Ulam-Hyers stability for operatorial inclusions

Oana Maria Mleşniţe

ABSTRACT. The purpose of the work is to present some Ulam-Hyers stability results for the coincidence point problem associated to single-valued and multi-valued operators. As an application, an Ulam-Hyers stability theorem for a differential inclusion.

1. ULAM-HYERS STABILITY FOR COINCIDENCE EQUATIONS

Let (X, d) be a metric space and $f : X \to X$ an operator. We denote by

$$F_f := \{x \in X | f(x) = x\},\$$

the fixed point set of the operator f. By definition, f is weakly Picard operator if the sequence $(f^n(x))_{n \in \mathbb{N}}$, of successive approximations converges for all $x \in X$ and the limit (which may depend on x) is a fixed point of f. For example, self Caristi type operators and self graphic contractions on complete metric spaces are examples of weakly Picard operators.

If *f* is weakly Picard operator then we consider the operator $f^{\infty} : X \to X$ defined by $f^{\infty}(x) := \lim_{n \to \infty} f^n(x)$. It is clear that $f^{\infty}(X) = F_f$. Moreover, f^{∞} is a set retraction of *X* to F_f .

If *f* is weakly Picard operator and $F_f = \{x^*\}$, then by definition *f* is a Picard operator. In this case f^{∞} is the constant operator, $f^{\infty}(x) = x^*$, for all $x \in X$. Self Banach contractions, Kannan contractions and Ciric-Reich-Rus contractions on complete metric spaces are nice examples of Picard operators.

The following concepts are important in our consideration, see [6].

Definition 1.1. Let $f : X \to X$ be a weakly Picard operator and c > 0 a real number. By definition the operator f is c-weakly Picard operator if

$$d(x, f^{\infty}(x)) \leq cd(x, f(x)), \text{ for all } x \in X.$$

Example 1.1. Let (X, d) be a complete metric space and $f : X \to X$ an operator with closed graphic. We suppose that f is a graphic α -contraction, i.e.,

$$d(f^2(x), f(x)) \le \alpha d(x, f(x)), \text{ for all } x \in X.$$

Then *f* is a *c*-weakly Picard operator, with $c = \frac{1}{1-\alpha}$.

Definition 1.2. Let (X, d) be a metric space and $f : X \to X$ be an operator. By definition, the fixed point equation

$$x = f(x) \tag{1.1}$$

Received: 31.10.2010. In revised form: 30.06.2011. Accepted: 30.11.2011

²⁰¹⁰ Mathematics Subject Classification. 47H10, 54H25, 54C60.

Key words and phrases. Ulam-Hyers stability, weakly Picard operator, c-weakly Picard operator, fixed point, coincidence point, Cauchy problem, singlevalued operator, multivalued operator.

is Ulam-Hyers stable if there exists a real number $c_f > 0$ such that for each $\varepsilon > 0$ and each solution y^* of the inequation

$$d(y, f(y)) \le \varepsilon \tag{1.2}$$

there exists a solution x^* of the equation (1.1) such that

 $d(y^*, x^*) \le c_f \varepsilon.$

The following abstract result was proved in [6].

Lemma 1.1. If f is a c-weakly Picard operator, then the fixed point equation (1.1) is Ulam-Hyers stable.

More generally, in [6] the following concept was introduced.

Definition 1.3. ([6]) Let $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function which is continuous in 0 and $\psi(0) = 0$. An operator $f : X \to X$ is said to be a ψ -weakly Picard operator if it is nonself weakly Picard operator and

$$d(x, f^{\infty}(x)) \leq \psi(d(x, f(x))), \text{ for all } x \in X.$$

In the case that $\psi(t) := ct$ (with c > 0), for each $t \in \mathbb{R}_+$, we say that f is c-weakly Picard operator.

Let (X, d) and (Y, ρ) be two metric spaces and $f, g : X \to Y$ two operators. Let us consider the following coincidence point problem

$$f(x) = g(x) \tag{1.3}$$

We denote by C(f, g) the set of coincidence points of f and g.

Definition 1.4. ([6]) Let (X, d) and (Y, ρ) be two metric spaces and $f, g : X \to Y$ be two operators. The coincidence problem (1.3) is called generalized Ulam-Hyers stable if and only if there exists $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous in 0 and $\psi(0) = 0$ such that for every $\varepsilon > 0$ and for each solution u^* of the inequality

$$\rho(f(u), g(u)) \le \varepsilon \tag{1.4}$$

there exists a solution x^* of (1.3) such that

$$d(u^*, x^*) \le \psi(\varepsilon).$$

If there exists c > 0 such that $\psi(t) := ct$, for each $t \in \mathbb{R}_+$ then the coincidence point (1.3) is said to be Ulam-Hyers stable.

Definition 1.5. ([6]) Let (X, d) and (Y, ρ) be two metric spaces. Then the operators $f, g : X \to Y$ form a ψ -weakly Picard pair, denoted by [f, g] if $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous in 0 and $\psi(0) = 0$ and there exists an operator $p : X \to X$ such that:

- (i) p is a weakly Picard operator;
- (ii) Fix(p) = C(f,g);
- (iii) $d(x, f^{\infty}(x)) \leq \psi(\rho(f(x), g(x)))$, for each $x \in X$.

If there exists c > 0 such that $\psi(t) := ct$, for each $t \in \mathbb{R}_+$, then the operators $f, g : X \to Y$ form a *c*-weakly Picard pair.

A result on Ulam-Hyers stability of a coincidence point problem is the following theorem. **Theorem 1.1 ([6]).** Let (X, d) and (Y, ρ) be two metric spaces and $f, g : X \to Y$ be two operators such that [f, g] forms a ψ -weakly Picard pair (respectively a *c*-weakly Picard pair). Then the coincidence point problem (1.3) is generalized Ulam-Hyers stable (respectively Ulam-Hyers stable).

Another result of this type, useful for applications, is the following theorem.

Theorem 1.2. Let (X, d) and (Y, ρ) be two metric spaces and $f, g : X \to Y$ be two operators. Suppose that $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ is increasing, continuous in 0, $\psi(0) = 0$ and there exists an operator $p : X \to X$ such that:

(*i*) p is a ψ -weakly Picard operator;

(*ii*) Fix(p)=C(f,g);

(iii) $d(x, p(x)) \leq \rho(f(x), g(x))$ for each $x \in X$.

Then the coincidence point problem (1.3) is generalized Ulam-Hyers stable (respectively Ulam-Hyers stable).

Proof. Let $\varepsilon > 0$ and $u^* \in X$ be a solution of (1.4), i.e. $\rho(f(u^*), g(u^*)) \leq \varepsilon$. Then by (iii), for $u^* \in X$ we have $d(u^*, p(u^*)) \leq \rho(f(u^*), g(u^*))$.

Since *p* is a ψ -weakly Picard operator, we get that

 $d(x, p^{\infty}(x)) \leq \psi(d(x, p(x))), \text{ for each } x \in X.$

If we denote $x^* := p^{\infty}(u^*)$, then by (i) and (iii), we obtain that $x^* \in C(f,g)$ and

$$d(u^*, x^*) = d(u^*, p^{\infty}(u^*)) \le \psi(d(u^*, p(u^*))) \le \psi(\rho(f(u^*), g(u^*))) \le \psi(\varepsilon).$$

We will present now a consequence of the above abstract result.

The following auxiliary lemma is quite obvious.

Lemma 1.2. Let X, Y be two nonempty sets and let $f, g : X \to Y$ be two operators. Suppose that f (respectively g) is onto. Then C(f,g) = Fix(p), where $p := f^{-1} \circ g$ (respectively $p := g^{-1} \circ f$).

By Lemma 1.2 and the above theorems we get the following result.

Theorem 1.3. Let (X, d) and (Y, ρ) be two metric spaces and $f, g : X \to Y$ be two operators such that:

(i) f is onto;

(*ii*) $f^{-1} \circ g$ *is an a-contraction;*

(iii) for each $x \in X$ we have $d(x, f^{-1}(g(x))) \le \rho(f(x), g(x))$.

Then the coincidence point problem (1.3) is Ulam-Hyers stable.

Proof. By (i) and (ii) we get that $p := f^{-1} \circ g$ is a *c*-weakly Picard operator with $c := \frac{1}{1-a}$. Moreover, by Lemma 1.2 we have that Fix(p) = C(f,g). By (iii) we obtain that the condition (iii) in Theorem 1.2 holds. The conclusion follows now by Theorem 1.2,

Example 1.2. If $f, g : [0,1] \to [0,3]$ are given by f(x) = 3x, g(x) = 2x, for each $x \in [0,1]$, then f is onto, $f^{-1} \circ g : [0,1] \to [0,1]$, given by $(f^{-1} \circ g)(x) = \frac{2x}{3}$ is $\frac{2}{3}$ -contraction and $C(f,g) = \{0\}$.

Notice also that for each $x \in [0,1]$ there exists $y \in [0,1]$ such that f(y) = g(x) and $|x-y| \le \rho(f(x), g(x))$. We have $g(x) = 2x \in [0,2]$ and $f(y) = 3y \in [0,2] \Rightarrow y \in \left[0,\frac{2}{3}\right] \subset [0,1]$. Thus, in this case, the coincidence point problem (1.3) is Ulam-Hyers stable.

We will present now a result on Ulam-Hyers stability for the case of Goebel coincidence theorem.

Theorem 1.4. Let $A \neq \emptyset$ be an arbitrary set and let (M, d) be a metric space. Let $S, T : A \rightarrow M$ such that $S(A) \subset T(A)$ and (T(A), d) is a complete subspace of M. Suppose that exists $0 \leq k < 1$ such that $d(Sx, Sy) \leq kd(Tx, Ty)$, for all $x, y \in A$. Then:

a) $C(S,T) \neq \emptyset$ (Goebel's Theorem, see [4]);

b) If additionally:

$$d(y, S(T^{-1}(y))) \le d(Ty, Sy), \text{ for all } y \in T(A),$$

$$(1.5)$$

then the coincidence point problem (1.3) is Ulam-Hyers stable.

Proof. a) Let $f := S \circ T^{-1}$. The proof is organized in several steps. We prove:

i) f is a singlevalued operator on T(A);

Let $y_1, y_2 \in f(x)$. We get $y_1 \in S(T^{-1}(x))$ and $y_2 \in S(T^{-1}(x))$. So exists $u_1, u_2 \in T^{-1}(x)$ such that $y_1 = S(u_1)$ and $y_2 = S(u_2)$. Because $u_1, u_2 \in T^{-1}(x)$ we have $T(u_1) = x$ and $T(u_2) = x$. Then we have:

$$d(y_1, y_2) = d(Su_1, Su_2) \le kd(Tu_1, Tu_2) = 0.$$

So $y_1 = y_2$ and thus f(x) is a single point.

ii) $f: T(A) \to T(A);$

Let $x \in T(A)$. Then exists $a \in A$ such that x = T(a). So we have $a \in T^{-1}(x) \Rightarrow S(a) \subseteq S(T^{-1}(x)) \Rightarrow S(a) \subseteq f(x)$. Since f is a siglevalued operator we get $S(a) = f(x) \Rightarrow f(x) = S(a) \subseteq S(A) \subseteq T(A)$.

iii) $f : T(A) \to T(A)$ is *k*-contraction;

Let $x_1, x_2 \in T(A)$ and $u_1, u_2 \in A$ such that $u_1 \in T^{-1}(x_1)$ and $u_2 \in T^{-1}(x_2)$. Then we have: $d(f(x_1), f(x_2)) = d(S(T^{-1}(x_1)), S(T^{-1}(x_2))) = d(Su_1, Su_2) \leq kd(Tu_1, Tu_2) = kd(x_1, x_2)$. So f is a k-contraction.

iv) we apply Banach contraction principle for f and thus there exists a unique $y^* \in T(A)$ such that $y^* = f(y^*) = S(T^{-1}(y^*))$.

Let $x^* = T^{-1}(y^*) \Rightarrow y^* = T(x^*)$. We get $y^* = S(x^*)$. Then we have $S(x^*) = T(x^*) = y^*$.

b) Because $f: T(A) \to T(A)$, $f(x) = S \circ T^{-1}$ is a contraction then $Fix(f) = \{y^*\}$ and f is a Picard operator. So exists $c_f > 0$ such that for all $\varepsilon > 0$ and for all $u^* \in T(A)$ such that $d(u^*, f(u^*)) \le \varepsilon$ we have $d(u^*, y^*) \le \frac{1}{1-k} \cdot \varepsilon$.

We proof that the coincidence point problem is Ulam-Hyers stable.

Let $\varepsilon > 0$ and $x \in A$ such that $d(Tx, Sx) \leq \varepsilon$. Then we take account (1.5) we have $d(u^*, f(u^*)) \leq d(Tu^*, Su^*) \leq \varepsilon$. So we get

$$d(u^*, y^*) = d(u^*, f(y^*)) = d(f(y^*), f(u^*)) + d(f(u^*), u^*) = kd(u^*, y^*) + \varepsilon.$$

Then $d(u^*, y^*) = \frac{\varepsilon}{1-k}.$

2. ULAM-HYERS STABILITY FOR OPERATORIAL INCLUSIONS

The aim of this section is to prove an Ulam-Hyers stability result for a Cauchy problem associated to a differential inclusion of first order. We introduce first some notations and concepts.

Definition 2.6. (see [7], [5] and [6]) Let (X, d) be a metric space, and $F : X \to P_{cl}(X)$ be a multivalued operator. By definition, F is a multivalued weakly Picard operator if for each $x \in X$ and each $y \in F(x)$ there exists a sequence $(x_n)_{n \in \mathbb{N}}$ such that: (i) $x_n = x$ $x_n = w$:

(1)
$$x_0 = x, x_1 = y;$$

(ii) $x_{n+1} \in F(x_n)$, for each $n \in \mathbb{N}$;

(iii) the sequence $(x_n)_{n \in \mathbb{N}}$ is convergent and its limit is a fixed point of *F*.

Let $F : X \to P(X)$ be a multi-valued weakly Picard operator. Denote

$$Graph(F) := \{(x, y) \in X \times X : x \in X \text{ and } y \in F(x)\}.$$

Then, we consider the multi-valued operator F^{∞} : $Graph(F) \rightarrow P(Fix(F))$ defined by the following formula:

 $F^{\infty}(x, y) := \{$ the set of all fixed points of *F* that are limits of a successive approximations sequence starting from $(x, y)\}.$

Definition 2.7. Let (X, d) be a metric space and let $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function which is continuous in 0 and $\psi(0) = 0$. Then $F : X \to P(X)$ is said to be a multi-valued ψ -weakly Picard operator if it is a multi-valued weakly Picard operator and there exists a selection $f^{\infty} : Graph(F) \to Fix(F)$ of F^{∞} such that

$$d(x, f^{\infty}(x, y)) \le \psi(d(x, y)), \text{ for all } (x, y) \in Graph(F).$$

If there exists c > 0 such that $\psi(t) := ct$ for each $t \in \mathbb{R}_+$, then we say that F is a multivalued c-weakly Picard operator.

Definition 2.8. Let (X, d) be a metric space and $F : X \to P(X)$ be a multi-valued operator. The fixed point inclusion

$$x \in F(x), \quad x \in Y \tag{2.6}$$

is called generalized Ulam-Hyers stable if and only if there exists $\psi : \mathbb{R}_+ \to \mathbb{R}_+$ increasing, continuous in 0 and $\psi(0) = 0$ such that for each $\varepsilon > 0$ and for each solution $y^* \in X$ of the inequation

$$D(y, F(y)) \le \varepsilon \tag{2.7}$$

there exists a solution x^* of the fixed point inclusion (2.6) such that

$$d(y^*, x^*) \le \psi(\varepsilon).$$

If there exists c > 0 such that $\psi(t) := ct$, for each $t \in \mathbb{R}_+$, then the fixed point inclusion (2.6) is said to be Ulam-Hyers stable.

The following abstract result has given in [2].

Lemma 2.3. Let (X, d) be a metric space and $F : X \to P_{cp}(X)$ be a multi-valued ψ -weakly Picard operator. Then the fixed point inclusion (2.6) is generalized Ulam-Hyers stable.

The aim of this section is, based on the above result, to prove an Ulam-Hyers stability theorem for a multi-valued Cauchy problem corresponding to a first order differential inclusion.

Let us consider the following multi-valued Cauchy problem:

$$\begin{cases} x'(t) \in F(t, x(t)), \text{ a.e. } t \in [a, b]; \\ x(a) = \alpha, \end{cases}$$
(2.8)

where $\alpha \in \mathbb{R}^n$ and $F : [a, b] \times \mathbb{R}^n \to P_{cp,cv}(\mathbb{R}^n)$ is a multi-valued operator. We will denote by $\int_a^b F(s, x(s)) ds$ (where $x : [a, b] \to \mathbb{R}^n$ is a given function) the multi-valued integral in Aumann' sense, see [1]. **Definition 2.9.** Let $F : [a, b] \times \mathbb{R}^n \to P_{cp, cv}(\mathbb{R}^n)$ a multi-valued operator, $a \in \mathbb{R}$ and $\alpha \in \mathbb{R}^n$. A function $\varphi : [a, T] \to \mathbb{R}^n$ is called solution to problem (2.8) if and only if $T \leq b$, φ is absolutely continuous on [a, T] and satisfy the relations:

$$\begin{cases} \varphi'(t) \in F(t,\varphi(t)), \text{ a.e. on } [a,T];\\ \varphi(a) = \alpha. \end{cases}$$

The equivalence between the above differential inclusion and an integral inclusion is given by the following lemma:

Lemma 2.4. Let $I \subset \mathbb{R}$ an interval and $F : I \times \mathbb{R}^n \to P_{cp,cv}(\mathbb{R}^n)$ be an upper semi-continuous multi-valued operator. Then $x : I \to \mathbb{R}$ is a solution for differential inclusion

$$x'(t) \in F(t, x(t)) \tag{2.9}$$

if and only if

$$x(t_2) \in x(t_1) + \int_{t_1}^{t_2} F(t, x(t)) dt$$
, for each $t_1, t_2 \in I$. (2.10)

Taking into account of Lemma 2.4 we deduce that the problem (2.8) is equivalent to an integral inclusion of Volterra type:

$$x(t) \in \alpha + \int_{a}^{t} F(s, x(s))ds, \ t \in [a, b].$$
 (2.11)

The result with respect to the Ulam-Hyers stability of the Cauchy problem (2.8) is the following theorem.

Theorem 2.5. Let $F : [a, b] \times \mathbb{R}^n \to P_{cl, cv}(\mathbb{R}^n)$ such that:

(a) there exists an integrable function $M : [a,b] \to \mathbb{R}_+$ such that for each $u \in \mathbb{R}^n$ we have $F(s,u) \subset M(s)B(0,1)$, a.e. $s \in [a,b]$;

(b) for each $u \in \mathbb{R}^n$, $F(\cdot, u) : [a, b] \to P_{cl, cv}(\mathbb{R}^n)$ is measurable;

(c) for each $u \in \mathbb{R}^n$, $F(\cdot, u) : [a, b] \to P_{cl,cv}(\mathbb{R}^n)$ is lower semi-continuous;

(d) there exists a continuous function $p : [a, b] \to \mathbb{R}_+$ such that for each $s \in [a, b]$ and each $u, v \in \mathbb{R}^n$ we have that:

$$H(F(s,u), F(s,v)) \le p(s) \cdot |u-v|.$$
(2.12)

Then the following conclusions hold:

(i) there exists at least one solution for the Cauchy problem (2.8);

(ii) the Cauchy problem (2.8) is Ulam-Hyers stable, i.e. for each $\varepsilon > 0$ there exists $c_{\varepsilon} > 0$ such that for each function $y \in C([a, b], \mathbb{R}^n)$ of the inequation

 $D_{\|\cdot\|_{\mathbb{R}^n}}(y(t), F(t, y(t))) \le \varepsilon, \quad t \in [a, b],$

wich satisfy the condition $y(a) = \alpha$ there exists a solution x of problem (2.8) such that

 $||x(t) - y(t)||_{\mathbb{R}^n} \le c_{\varepsilon} \cdot \varepsilon$, for each $t \in [a, b]$.

Proof. We consider the multi-valued operator $T : C([a, b], \mathbb{R}^n) \to P(C([a, b], \mathbb{R}^n))$ defined by

$$T(x) := \left\{ v \in C([a,b],\mathbb{R}^n) | v(t) \in \alpha + \int_a^t F(s,x(s)) ds, t \in [a,b] \right\}.$$

Then (2.8) is equivalent to (2.11) and, by the above notation, equivalent to the fixed point inclusion

$$x \in T(x), \ x \in C([a, b], \mathbb{R}^n).$$
 (2.13)

The proof is organized in several steps:

1). $T(x) \in P_{cp}(C([a, b], \mathbb{R}^n)).$

From Theorem 2 in Rybinski [8] we have that for each $x \in C([a, b], \mathbb{R}^n)$ there exists $f(s) \in F(s, x(s))$, for all $s \in [a, b]$, such that f(s) is integrable.

Then $v(t) := \alpha + \int_a^t f(s)ds$ has the property $v \in T(x)$. Moreover, from (a) and (b), via Theorem 8.6.3. in Aubin and Frankowska [1], we get that T(x) is a compact set, for each $x \in C([a, b], \mathbb{R}^n)$.

2). *T* is a multi-valued contraction on $C([a, b], \mathbb{R}^n)$.

Notice first that one may suppose (without affecting the generality of the Lipschitz condition) that the inequality (2.12) is strict. Let $x_1, x_2 \in C([a, b], \mathbb{R}^n)$ and $v_1 \in T(x_1)$.

Then
$$v_1(t) \in \alpha + \int_a^t F(s, x_1(s)) ds$$
, $t \in [a, b]$. It follows that
 $v_1(t) \in \alpha + \int_a^t f_1(s) ds$, $t \in [a, b]$, for some $f_1(s) \in F(s, x_1(s)) ds$, $s \in [a, b]$.

From (d) we have $H(F(s, x_1(s)), F(s, x_2(s))) < p(s) \cdot |x_1(s) - x_2(s)|$. Thus there exists $w \in F(s, x_2(s)$ such that $|f_1(s) - w| \le p(s) \cdot |x_1(s) - x_2(s)|$, for $s \in [a, b]$.

Let as define $U : [a, b] \to P(\mathbb{R}^n)$, by

$$U(s) := \{ w | |f_1(s) - w| \le p(s) \cdot |x_1(s) - x_2(s)| \}$$

Since the multi-valued operator $V(s) := U(s) \cap F(s, x_2(s))$ is measurable, so exists $f_2(s)$ a selection for V, measurable (and hence integrable in s). Hence $f_2(s) \in F(s, x_2(s))$ and $|f_1(s) - f_2(s)| \le p(s) \cdot |x_1(s) - x_2(s)|$, for each $s \in [a, b]$.

Consider $v_2(t) = \alpha + \int_a^t f_2(s), t \in [a, b]$. We denote by $\|\cdot\|_B$ a Bielecki-type norm in $C([a, b], \mathbb{R}^n)$, given by

$$||x||_B := \sup_{t \in [a,b]} (||x(t)||_{\mathbb{R}^n} \cdot e^{-\tau q(t)}), \text{ where } q(t) := \int_a^t p(s) ds.$$

Then for each $t \in [a, b]$, we have:

$$\begin{aligned} |v_1(t) - v_2(t)| &\leq \int_a^t |f_1(s) - f_2(s)| ds \leq \int_a^t p(s) |x_1(s) - x_2(s)| ds = \\ &= \int_a^t p(s) e^{\tau q(s)} |x_1(s) - x_2(s)| e^{-\tau q(s)} ds \leq \int_a^t p(s) e^{\tau q(s)} ||x_1 - x_2||_B ds = \\ &= \frac{1}{\tau} ||x_1 - x_2||_B (e^{\tau q(t)} - e^{\tau q(a)}) \leq \frac{1}{\tau} ||x_1 - x_2||_B e^{\tau q(t)}. \end{aligned}$$

Thus we immediately get $||v_1 - v_2||_B \leq \frac{1}{\tau} ||x_1 - x_2||_B$. A similar relation can be obtained by interchanging the role of x_1 and x_2 . By choosing now $\tau > 1$ we get that $H_{\|\cdot\|_B}(T(x_1), T(x_2)) \leq \frac{1}{\tau} ||x_1 - x_2||_B$, which prove that T is a multi-valued contraction with constant $\alpha := \frac{1}{\tau}$. Hence, conclusion (i) follows by Covitz-Nadler's fixed point theorem [3].

For the second conclusion, let $\varepsilon > 0$ and $y \in C([a,b], \mathbb{R}^n)$ for which there exits $u \in C([a,b], \mathbb{R}^n)$ such that $u(t) \in \alpha + \int_a^t F(s,y(s))ds$, $t \in [a,b]$ and $||u(t) - y(t)||_{\mathbb{R}^n} \leq \varepsilon$,

for each $t \in [a, b]$. Notice that $\|\cdot\|_B \leq \|\cdot\|_C \leq \|\cdot\|_B e^{\tau q(b)}$, where $\|\cdot\|_C$ denotes the Cebâşev norm in $C([a, b], \mathbb{R}^n)$ defined by $\|x\|_C := \max_{t \in [a, b]} (\|x(t)\|_{\mathbb{R}^n})$. Then we obtain that $\|u - y\|_B \leq \|u - y\|_C \leq \varepsilon$. Thus, $D_{\|\cdot\|_B}(y, T(y)) \leq \varepsilon$. Moreover, since T is a multi-valued α -contraction with respect to $\|\cdot\|_B$, we obtain that T is a multi-valued c-weakly Picard operator with $c := \frac{1}{1 - \alpha}$. The conclusion (ii) is a consequence of Lemma 2.3. Hence, there exists $c := \frac{1}{1 - \alpha}$ and a solution x^* of the Cauchy problem (2.8) such that $\|y - x^*\|_B \leq c \cdot \varepsilon$. Hence $|y(t) - x^*(t)| \leq c \cdot e^{\tau q(b)} \cdot \varepsilon$, for each $t \in [a, b]$.

Acknowledgements. This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/ 107/1.5/S/76841 with the title Modern Doctoral Studies: Internationalization and Interdisciplinarity.

References

- [1] Aubin, J.-P. and Frankowska, H., Set-Valued Analysis, Birkhauser, Basel, 1990
- [2] Boriceanu, M. and Petruşel, A., Ulam-Hyers stability for operatorial equations, Anal. Univ. "Al. I. Cuza" Iaşi (to appear)
- [3] Covitz, H. and Nadler, S. B. jr., Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970) 5–11
- [4] Goebel, K., A coincidence theorem, Bull. de L'Acad. Pol. des Sci. 16 (1968), No. 9, 733-735
- [5] Petruşel, A., Multi-valued weakly Picard operators and applications, Sci. Math. Jpn. 59 (2004), 169–202
- [6] Rus, I. A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10 (2009), No. 2, 305–320
- [7] Rus, I. A., Petruşel, A. and Sîntămărian, A., Data dependence of the fixed points set of some multi-valued weakly Picard operators, Nonlinear Anal. 52 (2003), No. 8, 1947–1959
- [8] Rybinski, L., On Carathéodory type selection, Fund. Math. 125 (1985), 187-193

DEPARTMENT OF APPLIED MATHEMATICS "BABEŞ BOLYAI" UNIVERSITY KOGĂLNICEANU 1, 400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: oana.mlesnite@math.ubbcluj.ro