Investigating the effectiveness of advertising on declining social networks

GERGELY KOCSIS and IMRE VARGA

Abstract.

In this paper we aim to investigate the question if it's worth it to advertise on declining social networks or not. Our investigations are based on computer simulations using a previously defined and here simplified model of information spreading. To make our results as close to the real life as possible we run simulations both on a real network sample and on several generated networks representing as well classical scale-free-like social topologies as declining social networks. As a result we found how the continuous destruction of the network affects the spreading, changing also the effectiveness of the advertising.

Acknowledgement. The publication was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The project has been supported by the European Union, co-financed by the European Social Fund.

REFERENCES

- [1] Albert, R. and Barabási, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47–97 (2002)
- [2] Albert, R. and Barabási, A.-L., Emergence of Scaling in Random Networks, Science 286 5439, 509–512 (1999)
- [3] Albert, R., Jeong, H. and Barabási, A. L., The Internet's Achilles' Heel: Error and attack tolerance of complex networks, Nature 406, 378–382 (2000)
- [4] Caldarelli, G., Capocci, A., De Los Rios, P. and Muoz, M. A., Scale-Free Networks from Varying Vertex Intrinsic Fitness, Phys. Rev. Lett., 89, 258702 (2002)
- [5] Dorogovtsev, S. N. and Mendes, J. F. F., Effect of the accelerating growth of communications networks on their structure, Phys. Rev. E, 63, 025101 (2001)
- [6] Gjoka, M., Kurant, M., Butts, C. T. and Markopoulou, A., Walking in Facebook: A Case Study of Unbiased Sampling of OSNs, Proceedings of IEEE INFOCOM '10, San Diego, CA, (2010)
- [7] Kocsis, G. and Kun, F., Competition of information channels in the spreading of innovations, Phys. Rev. E, 84, 026111 (2011)
- [8] Kosmidis, K. and Bunde, A., Propagation of confidential information on SF networks, Phys. A, 376, 699–707 (2007)
- [9] Lee, H. Y., Chan, H. Y. and Hui, P. M., Scale-free networks with tunable degree distribution exponents, Phys. Rev. E, 69, 067102 (2004)
- [10] Tang, X. G. and Wong, E. W. M., Information traffic in scale-free networks with fluctuations in packet generation rate, Phys. A, 388, 4797–4802 (2009)
- [11] Varga, I., Németh, A. and Kocsis, G., A novel method of generating tunable underlaying network topologies for social simulation, submitted to The 4th IEEE International Conference on Cognitive Infocommunications (2013)
- [12] Varghese, B. M., The Life Cycle of a Social Network, Techpedia (http://www.techipedia.com/2011/social-network-life-cycle/ last visited: June 20, 2013) (2011)

DEPARTMENT OF INFORMATICS SYSTEMS AND NETWORKS UNIVERSITY OF DEBRECEN 26 KASSAI ÚT, DEBRECEN, HUNGARY *E-mail address*: kocsis.gergely@inf.unideb.hu *E-mail address*: varga.imre@inf.unideb.hu

Received: 04.11.2013; In revised form: 05.06.2014; Accepted: 12.06.2014 2010 Mathematics Subject Classification. 05C82, 90B15, 91D30. Key words and phrases. Scale-free networks, social networks information spreading, simulation, modeling.