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Ulam-Hyers stability for operatorial inclusions

OANA MARIA MLEŞNIŢE

ABSTRACT. The purpose of the work is to present some Ulam-Hyers stability results for the coincidence point
problem associated to single-valued and multi-valued operators. As an application, an Ulam-Hyers stability
theorem for a differential inclusion.

1. ULAM-HYERS STABILITY FOR COINCIDENCE EQUATIONS

Let (X, d) be a metric space and f : X → X an operator. We denote by

Ff := {x ∈ X|f(x) = x},
the fixed point set of the operator f . By definition, f is weakly Picard operator if the
sequence (fn(x))n∈N, of successive approximations converges for all x ∈ X and the limit
(which may depend on x) is a fixed point of f . For example, self Caristi type operators
and self graphic contractions on complete metric spaces are examples of weakly Picard
operators.

If f is weakly Picard operator then we consider the operator f∞ : X → X defined by
f∞(x) := lim

n→∞
fn(x). It is clear that f∞(X) = Ff . Moreover, f∞ is a set retraction of X to

Ff .
If f is weakly Picard operator and Ff = {x∗}, then by definition f is a Picard operator.

In this case f∞ is the constant operator, f∞(x) = x∗, for all x ∈ X . Self Banach contrac-
tions, Kannan contractions and Ciric-Reich-Rus contractions on complete metric spaces
are nice examples of Picard operators.

The following concepts are important in our consideration, see [6].

Definition 1.1. Let f : X → X be a weakly Picard operator and c > 0 a real number. By
definition the operator f is c-weakly Picard operator if

d(x, f∞(x)) ≤ cd(x, f(x)), for all x ∈ X.

Example 1.1. Let (X, d) be a complete metric space and f : X → X an operator with
closed graphic. We suppose that f is a graphic α-contraction, i.e.,

d(f2(x), f(x)) ≤ αd(x, f(x)), for all x ∈ X.

Then f is a c-weakly Picard operator, with c =
1

1− α
.

Definition 1.2. Let (X, d) be a metric space and f : X → X be an operator. By definition,
the fixed point equation

x = f(x) (1.1)
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is Ulam-Hyers stable if there exists a real number cf > 0 such that for each ε > 0 and each
solution y∗ of the inequation

d(y, f(y)) ≤ ε (1.2)

there exists a solution x∗ of the equation (1.1) such that

d(y∗, x∗) ≤ cfε.

The following abstract result was proved in [6].

Lemma 1.1. If f is a c-weakly Picard operator, then the fixed point equation (1.1) is Ulam-Hyers
stable.

More generally, in [6] the following concept was introduced.

Definition 1.3. ([6]) Let ψ : R+ → R+ be an increasing function which is continuous in
0 and ψ(0) = 0. An operator f : X → X is said to be a ψ-weakly Picard operator if it is
nonself weakly Picard operator and

d(x, f∞(x)) ≤ ψ(d(x, f(x))), for all x ∈ X.

In the case that ψ(t) := ct (with c > 0), for each t ∈ R+, we say that f is c-weakly Picard
operator.

Let (X, d) and (Y, ρ) be two metric spaces and f, g : X → Y two operators. Let us
consider the following coincidence point problem

f(x) = g(x) (1.3)

We denote by C(f, g) the set of coincidence points of f and g.

Definition 1.4. ([6]) Let (X, d) and (Y, ρ) be two metric spaces and f, g : X → Y be two
operators. The coincidence problem (1.3) is called generalized Ulam-Hyers stable if and
only if there exists ψ : R+ → R+ increasing, continuous in 0 and ψ(0) = 0 such that for
every ε > 0 and for each solution u∗ of the inequality

ρ(f(u), g(u)) ≤ ε (1.4)

there exists a solution x∗ of (1.3) such that

d(u∗, x∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) := ct, for each t ∈ R+ then the coincidence point (1.3)
is said to be Ulam-Hyers stable.

Definition 1.5. ([6]) Let (X, d) and (Y, ρ) be two metric spaces. Then the operators f, g :
X → Y form a ψ-weakly Picard pair, denoted by [f, g] if ψ : R+ → R+ increasing, contin-
uous in 0 and ψ(0) = 0 and there exists an operator p : X → X such that:

(i) p is a weakly Picard operator;
(ii) Fix(p) = C(f, g);
(iii) d(x, f∞(x)) ≤ ψ(ρ(f(x), g(x))), for each x ∈ X .
If there exists c > 0 such that ψ(t) := ct, for each t ∈ R+, then the operators f, g : X →

Y form a c-weakly Picard pair.

A result on Ulam-Hyers stability of a coincidence point problem is the following theo-
rem.
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Theorem 1.1 ([6]). Let (X, d) and (Y, ρ) be two metric spaces and f, g : X → Y be two opera-
tors such that [f, g] forms a ψ-weakly Picard pair (respectively a c-weakly Picard pair). Then
the coincidence point problem (1.3) is generalized Ulam-Hyers stable (respectively Ulam-Hyers
stable).

Another result of this type, useful for applications, is the following theorem.

Theorem 1.2. Let (X, d) and (Y, ρ) be two metric spaces and f, g : X → Y be two operators.
Suppose that ψ : R+ → R+ is increasing, continuous in 0, ψ(0) = 0 and there exists an operator
p : X → X such that:

(i) p is a ψ-weakly Picard operator;
(ii) Fix(p)=C(f,g);
(iii) d(x, p(x)) ≤ ρ(f(x), g(x)) for each x ∈ X .
Then the coincidence point problem (1.3) is generalized Ulam-Hyers stable (respectively Ulam-

Hyers stable).

Proof. Let ε > 0 and u∗ ∈ X be a solution of (1.4), i.e. ρ(f(u∗), g(u∗)) ≤ ε. Then by (iii), for
u∗ ∈ X we have d(u∗, p(u∗)) ≤ ρ(f(u∗), g(u∗)).

Since p is a ψ-weakly Picard operator, we get that

d(x, p∞(x)) ≤ ψ(d(x, p(x))), for each x ∈ X.
If we denote x∗ := p∞(u∗), then by (i) and (iii), we obtain that x∗ ∈ C(f, g) and

d(u∗, x∗) = d(u∗, p∞(u∗)) ≤ ψ(d(u∗, p(u∗))) ≤ ψ(ρ(f(u∗), g(u∗))) ≤ ψ(ε). �

We will present now a consequence of the above abstract result.
The following auxiliary lemma is quite obvious.

Lemma 1.2. LetX , Y be two nonempty sets and let f, g : X → Y be two operators. Suppose that
f (respectively g) is onto. Then C(f, g) = Fix(p), where p := f−1 ◦g (respectively p := g−1 ◦f ).

By Lemma 1.2 and the above theorems we get the following result.

Theorem 1.3. Let (X, d) and (Y, ρ) be two metric spaces and f, g : X → Y be two operators
such that:

(i) f is onto;
(ii) f−1 ◦ g is an a-contraction;
(iii) for each x ∈ X we have d(x, f−1(g(x))) ≤ ρ(f(x), g(x)).
Then the coincidence point problem (1.3) is Ulam-Hyers stable.

Proof. By (i) and (ii) we get that p := f−1 ◦ g is a c-weakly Picard operator with c :=
1

1− a
. Moreover, by Lemma 1.2 we have that Fix(p) = C(f, g). By (iii) we obtain that the

condition (iii) in Theorem 1.2 holds. The conclusion follows now by Theorem 1.2, �

Example 1.2. If f, g : [0, 1] → [0, 3] are given by f(x) = 3x, g(x) = 2x, for each x ∈ [0, 1],

then f is onto, f−1 ◦ g : [0, 1] → [0, 1], given by (f−1 ◦ g)(x) =
2x

3
is

2

3
-contraction and

C(f, g) = {0}.
Notice also that for each x ∈ [0, 1] there exists y ∈ [0, 1] such that f(y) = g(x) and

|x − y| ≤ ρ(f(x), g(x)). We have g(x) = 2x ∈ [0, 2] and f(y) = 3y ∈ [0, 2] ⇒ y ∈
[
0,

2

3

]
⊂

[0, 1]. Thus, in this case, the coincidence point problem (1.3) is Ulam-Hyers stable.

We will present now a result on Ulam-Hyers stability for the case of Goebel coincidence
theorem.
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Theorem 1.4. Let A 6= ∅ be an arbitrary set and let (M,d) be a metric space. Let S, T : A→M
such that S(A) ⊂ T (A) and (T (A), d) is a complete subspace ofM . Suppose that exists 0 ≤ k < 1
such that d(Sx, Sy) ≤ kd(Tx, Ty), for all x, y ∈ A. Then:

a) C(S, T ) 6= ∅ (Goebel’s Theorem, see [4]);
b) If additionally:

d(y, S(T−1(y))) ≤ d(Ty, Sy), for all y ∈ T (A), (1.5)

then the coincidence point problem (1.3) is Ulam-Hyers stable.

Proof. a) Let f := S ◦ T−1. The proof is organized in several steps. We prove:
i) f is a singlevalued operator on T (A);
Let y1, y2 ∈ f(x). We get y1 ∈ S(T−1(x)) and y2 ∈ S(T−1(x)). So exists u1, u2 ∈ T−1(x)

such that y1 = S(u1) and y2 = S(u2). Because u1, u2 ∈ T−1(x) we have T (u1) = x and
T (u2) = x. Then we have:

d(y1, y2) = d(Su1, Su2) ≤ kd(Tu1, Tu2) = 0.

So y1 = y2 and thus f(x) is a single point.
ii) f : T (A)→ T (A);
Let x ∈ T (A). Then exists a ∈ A such that x = T (a). So we have a ∈ T−1(x)⇒ S(a) ⊆

S(T−1(x))⇒ S(a) ⊆ f(x). Since f is a siglevalued operator we get S(a) = f(x)⇒ f(x) =
S(a) ⊆ S(A) ⊆ T (A).

iii) f : T (A)→ T (A) is k-contraction;
Let x1, x2 ∈ T (A) and u1, u2 ∈ A such that u1 ∈ T−1(x1) and u2 ∈ T−1(x2). Then

we have: d(f(x1), f(x2)) = d(S(T−1(x1)), S(T
−1(x2))) = d(Su1, Su2) ≤ kd(Tu1, Tu2) =

kd(x1, x2). So f is a k-contraction.
iv) we apply Banach contraction principle for f and thus there exists a unique y∗ ∈

T (A) such that y∗ = f(y∗) = S(T−1(y∗)).
Let x∗ = T−1(y∗) ⇒ y∗ = T (x∗). We get y∗ = S(x∗). Then we have S(x∗) = T (x∗) =

y∗.
b) Because f : T (A)→ T (A), f(x) = S ◦ T−1 is a contraction then Fix(f) = {y∗} and f

is a Picard operator. So exists cf > 0 such that for all ε > 0 and for all u∗ ∈ T (A) such that

d(u∗, f(u∗)) ≤ ε we have d(u∗, y∗) ≤ 1

1− k
· ε.

We proof that the coincidence point problem is Ulam-Hyers stable.
Let ε > 0 and x ∈ A such that d(Tx, Sx) ≤ ε. Then we take account (1.5) we have

d(u∗, f(u∗)) ≤ d(Tu∗, Su∗) ≤ ε. So we get

d(u∗, y∗) = d(u∗, f(y∗)) = d(f(y∗), f(u∗)) + d(f(u∗), u∗) = kd(u∗, y∗) + ε.

Then d(u∗, y∗) =
ε

1− k
. �

2. ULAM-HYERS STABILITY FOR OPERATORIAL INCLUSIONS

The aim of this section is to prove an Ulam-Hyers stability result for a Cauchy prob-
lem associated to a differential inclusion of first order. We introduce first some notations
and concepts.

Definition 2.6. (see [7], [5] and [6]) Let (X, d) be a metric space, and F : X → Pcl(X) be a
multivalued operator. By definition, F is a multivalued weakly Picard operator if for each
x ∈ X and each y ∈ F (x) there exists a sequence (xn)n∈N such that:
(i) x0 = x, x1 = y;
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(ii) xn+1 ∈ F (xn), for each n ∈ N;
(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of F .

Let F : X → P (X) be a multi-valued weakly Picard operator. Denote

Graph(F ) := {(x, y) ∈ X ×X : x ∈ X and y ∈ F (x)}.

Then, we consider the multi-valued operator F∞ : Graph(F ) → P (Fix(F )) defined by
the following formula:
F∞(x, y) := { the set of all fixed points of F that are limits of a successive approximations
sequence starting from (x, y)}.

Definition 2.7. Let (X, d) be a metric space and let ψ : R+ → R+ be an increasing function
which is continuous in 0 and ψ(0) = 0. Then F : X → P (X) is said to be a multi-valued
ψ-weakly Picard operator if it is a multi-valued weakly Picard operator and there exists a
selection f∞ : Graph(F )→ Fix(F ) of F∞ such that

d(x, f∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph(F ).

If there exists c > 0 such that ψ(t) := ct for each t ∈ R+, then we say that F is a multi-
valued c-weakly Picard operator.

Definition 2.8. Let (X, d) be a metric space and F : X → P (X) be a multi-valued operator.
The fixed point inclusion

x ∈ F (x), x ∈ Y (2.6)

is called generalized Ulam-Hyers stable if and only if there exists ψ : R+ → R+ increasing,
continuous in 0 and ψ(0) = 0 such that for each ε > 0 and for each solution y∗ ∈ X of the
inequation

D(y, F (y)) ≤ ε (2.7)

there exists a solution x∗ of the fixed point inclusion (2.6) such that

d(y∗, x∗) ≤ ψ(ε).

If there exists c > 0 such that ψ(t) := ct, for each t ∈ R+, then the fixed point inclusion
(2.6) is said to be Ulam-Hyers stable.

The following abstract result has given in [2].

Lemma 2.3. Let (X, d) be a metric space and F : X → Pcp(X) be a multi-valued ψ-weakly
Picard operator. Then the fixed point inclusion (2.6) is generalized Ulam-Hyers stable.

The aim of this section is, based on the above result, to prove an Ulam-Hyers stability
theorem for a multi-valued Cauchy problem corresponding to a first order differential
inclusion.

Let us consider the following multi-valued Cauchy problem:{
x′(t) ∈ F (t, x(t)), a.e. t ∈ [a, b];
x(a) = α,

(2.8)

where α ∈ Rn and F : [a, b]×Rn → Pcp,cv(Rn) is a multi-valued operator. We will denote

by
∫ b

a

F (s, x(s))ds (where x : [a, b]→ Rn is a given function) the multi-valued integral in

Aumann’ sense, see [1].
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Definition 2.9. Let F : [a, b]×Rn → Pcp,cv(Rn) a multi-valued operator, a ∈ R and α ∈ Rn.
A function ϕ : [a, T ] → Rn is called solution to problem (2.8) if and only if T ≤ b, ϕ is
absolutely continuous on [a, T ] and satisfy the relations:{

ϕ′(t) ∈ F (t, ϕ(t)), a.e. on [a, T ];
ϕ(a) = α.

The equivalence between the above differential inclusion and an integral inclusion is
given by the following lemma:

Lemma 2.4. Let I ⊂ R an interval and F : I × Rn → Pcp,cv(Rn) be an upper semi-continuous
multi-valued operator. Then x : I → R is a solution for differential inclusion

x′(t) ∈ F (t, x(t)) (2.9)

if and only if

x(t2) ∈ x(t1) +
∫ t2

t1

F (t, x(t))dt, for each t1, t2 ∈ I. (2.10)

Taking into account of Lemma 2.4 we deduce that the problem (2.8) is equivalent to an
integral inclusion of Volterra type:

x(t) ∈ α+

∫ t

a

F (s, x(s))ds, t ∈ [a, b]. (2.11)

The result with respect to the Ulam-Hyers stability of the Cauchy problem (2.8) is the
following theorem.

Theorem 2.5. Let F : [a, b]× Rn → Pcl,cv(Rn) such that:
(a) there exists an integrable function M : [a, b] → R+ such that for each u ∈ Rn we have

F (s, u) ⊂M(s)B(0, 1), a.e. s ∈ [a, b];
(b) for each u ∈ Rn, F (·, u) : [a, b]→ Pcl,cv(Rn) is measurable;
(c) for each u ∈ Rn, F (·, u) : [a, b]→ Pcl,cv(Rn) is lower semi-continuous;
(d) there exists a continuous function p : [a, b] → R+ such that for each s ∈ [a, b] and each

u, v ∈ Rn we have that:
H(F (s, u), F (s, v)) ≤ p(s) · |u− v|. (2.12)

Then the following conclusions hold:
(i) there exists at least one solution for the Cauchy problem (2.8);
(ii) the Cauchy problem (2.8) is Ulam-Hyers stable, i.e. for each ε > 0 there exists cε > 0 such

that for each function y ∈ C([a, b],Rn) of the inequation

D‖·‖Rn (y(t), F (t, y(t))) ≤ ε, t ∈ [a, b],

wich satisfy the condition y(a) = α there exists a solution x of problem (2.8) such that

‖x(t)− y(t)‖Rn ≤ cε · ε, for each t ∈ [a, b].

Proof. We consider the multi-valued operator T : C([a, b],Rn) → P (C([a, b],Rn)) defined
by

T (x) :=

{
v ∈ C([a, b],Rn)|v(t) ∈ α+

∫ t

a

F (s, x(s))ds, t ∈ [a, b]

}
.

Then (2.8) is equivalent to (2.11) and, by the above notation, equivalent to the fixed point
inclusion

x ∈ T (x), x ∈ C([a, b],Rn). (2.13)
The proof is organized in several steps:
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1). T (x) ∈ Pcp(C([a, b],Rn)).
From Theorem 2 in Rybinski [8] we have that for each x ∈ C([a, b],Rn) there exists

f(s) ∈ F (s, x(s)), for all s ∈ [a, b], such that f(s) is integrable.

Then v(t) := α +

∫ t

a

f(s)ds has the property v ∈ T (x). Moreover, from (a) and (b), via

Theorem 8.6.3. in Aubin and Frankowska [1], we get that T (x) is a compact set, for each
x ∈ C([a, b],Rn).

2). T is a multi-valued contraction on C([a, b],Rn).
Notice first that one may suppose (without affecting the generality of the Lipschitz

condition) that the inequality (2.12) is strict. Let x1, x2 ∈ C([a, b],Rn) and v1 ∈ T (x1).

Then v1(t) ∈ α+

∫ t

a

F (s, x1(s))ds, t ∈ [a, b]. It follows that

v1(t) ∈ α+

∫ t

a

f1(s)ds, t ∈ [a, b], for some f1(s) ∈ F (s, x1(s))ds, s ∈ [a, b].

From (d) we have H(F (s, x1(s)), F (s, x2(s))) < p(s) · |x1(s) − x2(s)|. Thus there exists
w ∈ F (s, x2(s) such that |f1(s)− w| ≤ p(s) · |x1(s)− x2(s)|, for s ∈ [a, b].

Let as define U : [a, b]→ P (Rn), by

U(s) := {w| |f1(s)− w| ≤ p(s) · |x1(s)− x2(s)|}.
Since the multi-valued operator V (s) := U(s) ∩ F (s, x2(s)) is measurable, so exists f2(s)
a selection for V , measurable (and hence integrable in s). Hence f2(s) ∈ F (s, x2(s)) and
|f1(s)− f2(s)| ≤ p(s) · |x1(s)− x2(s)|, for each s ∈ [a, b].

Consider v2(t) = α +

∫ t

a

f2(s), t ∈ [a, b]. We denote by ‖ · ‖B a Bielecki-type norm in

C([a, b],Rn), given by

‖x‖B := sup
t∈[a,b]

(‖x(t)‖Rn · e−τq(t)), where q(t) :=
∫ t

a

p(s)ds.

Then for each t ∈ [a, b], we have:

|v1(t)− v2(t)| ≤
∫ t

a

|f1(s)− f2(s)|ds ≤
∫ t

a

p(s)|x1(s)− x2(s)|ds =

=

∫ t

a

p(s)eτq(s)|x1(s)− x2(s)|e−τq(s)ds ≤
∫ t

a

p(s)eτq(s)‖x1 − x2‖Bds =

=
1

τ
‖x1 − x2‖B(eτq(t) − eτq(a)) ≤

1

τ
‖x1 − x2‖Beτq(t).

Thus we immediately get ‖v1 − v2‖B ≤
1

τ
‖x1 − x2‖B . A similar relation can be ob-

tained by interchanging the role of x1 and x2. By choosing now τ > 1 we get that

H‖·‖B (T (x1), T (x2)) ≤
1

τ
‖x1 − x2‖B , which prove that T is a multi-valued contraction

with constant α :=
1

τ
. Hence, conclusion (i) follows by Covitz-Nadler’s fixed point theo-

rem [3].
For the second conclusion, let ε > 0 and y ∈ C([a, b],Rn) for which there exits u ∈

C([a, b],Rn) such that u(t) ∈ α +

∫ t

a

F (s, y(s))ds, t ∈ [a, b] and ‖u(t) − y(t)‖Rn ≤ ε,
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for each t ∈ [a, b]. Notice that ‖ · ‖B ≤ ‖ · ‖C ≤ ‖ · ‖Beτq(b), where ‖ · ‖C denotes the
Cebâşev norm in C([a, b],Rn) defined by ‖x‖C := max

t∈[a,b]
(‖x(t)‖Rn). Then we obtain that

‖u − y‖B ≤ ‖u − y‖C ≤ ε. Thus, D‖·‖B (y, T (y)) ≤ ε. Moreover, since T is a multi-valued
α-contraction with respect to ‖ · ‖B , we obtain that T is a multi-valued c-weakly Picard

operator with c :=
1

1− α
. The conclusion (ii) is a consequence of Lemma 2.3. Hence, there

exists c :=
1

1− α
and a solution x∗ of the Cauchy problem (2.8) such that ‖y−x∗‖B ≤ c ·ε.

Hence |y(t)− x∗(t)| ≤ c · eτq(b) · ε, for each t ∈ [a, b]. �
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