Further properties of (γ, γ') -preopen sets

N. RAJESH and V. VIJAYABHARATHI

ABSTRACT. In [Carpintero, C., Rajesh, N. and Rosas, E., On a class of (γ, γ') -preopen sets in a topological space, Fasciculi Mathematici, **46** (2011), 25–36], the authors introduced the notion of (γ, γ') -preopeness and investigated its fundamental properties. In this paper, we investigate some more properties of this type of open set.

1. INTRODUCTION

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real Analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Kasahara [2] defined the concept of an operation on topological spaces and introduce the concept of γ -closed graphs of a function. Umehara et. al. [4] introduced the notion of $\tau_{(\gamma,\gamma')}$ which is the collection of all (γ, γ') -open sets in a topological space (X, τ) . In [1] the authors, introduced the notion of (γ, γ') -preopeness and investigated its fundamental properties. In this paper, we investigate some more properties of this type of open set.

2. Preliminaries

Definition 2.1. Let (X, τ) be a topological space. An operation (γ, γ') [2] on the topology τ is function from τ on to power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$.

Definition 2.2. Let (X, τ) be a topological space. An operation γ on τ is said to be regular [2] if for every open neighborhood U and V of each $x \in X$, there exists an open neighborhood W of x such that $U^{\gamma} \cap V^{\gamma} \supset W^{\gamma}$.

Definition 2.3. A subset *A* of a topological space (X, τ) is said to be (γ, γ') -open set [4] if for each $x \in A$ there exist open neighborhoods *U* and *V* of *x* such that $U^{\gamma} \cup V^{\gamma'} \subset A$. The complement of (γ, γ') -open set is called (γ, γ') -closed. $\tau_{(\gamma, \gamma')}$ denotes set of all (γ, γ') -open sets in (X, τ) .

Definition 2.4. [4] Let *A* be subset of a topological space (X, τ) and γ , γ' be operations on τ . Then

- (i) the $\tau_{(\gamma,\gamma')}$ -closure of A is defined as intersection of all (γ,γ') -closed sets containing A. That is, $\tau_{(\gamma,\gamma')}$ -Cl $(A) = \{F : F \text{ is } (\gamma,\gamma')$ -closed and $A \subset F\}$.
- (ii) the $\tau_{(\gamma,\gamma')}$ -interior of A is defined as union of all (γ,γ') -open sets contained in A. That is, $\tau_{(\gamma,\gamma')}$ -Int $(A) = \{U : U \text{ is } (\gamma,\gamma')\text{-open and } U \subset A\}.$

Definition 2.5. A subset A of a topological space (X, τ) is said to be

Received: 17.10.2010. In revised form: 19.12.2011. Accepted: 31.12.2011

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10.

Key words and phrases. Topological spaces, (γ, γ') -open set, (γ, γ') -preopen set.

- (i) (γ, γ') -regular open [3] if $\tau_{(\gamma, \gamma')}$ -Int $(\tau_{(\gamma, \gamma')}$ -Cl(A)) = A.
- (ii) (γ, γ') -preopen [1] if $A \subset \tau_{(\gamma, \gamma')}$ -Int $(\tau_{(\gamma, \gamma')}$ -Cl(A)).
- (iii) (γ, γ') -dense [1] if $\tau_{(\gamma, \gamma')}$ -Cl(A)) = X.

The complement of a (γ, γ') -preopen set is called a (γ, γ') -preclosed set. The family of all (γ, γ') -preopen (resp. (γ, γ') -preclosed) sets of (X, τ) is denoted by (γ, γ') -PO(X) (resp. (γ, γ') -PC(X)). The family of all (γ, γ') -preopen sets of (X, τ) containing the point x is denoted by (γ, γ') -PO(X, x).

Definition 2.6. [1] Let *A* be subset of a topological space (X, τ) and γ, γ' be operations on τ . Then

- (i) the $\tau_{(\gamma,\gamma')}$ -preclosure of A is defined as intersection of all (γ,γ') -preclosed sets containing A. That is, $\tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(A) = \{F : F \text{ is } (\gamma,\gamma')$ -preclosed and $A \subset F\}$.
- (ii) the $\tau_{(\gamma,\gamma')}$ -preinterior of A is defined as union of all (γ, γ') -preopen sets contained in A. That is, $\tau_{(\gamma,\gamma')}$ -p Int $(A) = \{U : U \text{ is } (\gamma, \gamma')$ -preopen and $U \subset A\}$.

Theorem 2.1. [1] Let A be subset of a topological space (X, τ) and γ, γ' be operations on τ . Then

- (i) A is (γ, γ') -preopen if and only if $A = \tau_{(\gamma, \gamma')}$ -p Int(A).
- (ii) A point $x \in \tau_{(\gamma,\gamma')}$ -pCl(A) if and only if $U \cap A \neq \emptyset$ for every $U \in (\gamma,\gamma')$ -PO(X,x).
- (iii) $\tau_{(\gamma,\gamma')} p \operatorname{Cl}(A)$ is the smallest (γ,γ') -preclosed subset of X containing A.
- (iv) A is (γ, γ') -preclosed if and only if $A = \tau_{(\gamma, \gamma')} p \operatorname{Cl}(A)$.
- (v) $\tau_{(\gamma,\gamma')} p \operatorname{Int}(X \setminus A) = X \setminus \tau_{(\gamma,\gamma')} p \operatorname{Cl}(A).$
- (vi) $\tau_{(\gamma,\gamma')} p\operatorname{Cl}(X \setminus A) = X \setminus \tau_{(\gamma,\gamma')} p\operatorname{Int}(A).$

Definition 2.7. [1] Let (X, τ) be a topological space and γ , γ' be operations on τ . Then a subset A of X is said to be (γ, γ') -pre g.closed (written as (γ, γ') -pg.closed) set if $\tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(A) \subset U$ whenever $A \subset U$ and U is (γ, γ') -preopen.

Theorem 2.2. [1] Let (X, τ) be a topological space and γ , γ' be operations on τ . Then subset A of X is (γ, γ') -pg.closed, then $\tau_{(\gamma, \gamma')}$ -p $Cl(A) \setminus A$ does not contain any nonempty (γ, γ') -preclosed set.

3. Properties of (γ, γ') -preopen sets

Through this paper, the operators γ and γ' are defined on (X, τ) and the operators β and β' are defined on (Y, σ) .

Theorem 3.3. For any subset of a space (X, τ) the following are equivalent:

- (i) $S \in (\gamma, \gamma')$ -PO(X).
- (ii) There is a (γ, γ') -regular open set $G \subset X$ such that $S \subset G$ and $\tau_{(\gamma, \gamma')}$ -Cl $(S) = \tau_{(\gamma, \gamma')}$ -Cl(G).
- (iii) S is the intersection of a (γ, γ') -regular open set and a (γ, γ') -dense set.
- (iv) S is the intersection of a (γ, γ') -open set and a (γ, γ') -dense set.

Proof. (i) \Rightarrow (ii): Let $S \in (\gamma, \gamma')$ -PO(X). Then $S \subset \tau_{(\gamma, \gamma')}$ - $Int(\tau_{(\gamma, \gamma')}$ -Cl(S)). Let $G = \tau_{(\gamma, \gamma')}$ -Int(S). Then G is (γ, γ') -regular open with $S \subset G$ and S = G.

(ii) \Rightarrow (iii): Let $D = S \cup (X \setminus G)$. Then D is (γ, γ') -dense and $S = G \cap D$. (iii) \Rightarrow (iv): This is trivial.

(iv) \Rightarrow (i): Suppose $S = G \cap D$ with G is (γ, γ') -open and $D(\gamma, \gamma')$ -dense. Then S = G, hence $S \subset G \subset \tau_{(\gamma, \gamma')}$ -Cl(G) = S.

Theorem 3.4. If every subset of X is either (γ, γ') -open or (γ, γ') -closed, then every (γ, γ') -preopen set in X is (γ, γ') -open.

Proof. Let *A* be a (γ, γ') -preopen in *X*. If *A* is not (γ, γ') -open, then *A* is (γ, γ') -closed by hypothesis. Hence $A = \tau_{(\gamma,\gamma')}$ -Cl(A), and $\tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl $(A)) = \tau_{(\gamma,\gamma')}$ -Int(A) is a proper subset of *A*. Thus, $A \nsubseteq \tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl(A)), so that *A* is not (γ, γ') -preopen, contradiction.

Theorem 3.5. Let (X, τ) be a topological space in which every (γ, γ') -preopen set in X is (γ, γ') -open. Then each singleton in X is either (γ, γ') -open or (γ, γ') -closed.

Proof. Let $x \in X$, and suppose that $\{x\}$ is not (γ, γ') -open. Then $\{x\}$ is not (γ, γ') -preopen. Hence $\{x\} \notin \tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl($\{x\})$), so that $\tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl($\{x\}) = \emptyset$. We have that $\tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl($\{X\}) \supset \tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl($\{x\})$)) = $\tau_{(\gamma,\gamma')}$ -Int $(X \setminus (\tau_{(\gamma,\gamma')})$ -Cl($\{x\})$))) = $X \supset X \setminus \{x\}$. Thus, $X \setminus \{x\}$ is (γ, γ') -preopen and hence (γ, γ') -open. Therefore, $\{x\}$ is (γ, γ') -closed.

Theorem 3.6. For a topological space (X, τ) and γ , γ' be regular operations on τ , the following are equivalent:

- (i) Every (γ, γ') -preopen set is (γ, γ') -open.
- (ii) Every (γ, γ') -dense set is (γ, γ') -open.

Proof. (i) \Rightarrow (ii): Let A be a (γ, γ') -dense subset of X. Then $\tau_{(\gamma, \gamma')}$ - $\operatorname{Int}(\tau_{(\gamma, \gamma')}$ - $\operatorname{Cl}(A) = X$, so that $A \subset \tau_{(\gamma, \gamma')}$ - $\operatorname{Int}(\tau_{(\gamma, \gamma')}$ - $\operatorname{Cl}(A))$ and A is (γ, γ') -preopen. Hence A is (γ, γ') -open.

(ii) \Rightarrow (i): Let *B* be a (γ, γ') -preopen subset of *X*, so that $B \subset \tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl(*B*)) = *G*, say. hen $\tau_{(\gamma,\gamma')}$ -Cl(*B*) = $\tau_{(\gamma,\gamma')}$ -Cl(*G*), so that $\tau_{(\gamma,\gamma')}$ -Cl(*X**G*) \cup *B*) = $\tau_{(\gamma,\gamma')}$ -Cl(*X**G*) \cup *U* (γ,γ') -Cl(*G*) = *X*, and thus $(X \setminus G) \cup B$ is (γ, γ') -Cl(*X**G*) \cup *T*($\gamma,\gamma')$ -Cl(*G*) = *X*, and thus $(X \setminus G) \cup B$ is (γ, γ') -dense in *X*. Thus, $(X \setminus G) \cup B$ is (γ, γ') -open. Now, $B = (X \setminus G) \cup B \cap G$, the intersection of two (γ, γ') -open sets is (γ, γ') -open ([4], Proposition 2.7), so that *B* is (γ, γ') -open.

Theorem 3.7. (X, τ) is a topological space in which every subset is (γ, γ') -preopen if and only if every (γ, γ') -open set in (X, τ) is (γ, γ') -closed.

Proof. Let *G* be (γ, γ') -open. Then $X \setminus G = \tau_{(\gamma, \gamma')}$ -Cl $(X \setminus G)$ which is (γ, γ') -preopen, so that $\tau_{(\gamma, \gamma')}$ -Cl $(X \setminus G) \subset \tau_{(\gamma, \gamma')}$ -Int $(\tau_{(\gamma, \gamma')}$ -Cl $(\tau_{(\gamma, \gamma')})$ -Cl $(X \setminus G)$) = $\tau_{(\gamma, \gamma')}$ -Int $(\tau_{(\gamma, \gamma')})$ -Cl $(X \setminus G)$) = $\tau_{(\gamma, \gamma')}$ -Int $(X \setminus G)$. Thus, $X \setminus G = \tau_{(\gamma, \gamma')}$ -Int $(X \setminus G)$, so that $X \setminus G$ is (γ, γ') -open, and *G* is (γ, γ') -closed. Conversely, let *A* be any subset of *X*. Then $X \setminus \tau_{(\gamma, \gamma')}$ -Cl(A) is (γ, γ') -open, and hence (γ, γ') -closed. Thus, $X \setminus \tau_{(\gamma, \gamma')}$ -Cl $(A) = \tau_{(\gamma, \gamma')}$ -Cl $(X \setminus \tau_{(\gamma, \gamma')})$ -Cl $(A) = X \setminus \tau_{(\gamma, \gamma')}$ -Int $(\tau_{(\gamma, \gamma')}$ -Cl(A)), so that $A \subset \tau_{(\gamma, \gamma')}$ -Cl $(A) = \tau_{(\gamma, \gamma')}$ -Int $(\tau_{(\gamma, \gamma')})$ -Cl(A)), and hence *A* is (γ, γ') -preopen.

Theorem 3.8. Let (X, τ) be a topological space, G be a (γ, γ') -open subset of X and b be a point of $\tau_{(\gamma,\gamma')}$ -Cl $(G)\setminus G$. Then $\{b\}$ is not (γ, γ') -preopen in (X, τ) .

Proof. Suppose $\{b\}$ is (γ, γ') -preopen, so that $\{b\} \subset \tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl $(\{b\})$). Thus, $G \cap \tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl $(\{b\})$) $\neq \emptyset$. Let $c \in G \cap \tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl $(\{b\})$), so $c \in \tau_{(\gamma,\gamma')}$ -Cl $(\{b\})$ and hence $\{b\} \cap (G \cap \tau_{(\gamma,\gamma')}$ -Int $(\tau_{(\gamma,\gamma')}$ -Cl $(\{b\})) \neq \emptyset$. This contradicts the fact that $\{b\} \cap G = \emptyset$. Hence $\{b\}$ is not (γ, γ') -preopen.

Theorem 3.9. Let (X, τ) be a topological space, G be a (γ, γ') -regular open subset of X and b be a point of $\tau_{(\gamma,\gamma')}$ -Cl $(G)\setminus G$. Then $G \cup \{b\}$ is not (γ, γ') -preopen in (X, τ) .

Proof. We have, since $\tau_{(\gamma,\gamma')}$ -Cl($\{b\}$) $\subset \tau_{(\gamma,\gamma')}$ -Cl(G), so that $\tau_{(\gamma,\gamma')}$ -Int($\tau_{(\gamma,\gamma')}$ -Cl($G \cup \{b\}$)) = $\tau_{(\gamma,\gamma')}$ -Int($\tau_{(\gamma,\gamma')}$ -Cl($G \cup \{b\}$)) = $\tau_{(\gamma,\gamma')}$ -Int($\tau_{(\gamma,\gamma')}$ -Cl($G \cup \{b\}$)). Hence $G \cup \{b\}$ is not (γ,γ') -preopen.

Theorem 3.10. Let (X, τ) be a topological space. Then every singleton of X is either (γ, γ') -open or (γ, γ') -preclosed.

Proof. If $\{x\}$ is not (γ, γ') -open, then $\tau_{(\gamma, \gamma')}$ -Int $(\{x\}) = \emptyset$. Thus, $\tau_{(\gamma, \gamma')}$ -Cl $(\tau_{(\gamma, \gamma')}$ -Int $(\{x\})) = \emptyset$; hence $\{x\}$ is (γ, γ') -preclosed. The proof of the second part is straightforward. \Box

Theorem 3.11. If A is a (γ, γ') -preopen and (γ, γ') -pg.closed subset of (X, τ) , then A is (γ, γ') -preclosed.

Proof. Since A is (γ, γ') -preopen and (γ, γ') -pg.closed, $\tau_{(\gamma, \gamma')}$ -p Cl $(A) \subset A$ and hence $\tau_{(\gamma, \gamma')}$ -p Cl(A) = A. This implies that A is (γ, γ') -preclosed by Theorem 2.1 (iv).

Theorem 3.12. If A is a (γ, γ') -pg.closed subset of (X, τ) such that $A \subset B \subset \tau_{(\gamma, \gamma')}$ -p Cl(A), then B is also (γ, γ') -pg.closed subset of (X, τ) .

Proof. Let U be a (γ, γ') -preopen set in (X, τ) such that $B \subset U$. Then $A \subset U$. Since A is (γ, γ') -pg.closed, then $\tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(A) \subset U$. Now, since $\tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(A)$ is (γ, γ') -preclosed, $\tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(B) \subset \tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(\tau_{(\gamma, \gamma')})$ - $p \operatorname{Cl}(A) = \tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(A) \subset U$. Therefore, B is also a (γ, γ') -pg.closed.

Theorem 3.13. A set A in a topological space (X, τ) is (γ, γ') -pg.open if and only if $F \subset \tau_{(\gamma, \gamma')}$ - $p \operatorname{Int}(A)$ whenever F is (γ, γ') -preclosed in (X, τ) and $F \subset A$.

Proof. Let A be (γ, γ') -pg.open. Let F be (γ, γ') -preclosed and $F \subset A$. Then $X \setminus A \subset X \setminus F$, where $X \setminus F$ is (γ, γ') -preopen. (γ, γ') -pg.closedness of $X \setminus A$ implies $\tau_{(\gamma, \gamma')}$ -p $\operatorname{Cl}(X \setminus A) \subset X \setminus F$. By Theorem 2.1, $X \setminus \tau_{(\gamma, \gamma')}$ -p $\operatorname{Int}(A) \subset X \setminus F$. That is, $F \subset \tau_{(\gamma, \gamma')}$ -p $\operatorname{Int}(A)$. Conversely, Suppose if F is (γ, γ') -preclosed and $F \subset A$ implies $F \subset \tau_{(\gamma, \gamma')}$ -p $\operatorname{Int}(A)$. Let $X \setminus A \subset U$ where U is (γ, γ') -preopen. Then $X \setminus U \subset A$ where $X \setminus U$ is (γ, γ') -preclosed. By supposition, $X \setminus U \subset \tau_{(\gamma, \gamma')}$ -p $\operatorname{Int}(A)$. That is, $X \setminus \tau_{(\gamma, \gamma')}$ -p $\operatorname{Int}(A) \subset U$. By Theorem 2.1, $\tau_{(\gamma, \gamma')}$ -p $\operatorname{Cl}(X \setminus A) \subset U$. This implies $X \setminus A$ is (γ, γ') -pg.closed and hence A is (γ, γ') -pg.open.

Theorem 3.14. If $\tau_{(\gamma,\gamma')}$ -p Int $(A) \subset B \subset A$ and A is (γ,γ') -pg.open, then B is (γ,γ') -pg.open.

Proof. Easily follows from Theorems 2.1 and 3.12.

Theorem 3.15. If a set A is (γ, γ') -pg.open in a topological space (X, τ) , then G = X whenever G is (γ, γ') -preopen in (X, τ) and $\tau_{(\gamma, \gamma')}$ -p $Int(A) \cup X \setminus A \subset G$.

Proof. Suppose that *G* is (γ, γ') -preopen and $\tau_{(\gamma, \gamma')}$ - $p \operatorname{Int}(A) \cup X \setminus A \subset G$. Now $X \setminus G \subset \tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(X \setminus A) \cap A = \tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(X \setminus A) \setminus X \setminus A$. Since $X \setminus G$ is (γ, γ') -preclosed and $X \setminus A$ is (γ, γ') -pg.closed, by Theorem 2.2, $X \setminus G = \emptyset$ and hence G = X.

Proposition 3.1. Let (X, τ) be a topological space and $A, B \subset X$. If B is (γ, γ') -pg.open and if $A \supset \tau_{(\gamma, \gamma')}$ -p Int(B), then $A \cap B$ is (γ, γ') -pg.open.

Proof. Since *B* is (γ, γ') -pg.open and $A \supset \tau_{(\gamma, \gamma')}$ - $p \operatorname{Int}(B)$, $\tau_{(\gamma, \gamma')}$ - $p \operatorname{Int}(B) \subset A \cap B \subset B$. By Theorem 3.14, $A \cap B$ is (γ, γ') -pg.open.

Proposition 3.2. Let the family (γ, γ') -PO(X) of all (γ, γ') -preopen subsets of (X, τ) be closed under finite intersections i.e., let (γ, γ') -PO(X) be the topology on X. If A and B are (γ, γ') -pg.open in (X, τ) , then $A \cap B$ is (γ, γ') -pg.open.

Proof. Let $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B) \subset U$, where U is (γ, γ') -preopen. Then $X \setminus A \subset U$ and $X \setminus B \subset U$. Since A and B are (γ, γ') -pg.open, $\tau_{(\gamma,\gamma')}$ -p $\operatorname{Cl}(X \setminus A) \subset U$ and $\tau_{(\gamma,\gamma')}$ -p $\operatorname{Cl}(X \setminus B) \subset U$. By hypothesis, $\tau_{(\gamma,\gamma')}$ -p $\operatorname{Cl}(X \setminus A) \cup (X \setminus B)$) = $\tau_{(\gamma,\gamma')}$ -p $\operatorname{Cl}(X \setminus A) \cup \tau_{(\gamma,\gamma')}$ -p $\operatorname{Cl}(X \setminus B) \subset U$. That is, $\tau_{(\gamma,\gamma')}$ -p $\operatorname{Cl}(X \setminus (A \cap B)) \subset U$. This shows that $A \cap B$ is (γ, γ') -pg.open.

Theorem 3.16. If $A \subset X$ is (γ, γ') -pg.closed, then $\tau_{(\gamma, \gamma')}$ -p Cl $(A) \setminus A$ is (γ, γ') -pg.open.

Proof. Let *A* be (γ, γ') -pg.closed. Let *F* be a (γ, γ') -preclosed set such that $F \subset \tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(A) \setminus A$. Then by Theorem 2.2 *F*=Ø. So, $F \subset \tau_{(\gamma, \gamma')}$ - $p \operatorname{Int}(\tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(A) \setminus A$). This shows $\tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(A) \setminus A$ is (γ, γ') -pg.open.

Definition 3.8. A topological space (X, τ) with operations γ and γ' on τ is called (γ, γ') -precedular if for each (γ, γ') -preclosed set F of X not containing x, there exists disjoint (γ, γ') -preopen sets U and V such that $x \in U$ and $F \subset V$.

The following examples show that regularity and (γ, γ') -preregularity are independent concepts.

Example 3.1. Let $X = \{a, b, c\}$ and τ be the discrete topology on X. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\gamma' : \tau \to \mathcal{P}(X)$ be operations defined as follows: for every $A \in \tau$

$$A^{\gamma} = \begin{cases} \{a\} & \text{if } A = \{a\}, \\ A \cup \{c\} & \text{if } A \neq \{a\} \end{cases}$$
$$A^{\gamma'} = \begin{cases} A & \text{if } \neq \{a\}, \\ \operatorname{Cl}(A) & \text{if } A = \{a\}. \end{cases}$$

Then this space regular but not (γ, γ') -preregular.

Example 3.2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\gamma' : \tau \to \mathcal{P}(X)$ be operations defined as follows: for every $A \in \tau$

$$A^{\gamma} = \begin{cases} A & \text{if } \mathbf{a} \in \mathbf{A}, \\ A \cup \{a\} & \text{if } \mathbf{a} \notin \mathbf{A}. \end{cases}$$
$$A^{\gamma'} = \begin{cases} A & \text{if } \mathbf{c} \in \mathbf{A}, \\ A \cup \{c\} & \text{if } \mathbf{c} \notin \mathbf{A}. \end{cases}$$

Then this space (γ, γ') -preregular but not regular.

Theorem 3.17. *The following are equivalent for a topological space* (X, τ) *with operations* γ *and* γ' *on* τ :

- (i) X is (γ, γ') -preregular.
- (ii) For each $x \in X$ and each $U \in (\gamma, \gamma')$ -PO(X, x), there exists a $V \in (\gamma, \gamma')$ -PO(X, x) such that $x \in V \subset \tau_{(\gamma, \gamma')}$ - $PCl(V) \subset U$.
- (iii) For each (γ, γ') -preclosed set F of X, $\cap \{\tau_{(\gamma, \gamma')} p \operatorname{Cl}(V) : F \subset V, V \in (\gamma, \gamma') PO(X)\} = F$
- (iv) For each A subset of X and each $U \in (\gamma, \gamma')$ -PO(X) with $A \cap U \neq \emptyset$, there exists a $V \in (\gamma, \gamma')$ -PO(X) such that $A \cap U \neq \emptyset$ and $\tau_{(\gamma, \gamma')}$ -pCl(V) $\subset U$.
- (v) For each nonempty subset A of X and each (γ, γ') -preclosed subset F of X with $A \cap F = \emptyset$, there exists $V, W \in (\gamma, \gamma')$ -PO(X) such that $A \cap V \neq \emptyset$, $F \subset W$ and $W \cap V = \emptyset$
- (vi) For each (γ, γ') -preclosed set F and $x \notin F$, there exists $U \in (\gamma, \gamma')$ -PO(X) and a (γ, γ') -pg.open set V such that $x \in U, F \subset V$ and $U \cap V = \emptyset$.

- (vii) For each $A \subset X$ and each (γ, γ') -preclosed set F with $A \cap F = \emptyset$, there exists $U \in (\gamma, \gamma')$ -PO(X) and a (γ, γ') -pg.open set V such that $A \cap U \neq \emptyset$, $F \subset V$ and $U \cap V = \emptyset$.
- (viii) For each (γ, γ') -preclosed set F of X, $F = \cap \{\tau_{(\gamma, \gamma')} p \operatorname{Cl}(V) : F \subset V, V \text{ is } (\gamma, \gamma') pg.open\}$

Proof. (i) \Rightarrow (ii) Let $x \notin X \setminus U$, where $U \in (\gamma, \gamma')$ -PO(X, x). Then there exists $G, V \in (\gamma, \gamma')$ -PO(X) such that $(X \setminus U) \subset G$, $x \in V$ and $G \cap V = \emptyset$. Therefore $V \subset (X \setminus G)$ and so $x \in V \subset \tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(V) \subset (X \setminus G) \subset U$.

(ii) Let $(X \setminus F) \in (\gamma, \gamma')$ -PO(X, x). Then by (2) there exists an $U \in (\gamma, \gamma')$ -PO(X, x) such that $x \in U \subset \tau_{(\gamma, \gamma')}$ - $p\operatorname{Cl}(U) \subset (X \setminus F)$. So, $F \subset X \setminus \tau_{(\gamma, \gamma')}$ - $p\operatorname{Cl}(U) = V$, $V \in (\gamma, \gamma')$ -PO(X) and $V \cap U = \emptyset$. Then by Theorem 2.1, $x \notin \tau_{(\gamma, \gamma')}$ - $p\operatorname{Cl}(V)$. Thus $F \supset \cap\{\tau_{(\gamma, \gamma')}$ - $p\operatorname{Cl}(V): F \subset V, V \in (\gamma, \gamma')$ - $PO(X)\}$.

(iii) \Rightarrow (iv) Let $U \in (\gamma, \gamma')$ -PO(X) with $x \in U \cap A$. Then $x \notin (X \setminus U)$ and hence by (iii) there exists a (γ, γ') -preopen set W such that $(X \setminus U) \subset W$ and $x \notin \tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(W)$. We put $V = X \setminus \tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(W)$, which is a (γ, γ') -preopen set containing x and hence $V \cap U \neq \emptyset$. Now $V \subset (X \setminus W)$ and so $\tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(V) \subset (X \setminus W) \subset U$

(iv) \Rightarrow (v) Let *F* be a set as in hypothesis of (v). Then $(X \setminus F)$ is (γ, γ') -preopen and $(X \setminus F) \cap A \neq \emptyset$. Then there exists $V \in (\gamma, \gamma')$ -PO(X) such that $A \cap V \neq \emptyset$ and $\tau_{(\gamma, \gamma')}$ - $p\operatorname{Cl}(V) \subset (X \setminus F)$. If we put $W = X \setminus \tau_{(\gamma, \gamma')}$ - $p\operatorname{Cl}(V)$, then $F \subset W$ and $W \cap V = \emptyset$. (v) \Rightarrow (i) Let *F* be a (γ, γ') -preclosed set not containing *x*. Then by (v), there exist $W, V \in (\gamma, \gamma')$ -PO(X) such that $F \subset W$ and $x \in V$ and $W \cap V = \emptyset$.

(i) \Rightarrow (vi) Obvious.

(vi) \Rightarrow (vii) For $a \in A$, $a \notin F$ and hence by (vi) there exists $U \in (\gamma, \gamma')$ -PO(X) and a (γ, γ') -pg.open set V such that $a \in U$, $F \subset V$ and $U \cap V = \emptyset$. So, $A \cap U \neq \emptyset$.

(vii) \Rightarrow (i) Let $x \notin F$, where F is (γ, γ') -pg.closed. Since $\{x\} \cap F = \emptyset$, by (vii) there exists $U \in (\gamma, \gamma')$ -PO(X) and (γ, γ') -pg.open set W such that $x \in U$, $F \subset W$ and $U \cap W = \emptyset$. Now put $V = \tau_{(\gamma, \gamma')}$ -p Int(W). Using definition of (γ, γ') -pg.open sets we get $F \subset V$ and $V \cap U = \emptyset$.

 $\begin{array}{l} (\mathrm{iii}) \Rightarrow (\mathrm{viii}) \text{ We have } F \subset \cap \{\tau_{(\gamma,\gamma')} \text{-} p \operatorname{Cl}(V) : F \subset V \text{ and } V \text{ is } (\gamma,\gamma') \text{-} p \text{.open}\} \subset \cap \{\tau_{(\gamma,\gamma')} \text{-} p \operatorname{Cl}(V) : F \subset V \text{ and } V \text{ is } (\gamma,\gamma') \text{-} p \text{.eopen}\} = F. \quad (\mathrm{viii}) \Rightarrow (\mathrm{i}) \text{ Let } F \text{ be a } (\gamma,\gamma') \text{-} p \text{.eclosed} \text{ set in} X \text{ not containing } x. \text{ Then by (viii) there exists a } (\gamma,\gamma') \text{-} p \text{.eopen} \text{ set } W \text{ such that } F \subset W \text{ and } x \in X \setminus \tau_{(\gamma,\gamma')} \text{-} p \operatorname{Cl}(W). \text{ Since } F \text{ is } (\gamma,\gamma') \text{-} p \text{.eclosed} \text{ and } W \text{ is } (\gamma,\gamma') \text{-} p \text{.eopen}, F \subset \tau_{(\gamma,\gamma')} \text{-} p \operatorname{Int}(W). \text{ Take } V = \tau_{(\gamma,\gamma')} \text{-} p \operatorname{Int}(W). \text{ Then } F \subset V, x \in U = X \setminus \tau_{(\gamma,\gamma')} \text{-} p \operatorname{Cl}(V) \text{ and } U \cap V = \emptyset. \end{array}$

Definition 3.9. A topological space (X, τ) with operations γ and γ' on τ is called (γ, γ') -prenormal if for any pair of disjoint (γ, γ') -preclosed sets A and B of X, there exist disjoint (γ, γ') -preopen sets U and V such that $A \subset U$ and $F \subset V$.

The following examples show that normality and (γ, γ') -prenormality are independent concepts.

Example 3.3. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\gamma' : \tau \to \mathcal{P}(X)$ be operations defined as follows: for every $A \in \tau$ $A^{\gamma} = \operatorname{Cl}(A)$ and

$$A^{\gamma'} = \begin{cases} A & \text{if } \mathbf{c} \notin \mathbf{A}, \\ \operatorname{Cl}(A) & \text{if } \mathbf{c} \in \mathbf{A}. \end{cases}$$

This space is (γ, γ') -prenormal but not normal.

Example 3.4. Let $X = \{a, b, c\}$ and τ be the discrete topology on X. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\gamma' : \tau \to \mathcal{P}(X)$ be operations defined as follows: for every $A \in \tau$

$$A^{\gamma} = \begin{cases} \{b\} & \text{if } \mathbf{A} = \{\mathbf{b}\}, \\ A \cup \{b\} & \text{if } \mathbf{A} \neq \{\mathbf{b}\} \end{cases}$$

and

$$A^{\gamma} = \begin{cases} \operatorname{Cl}(A) & \text{if } A = \{b\}, \\ A & \text{if } A \neq \{b\} \end{cases}$$

Then this space is normal but not (γ, γ') -prenormal.

Theorem 3.18. For a topological space (X, τ) with operations γ and γ' on τ , the following are equivalent:

- (i) X is (γ, γ') -prenormal.
- (ii) For each pair of disjoint (γ, γ') -preclosed sets A and B of X, there exist disjoint (γ, γ') -pg.open sets U and V such that $A \subset U$ and $B \subset V$.
- (iii) For each (γ, γ') -preclosed set A and any (γ, γ') -preopen set V containing A, there exists a (γ, γ') -pg.open set U such that $A \subset U \subset \tau_{(\gamma, \gamma')}$ -p $\operatorname{Cl}(U) \subset V$.
- (iv) For each (γ, γ') -preclosed set A and any (γ, γ') -pg.open set B containing A, there exists a (γ, γ') -pg.open set U such that $A \subset U \subset \tau_{(\gamma, \gamma')}$ -p $\operatorname{Cl}(U) \subset \tau_{(\gamma, \gamma')}$ -p $\operatorname{Int}(B)$.
- (v) For each (γ, γ') -preclosed set A and any (γ, γ') -pg.open set B containing A, there exists a (γ, γ') -preopen set G such that $A \subset G \subset \tau_{(\gamma, \gamma')}$ -p $\operatorname{Cl}(G) \subset \tau_{(\gamma, \gamma')}$ -p $\operatorname{Int}(B)$.
- (vi) For each (γ, γ') -pg.closed set A and any (γ, γ') -preopen set B containing A, there exists a (γ, γ') -preopen set U such that $\tau_{(\gamma, \gamma')}$ -p $\operatorname{Cl}(A) \subset U \subset \tau_{(\gamma, \gamma')}$ -p $\operatorname{Cl}(U) \subset B$.
- (vii) For each (γ, γ') -pg.closed set A and any (γ, γ') -preopen set B containing A, there exists a (γ, γ') -pg.open set G such that $\tau_{(\gamma, \gamma')}$ -p $\operatorname{Cl}(A) \subset G \subset \tau_{(\gamma, \gamma')}$ -p $\operatorname{Cl}(G) \subset B$.

Proof. (i) \Rightarrow (ii): Follows from the fact that every (γ, γ') -preopen set is (γ, γ') -pg.open.

(ii) \Rightarrow (iii): let *A* be a (γ, γ') -closed set and *V* any (γ, γ') -preopen set containing *A*. Since *A* and $(X \setminus V)$ are disjoint (γ, γ') -preclosed sets, there exist (γ, γ') -pg.open sets *U* and *W* such that $\subset U$, $(X \setminus V) \subset W$ and $U \cap W = \emptyset$. By Theorem 3.13, we get $(X \setminus V) \subset \tau_{(\gamma, \gamma')}$ -*p* Int(*W*). Since $U \cap \tau_{(\gamma, \gamma')}$ -*p* Int(*W*) = \emptyset , we have $\tau_{(\gamma, \gamma')}$ -*p* Cl(U) $\cap \tau_{(\gamma, \gamma')}$ -*p* Int(W) = \emptyset , and hence $\tau_{(\gamma, \gamma')}$ -*p* Cl(U) $\subset X \setminus \tau_{(\gamma, \gamma')}$ -*p* Int(W) $\subset V$. Therefore, $A \subset U \subset \tau_{(\gamma, \gamma')}$ -*p* Cl(U) $\subset V$.

(iii) \Rightarrow (i): Let *A* and *B* be any disjoint (γ, γ') -preclosed sets of *X*. Since $(X \setminus B)$ is an (γ, γ') -preopen set containing *A*, there exists a (γ, γ') -pg.open set *G* such that $A \subset G \subset \tau_{(\gamma,\gamma')}$ -*p*Cl(*G*) $\subset X \setminus B$. Since *G* is a (γ, γ') -pg.open set, using Theorem 3.13, we have $A \subset \tau_{(\gamma,\gamma')}$ -*p*Int(*G*). Taking $U = \tau_{(\gamma,\gamma')}$ -*p*Int(*G*) and $V = X \setminus \tau_{(\gamma,\gamma')}$ -*p*Cl(*G*), we have two disjoint (γ, γ') -preopen sets *U* and *V* such that $A \subset U$ and $B \subset V$. Hence *X* is (γ, γ') -prenormal.

(v) \Rightarrow (iii): let *A* be a (γ, γ') -closed set and *V* any (γ, γ') -preopen set containing *A*. Since every (γ, γ') -preopen set is (γ, γ') -pg.open, there exists a (γ, γ') -preopen set *G* such that $A \subset G \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(G) \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Int}(V)$. Also, we have a (γ, γ') -pg.open set *G* such that $A \subset G \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(G) \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Int}(V) \subset V$.

(iii) \Rightarrow (v): Let A be a (γ, γ') -closed set and B by a (γ, γ') -pg.open set containing A. Using Theorem 3.13 of a (γ, γ') -pg.open set we get $A \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Int}(B) = V$, say. Then applying (iii), we get a (γ, γ') -pg.open set U such that $A = \tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(A) \subset U \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(U) \subset V$. Again, using the same Theorem 3.13 we get $A \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Int}(U)$, and hence $A \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Int}(U) \subset U \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(U) \subset V$; which implies $A \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Int}(U) \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(U) \subset V$; that is, $A \subset G \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(G) \subset \tau_{(\gamma,\gamma')}$ - $p \operatorname{Int}(B)$, where $G = \tau_{(\gamma,\gamma')}$ - $p \operatorname{Int}(U)$.

(iii) \Rightarrow (vii): Let A be a (γ, γ') -pg.closed set and B any (γ, γ') -preopen set containing *A*. Since *A* is a (γ, γ') -pg.closed set, we have $\tau_{(\gamma, \gamma')}$ -pCl $(A) \subset B$, therefore, we can find a (γ, γ') -pg.open set U such that $\tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(A) \subset U \subset \tau_{(\gamma, \gamma')}$ - $p \operatorname{Cl}(U) \subset B$.

(vii) \Rightarrow (vi): Let *A* be a (γ, γ') -pg.closed set and *B* any (γ, γ') -preopen set containing *A*, then by (vii) there exists a (γ, γ') -pg open set G such that τ_{β} -Cl $(A) \subset G \subset \tau_{(\gamma, \gamma')}$ -p Cl $(G) \subset$ B. Since G is a (γ, γ') -pg.open set, then by Theorem 3.13, we get $\tau_{(\gamma, \gamma')}$ -p Cl(A) $\subset \tau_{(\gamma, \gamma')}$ $p \operatorname{Int}(G)$. If we take $U = \tau_{(\gamma,\gamma')} p \operatorname{Int}(G)$, the proof follows.

Definition 3.10. Let (X, τ) be a topological space and $A \subset X$.

- (i) The set denoted by $\tau_{(\gamma,\gamma')}$ -pD(A) and defined by $\{x : \text{for every } (\gamma,\gamma')\text{-preopen set} \}$ *U* containing *x*, $U \cap (A \setminus \{x\}) \neq \emptyset$ is called the $\tau_{(\gamma,\gamma')}$ -prederived set of *A*.
- (ii) The $\tau_{(\gamma,\gamma')}$ -prefrontier of A, denoted by $\tau_{(\gamma,\gamma')}$ -pFr(A) is defined as $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(A)\cap$ $\tau_{(\gamma,\gamma')}$ - $p\operatorname{Cl}(X\backslash A)$.

Proposition 3.3. Let (X, τ) be a topological space and $A \subset X$. Then the following properties hold:

(i) $\tau_{(\gamma,\gamma')} - p \operatorname{Int}(A) = A \setminus (\tau_{(\gamma,\gamma')} - pD(X \setminus A)).$ (ii) $\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(A) = A \cup \tau_{(\gamma,\gamma')} - pD(A).$

Proof. Clear.

4. (γ, β) -precontinuous functions

Definition 4.11. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be (γ, β) -precontinuous [1] at a point $x \in X$ if for each (β, β') -preopen subset V in Y containing f(x), there exists a (γ, γ') -preopen subset U of X containing x such that $f(U) \subset V$.

Theorem 4.19. For a function $f: (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is (γ, β) -precontinuous;
- (ii) The inverse image of each (β, β') -preopen set in Y is (γ, γ') -preopen in X;
- (iii) For each subset B of Y, $\tau_{(\gamma,\gamma')}$ - $p \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\sigma_{(\beta,\beta')}-p \operatorname{Cl}(B));$
- (iv) For each subset A of X, $f(\tau_{(\gamma,\gamma')}-p\operatorname{Cl}(A)) \subset \sigma_{(\beta,\beta')}-p\operatorname{Cl}(f(A));$
- (v) For each subset A of X, $f(\tau_{(\gamma,\gamma')}-pD(A)) \subset \sigma_{(\beta,\beta')}-p\operatorname{Cl}(f(A));$
- (vi) For any subset B of Y, $f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Int}(B)) \subset \tau_{(\gamma,\gamma')}-p\operatorname{Int}(f^{-1}(A));$ (vii) For each subset C of Y, $\tau_{(\gamma,\gamma')}-pFr(f^{-1}(C)) \subset f^{-1}(\sigma_{(\beta,\beta')}-pFr(B)).$

Proof. Easy proof and hence omitted.

Theorem 4.20. Let $f: (X, \tau) \to (Y, \sigma)$ be a (γ, β) -precontinuous function. Then for each subset V of Y, $f^{-1}(\sigma_{(\beta,\beta')} - p \operatorname{Int}(V)) \subset \tau_{(\gamma,\gamma')} - p \operatorname{Cl}(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(f^{-1}(V))).$

Proof. Let V be any subset of Y. Then $\sigma_{(\beta,\beta')}$ -p Int(V) is (β,β') -preopen in Y and so $f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Int}(V))$ is (γ,γ') -preopen in X.

Hence $f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Int}(V)) \subset \tau_{(\gamma,\gamma')}-p\operatorname{Cl}(\tau_{(\gamma,\gamma')}-p\operatorname{Int}(f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Int}(V)))) \subset \tau_{(\gamma,\gamma')}-p\operatorname{Int}(V)$ $p\operatorname{Cl}(\tau_{(\gamma,\gamma')}-p\operatorname{Int}(f^{-1}(V))).$

Corollary 4.1. Let $f: (X, \tau) \to (Y, \sigma)$ be a (γ, β) -precontinuous function. Then for each subset $V \text{ of } Y, \tau_{(\gamma,\gamma')} p \operatorname{Int}(\tau_{(\gamma,\gamma')} p \operatorname{Cl}(f^{-1}(V))) \subset f^{-1}(\sigma_{(\beta,\beta')} p \operatorname{Cl}(V)).$

Theorem 4.21. Let $f: (X, \tau) \to (Y, \sigma)$ be a bijection. Then f is (γ, β) -precontinuous if and only if $\sigma_{(\beta,\beta')}$ -p Int $(f(U)) \subset f(\tau_{(\gamma,\gamma')}$ -p Int(U)) for each subset U of X.

 \square

Proof. Let *U* be any subset of *X*. Then by Theorem 4.19, $f^{-1}(\sigma_{(\beta,\beta')} - p \operatorname{Int}(f(U))) \subset \tau_{(\gamma,\gamma')} - p \operatorname{Int}(f^{-1}(f(U)))$. Since *f* is bijection, $\sigma_{(\beta,\beta')} - p \operatorname{Int}(f(U)) = f(f^{-1}(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(f(U))) \subset f(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(U))$. Conversely, let *V* be any subset of *Y*. Then $\sigma_{(\beta,\beta')} - p \operatorname{Int}(f(f^{-1}(V))) \subset f(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(f^{-1}(V)))$. Since *f* is bijection, $\sigma_{(\beta,\beta')} - p \operatorname{Int}(V) = \sigma_{(\beta,\beta')} - p \operatorname{Int}(f(f^{-1}(V))) \subset f(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(f^{-1}(V)))$. Since *f* is bijection, $\sigma_{(\beta,\beta')} - p \operatorname{Int}(V) = \sigma_{(\beta,\beta')} - p \operatorname{Int}(f(f^{-1}(V))) \subset f(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(f^{-1}(V)))$; hence $f^{-1}(\sigma_{(\beta,\beta')} - p \operatorname{Int}(V) \subset \tau_{(\gamma,\gamma')} - p \operatorname{Int}(f^{-1}(V))$. Therefore, by Theorem 4.19, *f* is (γ, β) -precontinuous. □

Theorem 4.22. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then $X \setminus \tau_{(\gamma, \gamma')} pC(f) = \bigcup \{\tau_{(\gamma, \gamma')} pFr(f^{-1}(V)) : V \in (\beta, \beta') - PO(Y), f(x) \in V, x \in X\}$, where $\tau_{(\gamma, \gamma')} pC(f)$ denotes the set of points at which f is (γ, β) -precontinuous.

Proof. Let $x \in X \setminus \tau_{(\gamma,\gamma')} \cdot pC(f)$. Then there exists $V \in (\beta, \beta') - PO(Y)$ containing f(x) such that f(U) is not a subset of V, for every (γ, γ') -preopen set U containing x. Hence $U \cap (X \setminus f^{-1}(V)) \neq \emptyset$ for every (γ, γ') -preopen set U containing x. Then, $x \in \tau_{(\gamma,\gamma')} - p\operatorname{Cl}(X \setminus f^{-1}(V))$. Then $x \in f^{-1}(V) \cap \tau_{(\gamma,\gamma')} \cdot p\operatorname{Cl}(X \setminus f^{-1}(V)) \subset \tau_{(\gamma,\gamma')} \cdot pFr(f^{-1}(V))$. So,

$$X \setminus \tau_{(\gamma,\gamma')} - pC(f) \subset \cup \{\tau_{(\gamma,\gamma')} - pFr(f^{-1}(V)) : V \in (\beta,\beta') - PO(Y), f(x) \in V, x \in X\}.$$

Conversely, let $x \notin X \setminus \tau_{(\gamma,\gamma')} pC(f)$. Then for each $V \in (\beta, \beta') - PO(Y)$ containing f(x), $f^{-1}(V)$ is a (γ, γ') -preopen set U containing x. Thus, $x \in \tau_{(\gamma,\gamma')} p \operatorname{Int}(f^{-1}(V))$ and hence $x \notin \tau_{(\gamma,\gamma')} pFr(f^{-1}(V))$, for every $V \in \beta SO(Y)$ containing f(x). Therefore,

$$X \setminus \tau_{(\gamma,\gamma')} - pC(f) \supset \cup \{\tau_{(\gamma,\gamma')} - pFr(f^{-1}(V)) : V \in (\beta,\beta')PO(Y), f(x) \in V, x \in X\}.$$

Theorem 4.23. Let $f : (X, \tau) \to (Y, \sigma)$ be a (γ, β) -precontinuous, (γ, β) -preclosed, (γ, β) -preopen surjective function on (X, τ) . If X is (γ, γ') -preregular, then Y is (β, β') -preregular.

Proof. Let *K* be a (β, β') -preclosed in *Y* and $y \in K$. Since *f* is (γ, β) -precontinuous and *X* is (γ, γ') -preregular for each point $x \in f^{-1}(y)$, there exist disjoint $V, W \in (\gamma, \gamma')$ -*PO*(*X*) such that $x \in V$ and $f^{-1}(K) \subset W$. Now, since *f* is (γ, β) -preclosed, there exists a (β, β') -preopen set *U* containing *K* such that $f^{-1}(U) \subset W$. As *f* is a (γ, β) -preopen function, we have $y = f(x) \in f(V)$ and f(V) is (β, β') -preopen in *Y*. Now, $f^{-1}(U) \cap V = \emptyset$; hence $U \cap f(V) = \emptyset$. Therefore, *Y* is (β, β') -preregular.

Theorem 4.24. If $f : (X, \tau) \to (Y, \sigma)$ is a (γ, β) -precontinuous, (γ, β) -preclosed surjective function and X is (γ, γ') -prenormal, then Y is (β, β') -prenormal.

Proof. Let *A* and *B* be two disjoint (β, β') -preclosed sets in *Y*. Since *f* is (γ, β) -precontinuous, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint (γ, γ') -preclosed sets in *X*. Now as *X* is (γ, γ') -prenormal, there exist disjoint (γ, γ') -preopen sets *V* and *W* such that $f^{-1}(A) \subset V$ and $f^{-1}(B) \subset W$. Since *f* is (γ, β) -preclosed, there exist (β, β') -preopen sets *M* and *N* such that $A \subset M, B \subset N, f^{-1}(M) \subset V$ and $f^{-1}(N) \subset W$. Since $V \cap W = \emptyset$, we have $M \cap N = \emptyset$; hence *Y* is (β, β') -prenormal.

Definition 4.12. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be:

- (i) (γ, β)-preopen if f(U) is a (β, β')-preopen set of Y for every (γ, γ')-preopen set U of X.
- (ii) (γ, β) -preclosed [1] if f(U) is a (β, β') -preclosed set of Y for every (γ, γ') -preclosed set U of X.

Theorem 4.25. For a bijective function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (*i*) f is (γ, β) -preopen;
- (ii) f is (γ, β) -preclosed;
- (iii) f is (γ, β) -precontinuous.

Proof. The proof is clear.

Theorem 4.26. For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is (γ, β) -preopen;
- (ii) $f(\tau_{(\gamma,\gamma')}-p\operatorname{Int}(U)) \subset \sigma_{(\beta,\beta')}-p\operatorname{Int}(f(U))$ for each subset U of X;
- (iii) $\tau_{(\gamma,\gamma')} p \operatorname{Int}(f^{-1}(V)) \subset f^{-1}(\sigma_{(\beta,\beta')} p \operatorname{Int}(V))$ for each subset V of Y.

Proof. (*i*) \Rightarrow (*ii*): Let *U* be any subset of *X*. Then $\tau_{(\gamma,\gamma')}$ -*p* Int(*U*) is a (γ,γ') -preopen set of *X*. Then $f(\tau_{(\gamma,\gamma')}$ -*p* Int(*U*)) is a (β,β') -preopen set of *Y*. Since $f(\tau_{(\gamma,\gamma')}$ -*p* Int(*U*)) $\subset f(U)$, $f(\tau_{(\gamma,\gamma')}$ -*p* Int(*U*)) = $\sigma_{(\beta,\beta')}$ -*p* Int($f(\tau_{(\gamma,\gamma')}$ -*p* Int(*U*))) $\subset \sigma_{(\beta,\beta')}$ -*p* Int(f(U)).

 $\begin{array}{l} (ii) \Rightarrow (iii): \text{ Let } V \text{ be any subset of } Y. \text{ Then } f^{-1}(V) \text{ is a subset of } X. \text{ Hence } f(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(f^{-1}(V))) \subset \sigma_{(\beta,\beta')} - p \operatorname{Int}(f)) \subset \sigma_{(\beta,\beta')} - p \operatorname{Int}(V). \text{ Then } \tau_{(\gamma,\gamma')} - p \operatorname{Int}(f^{-1}(V)) \subset f^{-1}(f(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(f^{-1}(V)))) \subset f^{-1}(\sigma_{(\beta,\beta')} - p \operatorname{Int}(V)). \end{array}$

 $\begin{array}{l} (iii) \Rightarrow (i): \text{ Let } U \text{ be any } (\gamma, \gamma') \text{-preopen set of } X. \text{ Then } \tau_{(\gamma, \gamma')} \text{-} p \operatorname{Int}(U) = U \text{ and } f(U) \\ \text{is a subset of } Y. \text{ Now, } V = \tau_{(\gamma, \gamma')} \text{-} p \operatorname{Int}(V) \subset \tau_{(\gamma, \gamma')} \text{-} p \operatorname{Int}(f^{-1}(f(V))) \subset f^{-1}(\sigma_{(\beta, \beta')} \text{-} p \operatorname{Int}(f(V))) \\ p \operatorname{Int}(f(V))). \text{ Then } f(V) \subset f(f^{-1}(\sigma_{(\beta, \beta')} \text{-} p \operatorname{Int}(f(V)))) \subset \sigma_{(\beta, \beta')} \text{-} p \operatorname{Int}(f(V)) \text{ and } \sigma_{(\beta, \beta')} \text{-} p \operatorname{Int}(f(V)) \\ p \operatorname{Int}(f(V)) \subset f(V). \text{ Hence } f(V) \text{ is a } (\beta, \beta') \text{-} p \text{reopen set of } Y; \text{ hence } f \text{ is } (\gamma, \beta) \text{-} p \text{reopen.} \end{array}$

Corollary 4.2. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then f is (γ, β) -preclosed and (γ, β) -precontinuous if and only if $f(\tau_{(\gamma, \gamma')} - p \operatorname{Cl}(V)) = \sigma_{(\beta, \beta')} - p \operatorname{Cl}(f(V)))$ for every subset V of X.

Corollary 4.3. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then f is (γ, β) -preopen and (γ, β) -precontinuous if and only if $f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Cl}(V))) = \tau_{(\gamma,\gamma')}-p\operatorname{Cl}(f^{-1}((V)))$ for every subset V of Y.

Theorem 4.27. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then f is a (γ, β) -preclosed function if and only if for each subset V of X, $\sigma_{(\beta,\beta')}$ - $p \operatorname{Cl}(f(V)) \subset f(\tau_{(\gamma,\gamma')}-p \operatorname{Cl}(V))$.

Proof. Let f be a (γ, β) -preclosed function and V any subset of X. Then $f(V) \subset f(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(V))$ and $f(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(V))$ is a (β, β') -preclosed set of Y. We have $\sigma_{(\beta,\beta')} - p\operatorname{Cl}(f(V)) \subset \sigma_{(\beta,\beta')} - p\operatorname{Cl}(f(V))) = f(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(V))$. Conversely, let V be a (γ, γ') -preopen set of X. Then $f(V) \subset \sigma_{(\beta,\beta')} - p\operatorname{Cl}(f(V)) \subset f(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(V)) = f(V)$; hence f(V) is a (β, β') -preclosed subset of Y. Therefore, f is a (γ, β) -preclosed function.

Theorem 4.28. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then f is a (γ, β) -preclosed function if and only if for each subset V of Y, $f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Cl}(V)) \subset \tau_{(\gamma,\gamma')}-p\operatorname{Cl}(f^{-1}(V))$.

Proof. Let *V* be any subset of *Y*. Then by Theorem 4.27, $\sigma_{(\beta,\beta')}$ - $p\operatorname{Cl}(V) \subset f(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(f^{-1}(V)))$. Since *f* is bijection, $f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Cl}(V)) = f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Cl}(f(f^{-1}(V)))) \subset f^{-1}(f(\tau_{(\gamma,\gamma')}-p\operatorname{Cl}(f^{-1}(V)))) = \sigma_{(\beta,\beta')}-p\operatorname{Cl}(f^{-1}(V))$. Conversely, let *U* be any subset of *X*. Since *f* is bijection, $\sigma_{(\beta,\beta')}-p\operatorname{Cl}(f(U)) = f(f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Cl}(f(U))) \subset f(\tau_{(\gamma,\gamma')}-p\operatorname{Cl}(f^{-1}(f(U)))) = f(\tau_{(\gamma,\gamma')}-p\operatorname{Cl}(f(U)))$.

Therefore, by Theorem 4.27, *f* is a (γ, β) -preclosed function.

Theorem 4.29. Let $f : (X, \tau) \to (Y, \sigma)$ be a (γ, β) -preopen function. If V is a subset of Y and U is a (γ, γ') -preclosed subset of X containing $f^{-1}(V)$, then there exists a (β, β') -preclosed set F of Y containing V such that $f^{-1}(F) \subset U$.

112

Proof. Let *V* be any subset of *Y* and *U* a (γ, γ') -preclosed subset of *X* containing $f^{-1}(V)$, and let $F = Y \setminus (f(X \setminus V))$. Then $f(X \setminus V) \subset f(f^{-1}(X \setminus V)) \subset X \setminus V$ and $X \setminus U$ is a (γ, γ') -preopen set of *X*. Since *f* is (γ, β) -preopen, $f(X \setminus U)$ is a (β, β') -preopen set of *Y*. Hence *F* is a (β, β') -preclosed set of *Y* and $f^{-1}(F) = f^{-1}(Y \setminus (f(X \setminus U)) \subset U$. \Box

Theorem 4.30. Let $f : (X, \tau) \to (Y, \sigma)$ be a (γ, β) -preclosed function. If V is a subset of Y and U is a (γ, γ') -preopen subset of X containing $f^{-1}(V)$, then there exists (β, β') -preopen set F of Y containing V such that $f^{-1}(F) \subset U$.

Proof. The proof is similar to the Theorem 4.29.

Theorem 4.31. Let $f : (X, \tau) \to (Y, \sigma)$ be a (γ, β) -preopen function. Then for each subset V of Y, $f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Int}(\sigma_{(\beta,\beta')}-p\operatorname{Cl}(V)) \subset \tau_{(\gamma,\gamma')}-p\operatorname{Cl}(f^{-1}(V))$.

Proof. Let *V* be any subset of *Y*. Then $\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(f^{-1}(V))$ is a (γ,γ') -preclosed set of *X* containing $f^{-1}(V)$. Since *f* is (γ,β) -preopen, by Theorem 4.29, there is a (β,β') -preopen set *F* of *Y* containing *V* such that $f^{-1}(\sigma_{(\beta,\beta')} - p\operatorname{Int}(\sigma_{(\beta,\beta')} - p\operatorname{Cl}(V)) \subset \tau_{(\gamma,\gamma')} - p\operatorname{Int}(\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(F)) \subset f^{-1}(F) \subset \tau_{(\gamma,\gamma')} - p\operatorname{Cl}(f^{-1}(V))$.

Theorem 4.32. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijection such that for each subset V of Y, $f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Int}(\sigma_{(\beta,\beta')}-p\operatorname{Cl}(V)) \subset \tau_{(\gamma,\gamma')}-p\operatorname{Cl}(f^{-1}(V))$. Then f is a (γ,β) -preopen function.

Proof. Let *U* be a (γ, γ') -preopen subset of *X*. Then $f(X \setminus U)$ is a subset of *Y* and $f^{-1}(\sigma_{(\beta,\beta')} - p \operatorname{Int}(\sigma_{(\beta,\beta')} - p \operatorname{Cl}(f(X \setminus U)))) \subset \tau_{(\gamma,\gamma')} - p \operatorname{Cl}(f^{-1}(f(X \setminus U))) = \tau_{(\gamma,\gamma')} - p \operatorname{Cl}(X \setminus U) = X \setminus U$, and so $\sigma_{(\beta,\beta')} - p \operatorname{Int}(\sigma_{(\beta,\beta')} - p \operatorname{Cl}(f(X \setminus U))) \subset f(X \setminus U)$. Hence $f(X \setminus U)$ is a (β, β') -preclosed set of *Y* and $f(U) = X \setminus (f(X \setminus U))$ is a (β, β') -precopen set of *Y*. Therefore, *f* is a (γ, β) -preopen function.

Definition 4.13. [1] A function $f : (X, \tau) \to (Y, \sigma)$ is said to be (γ, β) -prehomeomorphism if f and f^{-1} are (γ, β) -precontinuous.

Theorem 4.33. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijection. Then the following statements are equivalent:

- (i) f is (γ, β) -prehomeomorphism;
- (ii) f^{-1} is (γ, β) -prehomeomorphism;
- (iii) f and f^{-1} are (γ, β) -preopen $((\gamma, \beta)$ -preclosed);
- (iv) f is (γ, β) -precontinuous and (γ, β) -preopen $((\gamma, \beta)$ -preclosed);
- (v) $f(\tau_{(\gamma,\gamma')} p\operatorname{Cl}(V)) = \sigma_{(\beta,\beta')} p\operatorname{Cl}(f(V))$ for each subset V of X;
- (vi) $f(\tau_{(\gamma,\gamma')}-p\operatorname{Int}(V)) = \sigma_{(\beta,\beta')}-p\operatorname{Int}(f(V))$ for each subset V of X;
- (vii) $f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Int}(V)) = \tau_{(\gamma,\gamma')}-p\operatorname{Int}(f^{-1}(V))$ for each subset V of Y;

(viii) $\tau_{(\gamma,\gamma')} - p\operatorname{Cl}(f^{-1}(V)) = f^{-1}(\sigma_{(\beta,\beta')} - p\operatorname{Cl}(V))$ for each subset V of Y.

Proof. (*i*) \Rightarrow (*ii*): It follows immediately from the definition of a (γ , β)-prehomeomorphism. (*ii*) \Rightarrow (*iv*): It follows from Theorem 4.25.

 $(iv) \Rightarrow (v)$: It follows from Theorem 4.28 and Corollary 4.2.

 $(v) \Rightarrow (vi)$: Let U be a subset of X. Then by Theorem 2.1, $f(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(U)) = X \setminus f(\tau_{(\gamma,\gamma')} - p \operatorname{Int}(U)) = X \setminus \sigma_{(\beta,\beta')} - p \operatorname{Cl}(f(X \setminus U)) = \sigma_{(\beta,\beta')} - p \operatorname{Int}(f(U))$.

 $(vi) \Rightarrow (vii)$: Let *V* be a subset of *Y*.

Then $f(\tau_{(\gamma,\gamma')}-p\operatorname{Int}(f^{-1}(V))) = \sigma_{(\beta,\beta')}-p\operatorname{Int}(f(f^{-1}(V))) = \sigma_{(\beta,\beta')}-p\operatorname{Int}(f(V))$. Hence $f^{-1}(f(\tau_{(\gamma,\gamma')}-p\operatorname{Int}(f^{-1}(V)))) = f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Int}(V))$. Therefore, $f^{-1}(\sigma_{(\beta,\beta')}-p\operatorname{Int}(V)) = \tau_{(\gamma,\gamma')}-p\operatorname{Int}(f^{-1}(V))$.

 $(vii) \Rightarrow (viii)$: Let V be a subset of Y.

Then by Theorem 2.1, $\tau_{(\gamma,\gamma')} p \operatorname{Cl}(f^{-1}(V)) = X \setminus (f^{-1}(\sigma_{(\beta,\beta')} p \operatorname{Int}(Y \setminus V))) = X \setminus (\tau_{(\gamma,\gamma')} p \operatorname{Int}(f^{-1}((X \setminus V)))) = f^{-1}(\sigma_{(\beta,\beta')} p \operatorname{Cl}(V)).$ $(viii) \Rightarrow (i)$: It follows from Theorem 4.28 and Corollary 4.3.

Theorem 4.34. Every topological space (X, τ) with operations γ and γ' on τ is (γ, γ') -pre- $T_{1/2}$.

Proof. Let $x \in X$. We prove (X, τ) is (γ, γ') -pre- $T_{1/2}$, it is sufficient to show that $\{x\}$ is (γ, γ') -preopen or (γ, γ') -preclosed. Now, if $\{x\}$ is (γ, γ') -open, then it is obviously (γ, γ') -preopen. If $\{x\}$ is not (γ, γ') -open, then $\tau_{(\gamma, \gamma')}$ -Int $(\{x\}) = \emptyset$; hence $\tau_{(\gamma, \gamma')}$ -Cl $(\tau_{(\gamma, \gamma')}$ -Int $(\{x\})) = \emptyset \subset \{x\}$. Therefore, $\{x\}$ is (γ, γ') -preclosed. \Box

References

- [1] Carpintero, C., Rajesh, N. and Rosas, E., On a class of (γ, γ') -preopen sets in a topological space, Fasc. Math. **46** (2011), 25–36
- [2] Kasahara, S., Operation-compact spaces, Math. Japan. 24 (1979), 97-105
- [3] Rajesh, N. and Vijayabharathi, V., Bioperation-via Regular open sets (submitted)
- [4] Umehara, J., Maki, H. and Noiri, T., Bioperation on topological spaces and some separation axioms, Mem. Fac. Sci. Kochi Univ. (A) 13 (1992), 45–59

DEPARTMENT OF MATHEMATICS RAJAH SERFOJI GOVT. COLLEGE THANJAVUR-613005, TAMILNADU, INDIA *E-mail address*: nrajesh_topology@yahoo.co.in

DEPARTMENT OF MATHEMATICS NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI TAMILNADU, INDIA *E-mail address*: vi jayabharathi_v@yahoo.com