following theorem.
Theorem 1.2. Let (X, d) and (Y, ρ) be two metric spaces and $f, g: X \rightarrow Y$ be two operators. Suppose that $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is increasing, continuous in $0, \psi(0)=0$ and there exists an operator $p: X \rightarrow X$ such that:
(i) p is a ψ-weakly Picard operator;
(ii) $\operatorname{Fix}(p)=C(f, g)$;
(iii) $d(x, p(x)) \leq \rho(f(x), g(x))$ for each $x \in X$.

Then the coincidence point problem (1.3) is generalized Ulam-Hyers stable (respectively UlamHyers stable).

Proof. Let $\varepsilon>0$ and $u^{*} \in X$ be a solution of (1.4), i.e. $\rho\left(f\left(u^{*}\right), g\left(u^{*}\right)\right) \leq \varepsilon$. Then by (iii), for $u^{*} \in X$ we have $d\left(u^{*}, p\left(u^{*}\right)\right) \leq \rho\left(f\left(u^{*}\right), g\left(u^{*}\right)\right)$.

Since p is a ψ-weakly Picard operator, we get that

$$
d\left(x, p^{\infty}(x)\right) \leq \psi(d(x, p(x))), \text { for each } x \in X
$$

If we denote $x^{*}:=p^{\infty}\left(u^{*}\right)$, then by (i) and (iii), we obtain that $x^{*} \in C(f, g)$ and
$d\left(u^{*}, x^{*}\right)=d\left(u^{*}, p^{\infty}\left(u^{*}\right)\right) \leq \psi\left(d\left(u^{*}, p\left(u^{*}\right)\right)\right) \leq \psi\left(\rho\left(f\left(u^{*}\right), g\left(u^{*}\right)\right)\right) \leq \psi(\varepsilon)$.
We will present now a consequence of the above abstract result.
The following auxiliary lemma is quite obvious.
Lemma 1.2. Let X, Y be two nonempty sets and let $f, g: X \rightarrow Y$ be two operators. Suppose that $f($ respectively $g)$ is onto. Then $C(f, g)=F i x(p)$, where $p:=f^{-1} \circ g$ (respectively $p:=g^{-1} \circ f$).

By Lemma 1.2 and the above theorems we get the following result.
Theorem 1.3. Let (X, d) and (Y, ρ) be two metric spaces and $f, g: X \rightarrow Y$ be two operators such that:
(i) f is onto;
(ii) $f^{-1} \circ g$ is an a-contraction;
(iii) for each $x \in X$ we have $d\left(x, f^{-1}(g(x))\right) \leq \rho(f(x), g(x))$.

Then the coincidence point problem (1.3) is Ulam-Hyers stable.
Proof. By (i) and (ii) we get that $p:=f^{-1} \circ g$ is a c-weakly Picard operator with $c:=$ $\frac{1}{1-a}$. Moreover, by Lemma 1.2 we have that $\operatorname{Fix}(p)=C(f, g)$. By (iii) we obtain that the condition (iii) in Theorem 1.2 holds. The conclusion follows now by Theorem 1.2,

Example 1.2. If $f, g:[0,1] \rightarrow[0,3]$ are given by $f(x)=3 x, g(x)=2 x$, for each $x \in[0,1]$, then f is onto, $f^{-1} \circ g:[0,1] \rightarrow[0,1]$, given by $\left(f^{-1} \circ g\right)(x)=\frac{2 x}{3}$ is $\frac{2}{3}$-contraction and $C(f, g)=\{0\}$.

Notice also that for each $x \in[0,1]$ there exists $y \in[0,1]$ such that $f(y)=g(x)$ and $|x-y| \leq \rho(f(x), g(x))$. We have $g(x)=2 x \in[0,2]$ and $f(y)=3 y \in[0,2] \Rightarrow y \in\left[0, \frac{2}{3}\right] \subset$ $[0,1]$. Thus, in this case, the coincidence point problem (1.3) is Ulam-Hyers stable.

We will present now a result on Ulam-Hyers stability for the case of Goebel coincidence theorem.

Theorem 1.4. Let $A \neq \emptyset$ be an arbitrary set and let (M, d) be a metric space. Let $S, T: A \rightarrow M$ such that $S(A) \subset T(A)$ and $(T(A), d)$ is a complete subspace of M. Suppose that exists $0 \leq k<1$ such that $d(S x, S y) \leq k d(T x, T y)$, for all $x, y \in A$. Then:
a) $C(S, T) \neq \emptyset$ (Goebel's Theorem, see [4]);
b) If additionally:

$$
\begin{equation*}
d\left(y, S\left(T^{-1}(y)\right)\right) \leq d(T y, S y), \text { for all } y \in T(A) \tag{1.5}
\end{equation*}
$$

then the coincidence point problem (1.3) is Ulam-Hyers stable.
Proof. a) Let $f:=S \circ T^{-1}$. The proof is organized in several steps. We prove:
i) f is a singlevalued operator on $T(A)$;

Let $y_{1}, y_{2} \in f(x)$. We get $y_{1} \in S\left(T^{-1}(x)\right)$ and $y_{2} \in S\left(T^{-1}(x)\right)$. So exists $u_{1}, u_{2} \in T^{-1}(x)$ such that $y_{1}=S\left(u_{1}\right)$ and $y_{2}=S\left(u_{2}\right)$. Because $u_{1}, u_{2} \in T^{-1}(x)$ we have $T\left(u_{1}\right)=x$ and $T\left(u_{2}\right)=x$. Then we have:

$$
d\left(y_{1}, y_{2}\right)=d\left(S u_{1}, S u_{2}\right) \leq k d\left(T u_{1}, T u_{2}\right)=0
$$

So $y_{1}=y_{2}$ and thus $f(x)$ is a single point.
ii) $f: T(A) \rightarrow T(A)$;

Let $x \in T(A)$. Then exists $a \in A$ such that $x=T(a)$. So we have $a \in T^{-1}(x) \Rightarrow S(a) \subseteq$ $S\left(T^{-1}(x)\right) \Rightarrow S(a) \subseteq f(x)$. Since f is a siglevalued operator we get $S(a)=f(x) \Rightarrow f(x)=$ $S(a) \subseteq S(A) \subseteq T(A)$.
iii) $f: T(A) \rightarrow T(A)$ is k-contraction;

Let $x_{1}, x_{2} \in T(A)$ and $u_{1}, u_{2} \in A$ such that $u_{1} \in T^{-1}\left(x_{1}\right)$ and $u_{2} \in T^{-1}\left(x_{2}\right)$. Then we have: $d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=d\left(S\left(T^{-1}\left(x_{1}\right)\right), S\left(T^{-1}\left(x_{2}\right)\right)\right)=d\left(S u_{1}, S u_{2}\right) \leq k d\left(T u_{1}, T u_{2}\right)=$ $k d\left(x_{1}, x_{2}\right)$. So f is a k-contraction.
iv) we apply Banach contraction principle for f and thus there exists a unique $y^{*} \in$ $T(A)$ such that $y^{*}=f\left(y^{*}\right)=S\left(T^{-1}\left(y^{*}\right)\right)$.

Let $x^{*}=T^{-1}\left(y^{*}\right) \Rightarrow y^{*}=T\left(x^{*}\right)$. We get $y^{*}=S\left(x^{*}\right)$. Then we have $S\left(x^{*}\right)=T\left(x^{*}\right)=$ y^{*}.
b) Because $f: T(A) \rightarrow T(A), f(x)=S \circ T^{-1}$ is a contraction then $F i x(f)=\left\{y^{*}\right\}$ and f is a Picard operator. So exists $c_{f}>0$ such that for all $\varepsilon>0$ and for all $u^{*} \in T(A)$ such that $d\left(u^{*}, f\left(u^{*}\right)\right) \leq \varepsilon$ we have $d\left(u^{*}, y^{*}\right) \leq \frac{1}{1-k} \cdot \varepsilon$.

We proof that the coincidence point problem is Ulam-Hyers stable.
Let $\varepsilon>0$ and $x \in A$ such that $d(T x, S x) \leq \varepsilon$. Then we take account (1.5) we have $d\left(u^{*}, f\left(u^{*}\right)\right) \leq d\left(T u^{*}, S u^{*}\right) \leq \varepsilon$. So we get

$$
d\left(u^{*}, y^{*}\right)=d\left(u^{*}, f\left(y^{*}\right)\right)=d\left(f\left(y^{*}\right), f\left(u^{*}\right)\right)+d\left(f\left(u^{*}\right), u^{*}\right)=k d\left(u^{*}, y^{*}\right)+\varepsilon
$$

Then $d\left(u^{*}, y^{*}\right)=\frac{\varepsilon}{1-k}$.

2. Ulam-HyERS Stability For operatorial inclusions

The aim of this section is to prove an Ulam-Hyers stability result for a Cauchy problem associated to a differential inclusion of first order. We introduce first some notations and concepts.

Definition 2.6. (see [7], [5] and [6]) Let (X, d) be a metric space, and $F: X \rightarrow P_{c l}(X)$ be a multivalued operator. By definition, F is a multivalued weakly Picard operator if for each $x \in X$ and each $y \in F(x)$ there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that:
(i) $x_{0}=x, x_{1}=y$;
(ii) $x_{n+1} \in F\left(x_{n}\right)$, for each $n \in \mathbb{N}$;
(iii) the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent and its limit is a fixed point of F.

Let $F: X \rightarrow P(X)$ be a multi-valued weakly Picard operator. Denote

$$
\operatorname{Graph}(F):=\{(x, y) \in X \times X: x \in X \text { and } y \in F(x)\} .
$$

Then, we consider the multi-valued operator $F^{\infty}: \operatorname{Graph}(F) \rightarrow P(F i x(F))$ defined by the following formula:
$F^{\infty}(x, y):=\{$ the set of all fixed points of F that are limits of a successive approximations sequence starting from $(x, y)\}$.

Definition 2.7. Let (X, d) be a metric space and let $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an increasing function which is continuous in 0 and $\psi(0)=0$. Then $F: X \rightarrow P(X)$ is said to be a multi-valued ψ-weakly Picard operator if it is a multi-valued weakly Picard operator and there exists a selection $f^{\infty}: \operatorname{Graph}(F) \rightarrow F i x(F)$ of F^{∞} such that

$$
d\left(x, f^{\infty}(x, y)\right) \leq \psi(d(x, y)), \text { for all }(x, y) \in \operatorname{Graph}(F)
$$

If there exists $c>0$ such that $\psi(t):=c t$ for each $t \in \mathbb{R}_{+}$, then we say that F is a multivalued c-weakly Picard operator.

Definition 2.8. Let (X, d) be a metric space and $F: X \rightarrow P(X)$ be a multi-valued operator. The fixed point inclusion

$$
\begin{equation*}
x \in F(x), \quad x \in Y \tag{2.6}
\end{equation*}
$$

is called generalized Ulam-Hyers stable if and only if there exists $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$increasing, continuous in 0 and $\psi(0)=0$ such that for each $\varepsilon>0$ and for each solution $y^{*} \in X$ of the inequation

$$
\begin{equation*}
D(y, F(y)) \leq \varepsilon \tag{2.7}
\end{equation*}
$$

there exists a solution x^{*} of the fixed point inclusion (2.6) such that

$$
d\left(y^{*}, x^{*}\right) \leq \psi(\varepsilon)
$$

If there exists $c>0$ such that $\psi(t):=c t$, for each $t \in \mathbb{R}_{+}$, then the fixed point inclusion (2.6) is said to be Ulam-Hyers stable.

The following abstract result has given in [2].
Lemma 2.3. Let (X, d) be a metric space and $F: X \rightarrow P_{c p}(X)$ be a multi-valued ψ-weakly Picard operator. Then the fixed point inclusion (2.6) is generalized Ulam-Hyers stable.

The aim of this section is, based on the above result, to prove an Ulam-Hyers stability theorem for a multi-valued Cauchy problem corresponding to a first order differential inclusion.

Let us consider the following multi-valued Cauchy problem:

$$
\left\{\begin{array}{l}
x^{\prime}(t) \in F(t, x(t)), \text { a.e. } t \in[a, b] ; \tag{2.8}\\
x(a)=\alpha,
\end{array}\right.
$$

where $\alpha \in \mathbb{R}^{n}$ and $F:[a, b] \times \mathbb{R}^{n} \rightarrow P_{c p, c v}\left(\mathbb{R}^{n}\right)$ is a multi-valued operator. We will denote by $\int_{a}^{b} F(s, x(s)) d s$ (where $x:[a, b] \rightarrow \mathbb{R}^{n}$ is a given function) the multi-valued integral in Aumann' sense, see [1].

Definition 2.9. Let $F:[a, b] \times \mathbb{R}^{n} \rightarrow P_{c p, c v}\left(\mathbb{R}^{n}\right)$ a multi-valued operator, $a \in \mathbb{R}$ and $\alpha \in \mathbb{R}^{n}$. A function $\varphi:[a, T] \rightarrow \mathbb{R}^{n}$ is called solution to problem (2.8) if and only if $T \leq b, \varphi$ is absolutely continuous on $[a, T]$ and satisfy the relations:

$$
\left\{\begin{array}{l}
\varphi^{\prime}(t) \in F(t, \varphi(t)), \text { a.e. on }[a, T] ; \\
\varphi(a)=\alpha .
\end{array}\right.
$$

The equivalence between the above differential inclusion and an integral inclusion is given by the following lemma:
Lemma 2.4. Let $I \subset \mathbb{R}$ an interval and $F: I \times \mathbb{R}^{n} \rightarrow P_{c p, c v}\left(\mathbb{R}^{n}\right)$ be an upper semi-continuous multi-valued operator. Then $x: I \rightarrow \mathbb{R}$ is a solution for differential inclusion

$$
\begin{equation*}
x^{\prime}(t) \in F(t, x(t)) \tag{2.9}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
x\left(t_{2}\right) \in x\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} F(t, x(t)) d t, \text { for each } t_{1}, t_{2} \in I \tag{2.10}
\end{equation*}
$$

Taking into account of Lemma 2.4 we deduce that the problem (2.8) is equivalent to an integral inclusion of Volterra type:

$$
\begin{equation*}
x(t) \in \alpha+\int_{a}^{t} F(s, x(s)) d s, \quad t \in[a, b] \tag{2.11}
\end{equation*}
$$

The result with respect to the Ulam-Hyers stability of the Cauchy problem (2.8) is the following theorem.
Theorem 2.5. Let $F:[a, b] \times \mathbb{R}^{n} \rightarrow P_{c l, c v}\left(\mathbb{R}^{n}\right)$ such that:
(a) there exists an integrable function $M:[a, b] \rightarrow \mathbb{R}_{+}$such that for each $u \in \mathbb{R}^{n}$ we have $F(s, u) \subset M(s) B(0,1)$, a.e. $s \in[a, b] ;$
(b) for each $u \in \mathbb{R}^{n}, F(\cdot, u):[a, b] \rightarrow P_{c l, c v}\left(\mathbb{R}^{n}\right)$ is measurable;
(c) for each $u \in \mathbb{R}^{n}, F(\cdot, u):[a, b] \rightarrow P_{c l, c v}\left(\mathbb{R}^{n}\right)$ is lower semi-continuous;
(d) there exists a continuous function $p:[a, b] \rightarrow \mathbb{R}_{+}$such that for each $s \in[a, b]$ and each $u, v \in \mathbb{R}^{n}$ we have that:

$$
\begin{equation*}
H(F(s, u), F(s, v)) \leq p(s) \cdot|u-v| \tag{2.12}
\end{equation*}
$$

Then the following conclusions hold:
(i) there exists at least one solution for the Cauchy problem (2.8);
(ii) the Cauchy problem (2.8) is Ulam-Hyers stable, i.e. for each $\varepsilon>0$ there exists $c_{\varepsilon}>0$ such that for each function $y \in C\left([a, b], \mathbb{R}^{n}\right)$ of the inequation

$$
D_{\|\cdot\|_{\mathbb{R}^{n}}}(y(t), F(t, y(t))) \leq \varepsilon, \quad t \in[a, b]
$$

wich satisfy the condition $y(a)=\alpha$ there exists a solution x of problem (2.8) such that

$$
\|x(t)-y(t)\|_{\mathbb{R}^{n}} \leq c_{\varepsilon} \cdot \varepsilon, \text { for each } t \in[a, b]
$$

Proof. We consider the multi-valued operator $T: C\left([a, b], \mathbb{R}^{n}\right) \rightarrow P\left(C\left([a, b], \mathbb{R}^{n}\right)\right)$ defined by

$$
T(x):=\left\{v \in C\left([a, b], \mathbb{R}^{n}\right) \mid v(t) \in \alpha+\int_{a}^{t} F(s, x(s)) d s, t \in[a, b]\right\}
$$

Then (2.8) is equivalent to (2.11) and, by the above notation, equivalent to the fixed point inclusion

$$
\begin{equation*}
x \in T(x), \quad x \in C\left([a, b], \mathbb{R}^{n}\right) \tag{2.13}
\end{equation*}
$$

The proof is organized in several steps:
1). $T(x) \in P_{c p}\left(C\left([a, b], \mathbb{R}^{n}\right)\right)$.

From Theorem 2 in Rybinski [8] we have that for each $x \in C\left([a, b], \mathbb{R}^{n}\right)$ there exists $f(s) \in F(s, x(s))$, for all $s \in[a, b]$, such that $f(s)$ is integrable.

Then $v(t):=\alpha+\int_{a}^{t} f(s) d s$ has the property $v \in T(x)$. Moreover, from (a) and (b), via Theorem 8.6.3. in Aubin and Frankowska [1], we get that $T(x)$ is a compact set, for each $x \in C\left([a, b], \mathbb{R}^{n}\right)$.
2). T is a multi-valued contraction on $C\left([a, b], \mathbb{R}^{n}\right)$.

Notice first that one may suppose (without affecting the generality of the Lipschitz condition) that the inequality (2.12) is strict. Let $x_{1}, x_{2} \in C\left([a, b], \mathbb{R}^{n}\right)$ and $v_{1} \in T\left(x_{1}\right)$. Then $v_{1}(t) \in \alpha+\int_{a}^{t} F\left(s, x_{1}(s)\right) d s, t \in[a, b]$. It follows that

$$
v_{1}(t) \in \alpha+\int_{a}^{t} f_{1}(s) d s, t \in[a, b], \text { for some } f_{1}(s) \in F\left(s, x_{1}(s)\right) d s, s \in[a, b] .
$$

From (d) we have $H\left(F\left(s, x_{1}(s)\right), F\left(s, x_{2}(s)\right)\right)<p(s) \cdot\left|x_{1}(s)-x_{2}(s)\right|$. Thus there exists $w \in F\left(s, x_{2}(s)\right.$ such that $\left|f_{1}(s)-w\right| \leq p(s) \cdot\left|x_{1}(s)-x_{2}(s)\right|$, for $s \in[a, b]$.

Let as define $U:[a, b] \rightarrow P\left(\mathbb{R}^{n}\right)$, by

$$
U(s):=\left\{w| | f_{1}(s)-w|\leq p(s) \cdot| x_{1}(s)-x_{2}(s) \mid\right\} .
$$

Since the multi-valued operator $V(s):=U(s) \cap F\left(s, x_{2}(s)\right)$ is measurable, so exists $f_{2}(s)$ a selection for V, measurable (and hence integrable in s). Hence $f_{2}(s) \in F\left(s, x_{2}(s)\right.$) and $\left|f_{1}(s)-f_{2}(s)\right| \leq p(s) \cdot\left|x_{1}(s)-x_{2}(s)\right|$, for each $s \in[a, b]$.

Consider $v_{2}(t)=\alpha+\int_{a}^{t} f_{2}(s), t \in[a, b]$. We denote by $\|\cdot\|_{B}$ a Bielecki-type norm in $C\left([a, b], \mathbb{R}^{n}\right)$, given by

$$
\|x\|_{B}:=\sup _{t \in[a, b]}\left(\|x(t)\|_{\mathbb{R}^{n}} \cdot e^{-\tau q(t)}\right), \text { where } q(t):=\int_{a}^{t} p(s) d s
$$

Then for each $t \in[a, b]$, we have:

$$
\begin{gathered}
\left|v_{1}(t)-v_{2}(t)\right| \leq \int_{a}^{t}\left|f_{1}(s)-f_{2}(s)\right| d s \leq \int_{a}^{t} p(s)\left|x_{1}(s)-x_{2}(s)\right| d s= \\
=\int_{a}^{t} p(s) e^{\tau q(s)}\left|x_{1}(s)-x_{2}(s)\right| e^{-\tau q(s)} d s \leq \int_{a}^{t} p(s) e^{\tau q(s)}\left\|x_{1}-x_{2}\right\|_{B} d s= \\
=\frac{1}{\tau}\left\|x_{1}-x_{2}\right\|_{B}\left(e^{\tau q(t)}-e^{\tau q(a)}\right) \leq \frac{1}{\tau}\left\|x_{1}-x_{2}\right\|_{B} e^{\tau q(t)} .
\end{gathered}
$$

Thus we immediately get $\left\|v_{1}-v_{2}\right\|_{B} \leq \frac{1}{\tau}\left\|x_{1}-x_{2}\right\|_{B}$. A similar relation can be obtained by interchanging the role of x_{1} and x_{2}. By choosing now $\tau>1$ we get that $H_{\|\cdot\|_{B}}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right) \leq \frac{1}{\tau}\left\|x_{1}-x_{2}\right\|_{B}$, which prove that T is a multi-valued contraction with constant $\alpha:=\frac{1}{\tau}$. Hence, conclusion (i) follows by Covitz-Nadler's fixed point theorem [3].

For the second conclusion, let $\varepsilon>0$ and $y \in C\left([a, b], \mathbb{R}^{n}\right)$ for which there exits $u \in$ $C\left([a, b], \mathbb{R}^{n}\right)$ such that $u(t) \in \alpha+\int_{a}^{t} F(s, y(s)) d s, t \in[a, b]$ and $\|u(t)-y(t)\|_{\mathbb{R}^{n}} \leq \varepsilon$,
for each $t \in[a, b]$. Notice that $\|\cdot\|_{B} \leq\|\cdot\|_{C} \leq\|\cdot\|_{B} e^{\tau q(b)}$, where $\|\cdot\|_{C}$ denotes the Cebâşev norm in $C\left([a, b], \mathbb{R}^{n}\right)$ defined by $\|x\|_{C}:=\max _{t \in[a, b]}\left(\|x(t)\|_{\mathbb{R}^{n}}\right)$. Then we obtain that $\|u-y\|_{B} \leq\|u-y\|_{C} \leq \varepsilon$. Thus, $D_{\|\cdot\|_{B}}(y, T(y)) \leq \varepsilon$. Moreover, since T is a multi-valued α-contraction with respect to $\|\cdot\|_{B}$, we obtain that T is a multi-valued c-weakly Picard operator with $c:=\frac{1}{1-\alpha}$. The conclusion (ii) is a consequence of Lemma 2.3. Hence, there exists $c:=\frac{1}{1-\alpha}$ and a solution x^{*} of the Cauchy problem (2.8) such that $\left\|y-x^{*}\right\|_{B} \leq c \cdot \varepsilon$. Hence $\left|y(t)-x^{*}(t)\right| \leq c \cdot e^{\tau q(b)} \cdot \varepsilon$, for each $t \in[a, b]$.

Acknowledgements. This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/ 107/1.5/S/76841 with the title Modern Doctoral Studies: Internationalization and Interdisciplinarity.

References

[1] Aubin, J.-P. and Frankowska, H., Set-Valued Analysis, Birkhauser, Basel, 1990
[2] Boriceanu, M. and Petruşel, A., Ulam-Hyers stability for operatorial equations, Anal. Univ. "Al. I. Cuza" Iaşi (to appear)
[3] Covitz, H. and Nadler, S. B. jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970) 5-11
[4] Goebel, K., A coincidence theorem, Bull. de L'Acad. Pol. des Sci. 16 (1968), No. 9, 733-735
[5] Petruşel, A., Multi-valued weakly Picard operators and applications, Sci. Math. Jpn. 59 (2004), 169-202
[6] Rus, I. A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10 (2009), No. 2, 305-320
[7] Rus, I. A., Petruşel, A. and Sîntămărian, A., Data dependence of the fixed points set of some multi-valued weakly Picard operators, Nonlinear Anal. 52 (2003), No. 8, 1947-1959
[8] Rybinski, L., On Carathéodory type selection, Fund. Math. 125 (1985), 187-193

