Multivalued almost contractions in metric space endowed with a graph

ISHAK ALTUN and ÖZLEM ACAR

ABSTRACT. The main goal of this paper is to introduce a multivalued almost contraction on a metric space with a graph. In terms of this new contraction, we establish some fixed point results on graph.

1. INTRODUCTION

Fixed point theory for multivalued map is started by Nadler [13]. Then many authors have improved this theory for many type contractions on metric space. Also, in 2013 Divenari and Frigon [11] presented some fixed point result for multivalued maps combining fixed point theory and graph theory. Then Beg and Butt [3] obtained sufficient conditions for the existence of a common fixed point for a multivalued mappings in metric space X endowed with a graph. Recently, in [10, 14] the authors proved some fixed point theorems in graph theory. Using F-contraction Acar and Altun [1] gave some results for multivalued mappings on a metric space involving a graph. Here, we shall investigate further fixed point theorems for multivalued mappings using almost contraction in the light of the paper [8] in a metric space endowed with a graph.

2. PRELIMINARIES

2.1. **Graph theory.** Let *X* be a nonempty set and Δ denotes the diagonal of Cartesian product *X* × *X*. A graph on *X* is an object *G* = (*V*(*G*), *E*(*G*)), where *V*(*G*) is vertex set, whose elements are called vertices and *E*(*G*) is edge set. We assume that *G* has no parallel edges and $\Delta \subset E(G)$.

If x and y are vertices of G, then a path in G from x to y of length $k \in \mathbb{N}$ is a finite sequence $\{x_n\}_{n \in \{0,1,2,\dots,k\}}$ of vertices such that

$$x_0 = x, x_k = y$$
 and $(x_{i-1}, x_i) \in E(G)$ for $i \in \{1, 2, \cdots, k\}$.

Notice that a graph G is connected if there is a path between any two vertices and it is weakly connected if \tilde{G} is connected, where \tilde{G} denotes the undirected graph obtained from G by ignoring the direction of edges.

Denote by G^{-1} the graph obtained from G by reversing the direction of edges. Thus

$$E(G^{-1}) = \{ (x, y) \in X \times X : (y, x) \in E(G) \}.$$

Since it is more convenient to treat \tilde{G} as a directed graph for which the set of its edges is symmetric, under this convention, we have that

$$E(\hat{G}) = E(G) \cup E(G^{-1}).$$

2010 Mathematics Subject Classification. 54H25, 47H10.

Received: 05.01.2015. In revised form: 20.03.2015. Accepted: 31.03.2015

Key words and phrases. *Fixed point, multivalued maps, directed graph, almost contraction, complete metric space.* Corresponding author: Özlem Acar; acarozlem@ymail.com

We call (V', E') a subgraph of G if $V' \subseteq V(G)$ and $E' \subseteq E(G)$ and for any edge $(x, y) \in E'$, $x, y \in V'$.

If *G* is symmetric and *x* is a vertex in *G*, then the subgraph G_x consisting of all edges and vertices which are contained in some path beginning at *x* is called the component of *G* containing *x*. In this case $V(G_x) = [x]_G$, where $[x]_G$ is the equivalence class of the following relation \mathcal{R} defined on V(G) by the rule:

 $y\mathcal{R}z$ if there is path in *G* from *y* to *z*.

We can find more information about graph theory in [12].

Let (X, d) be a metric space. P(X) denotes the family of all nonempty subsets of X, CB(X) denotes the family of all nonempty, closed and bounded subsets of X and K(X) denotes the family of all nonempty compact subsets of X. It is clear that, $K(X) \subseteq CB(X) \subseteq P(X)$. For $A, B \in CB(X)$, let

$$H(A,B) = \max\left\{\sup_{x \in A} D(x,B), \sup_{y \in B} D(y,A)\right\},\$$

where $D(x, B) = \inf \{d(x, y) : y \in B\}$. Then *H* is a metric on CB(X), which is called Pompeiu-Hausdorff metric induced by *d*. We can find detailed information about Pompeiu-Hausdorff metric in [2, 9].

Definition 2.1. Let (X, d) be a metric space, G = (V(G), E(G)) be a graph such that V(G) = X and let $T : X \to CB(X)$. Then *T* is said to be graph-preserving if

 $(x,y) \in E(G) \Rightarrow (u,v) \in E(G)$ for all $u \in Tx$ and $v \in Ty$.

Definition 2.2. Let (X, d) be a metric space, G = (V(G), E(G)) be a graph such that V(G) = X and let $T : X \to CB(X)$. Then we say that T has weakly graph-preserving property whenever for each $x \in X$ and $y \in Tx$ with $(x, y) \in E(G)$ implies $(y, z) \in E(G)$ for all $z \in Ty$.

Remark 2.1. It is clear that every graph preserving map is a weakly graph preserving. But the converge may not be true. For example, let X = [-1, 1] with the usual metric. Consider a graph given by V(G) = X and $E(G) = X \times X \setminus \Delta$. Define $T : X \to CB(X)$ by

$$Tx = \begin{cases} \{-x\} &, x \notin \{-1,0\} \\ \{0,1\} &, x = -1 \\ \{1\} &, x = 0 \end{cases}$$

Then it can be seen that *T* is weakly graph-preserving map but not graph-preserving.

Lemma 2.1. Let (X,d) be a metric space and $T : X \to P(X)$ be an upper semicontinuous mapping such that Tx is closed for all $x \in X$. If $x_n \to x_0$, $y_n \to y_0$ and $y_n \in Tx_n$, then $y_0 \in Tx_0$.

2.2. Almost contraction. Berinde [5, 6, 7] defined almost contraction (or (δ, L) -weak contraction) mappings in a metric space as follow:

Definition 2.3. Let (X, d) be a metric space and $T : X \to X$ is a self operator. *T* is said to be a almost contraction (or (δ, L) -weak contraction) if there exists a constant $\delta \in (0, 1)$ and some $L \ge 0$ such that

$$d(Tx, Ty) \le \delta d(x, y) + Ld(y, Tx)$$
(2.1)

for all $x, y \in X$.

Note that, by the symmetry property of the distance, the almost contraction condition implicitly includes the following dual one

$$d(Tx, Ty) \le \delta d(x, y) + Ld(x, Ty) \tag{2.2}$$

for all $x, y \in X$. So, in order to check the almost contractiveness of a mapping *T*, it is necessary to check both (2.1) and (2.2).

In [6] and [7], Berinde shows that any Banach, Kannan, Chatterjea and Zamfirescu mappings are almost contraction. Using the concept of almost contraction mappings, Berinde [6] proved that if *T* is a almost contraction (or (δ, L) -weak contraction) self mapping of a complete metric space *X*, then *T* has a fixed point. Also, Berinde shows that any almost contraction (or (δ, L) -weak contraction) mapping is a Picard operator. Then, Berinde [4] introduced the nonlinear type almost contraction using a comparison function and proved the following fixed point theorem. A map $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$, where $\mathbb{R}^+ = [0, \infty)$, is called comparison function if it satisfies:

- (i) φ is monotone increasing,
- (ii) $\lim_{n\to\infty} \varphi^n(t) = 0$ for all $t \in \mathbb{R}^+$.

If φ satisfies (i) and

(iii) $\sum_{n=0}^{\infty} \varphi^n(t)$ converges for all $t \in \mathbb{R}^+$,

then φ is said to be (c)-comparison function.

We can find some properties and some examples of comparison and (*c*)-comparison functions in [7].

Definition 2.4. Let (X, d) be a metric space and $T : X \to X$ is a self operator. *T* is said to be a almost φ -contraction (or (φ, L) -weak contraction) if there exists a comparison function φ and some $L \ge 0$ such that

$$d(Tx, Ty) \le \varphi(d(x, y)) + Ld(y, Tx)$$
(2.3)

for all $x, y \in X$.

Similar to the case of almost contraction, in order to check the almost φ -contractiveness of a mapping *T*, it is necessary to check both (2.3) and

$$d(Tx, Ty) \le \varphi(d(x, y)) + Ld(x, Ty) \tag{2.4}$$

for all $x, y \in X$.

Clearly any almost contraction is a almost φ -contraction, but the converse may not be true. Also the class of almost φ -contractions includes Matkowski type nonlinear contractions.

Theorem 2.1. Let (X, d) be a complete metric space and $T : X \to X$ a almost φ -contraction (or (φ, L) -weak contraction with φ) is (c)-comparison function, then T has a fixed point.

Moreover, in [8] the authors extend the concept of weak contraction from the case of single-valued mappings to multivalued mappings. Hence they obtain general fixed point theorems which extend, improve and unify a multitude of corresponding results in literature for both single-valued and multivalued maps as well.

Definition 2.5. Let (X, d) be a metric space and $T : X \to P(X)$ be a multivalued operator. *T* is said to be a multivalued weak contraction or a multivalued (θ, L) -weak contraction if there exist two constants $\theta \in (0, 1)$ and $L \ge 0$ such that

$$H(Tx, Ty) \le \theta d(x, y) + LD(y, Tx)$$
(2.5)

for all $x, y \in X$.

Due to the symmetry of d and H, in order to check that T is a multivalued weak contraction, we have also to check the dual of (2.5), that is to check that T verifies

$$H(Tx, Ty) \le \theta d(x, y) + LD(x, Ty)$$
, for all $x, y \in X$.

The next theorem is the main result of that paper.

Theorem 2.2. Let (X, d) be a complete metric space and $T : X \to CB(X)$ a multivalued (θ, L) -weak contraction. Then

(i) the set of fixed points of T is nonempty;

(ii) for any $x_0 \in X$, there exists an orbit $\{x_n\}_{n=0}^{\infty}$ of T at the point x_0 that converges to a fixed point u of T for which the following estimates hold:

$$d(x_n, u) \leq \frac{h^n}{1-h} d(x_0, x_1), n = 0, 1, 2, \cdots$$

$$d(x_n, u) \leq \frac{h}{1-h} d(x_{n-1}, x_n), n = 0, 1, 2, \cdots$$

for a certain constant h < 1.

Also, in this paper they extend this result by considering instead of the term $\theta d(x, y)$ in (2.5) the expression

$$k(d(x,y))d(x,y)$$
 where $k:[0,\infty) \to [0,1)$

is a function satisfying certain conditions.

Theorem 2.3. Let (X, d) be a complete metric space and $T : X \to CB(X)$ a generalized multivalued (α, L) -weak contraction, i.e., a mapping for which there exists a function $\alpha : [0, \infty) \to [0, 1)$ satisfying $\limsup_{r \to t^+} \alpha(r) < 1$, for every $t \in [0, \infty)$, such that

$$H(Tx, Ty) \le \alpha(d(x, y))d(x, y) + LD(y, Tx)$$

for all $x, y \in X$. Then T has at least one fixed point.

3. MAIN RESULTS

In this section we prove some fixed point theorems for multivalued almost contraction using graph theory.

Theorem 3.4. Let (X, d) be a complete metric space, G be a directed graph on X and $T : X \rightarrow CB(X)$ be a multivalued mapping. Assume that T is upper semicontinuous and weakly graph-preserving map. Suppose that the following assertions hold:

(i) There exists a strictly increasing (c)-comparison function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ and $L \ge 0$ such that

$$H(Tx,Ty) \le \varphi(M(x,y)) + L\min\{D(x,Ty), D(y,Tx)\}$$
(3.6)

for all $(x, y) \in E(G)$, where

$$M(x,y) = \max\left\{ d(x,y), D(x,Tx), D(y,Ty), \frac{1}{2} \left[D(x,Ty) + D(y,Tx) \right] \right\}$$

(*ii*) $X_T = \{x \in X : (x,u) \in E(G) \text{ for some } u \in Tx\}$ is nonempty.

Then T has a fixed point.

Proof. Let $x_0 \in X_T$. There exists $x_1 \in Tx_0$ such that $(x_0, x_1) \in E(G)$. So we can use the condition (i) for x_0 and x_1 . Then we have

$$D(x_1, Tx_1) \leq H(Tx_0, Tx_1)$$

$$\leq \varphi(M(x_0, x_1)) + L\min\{D(x_0, Tx_1), D(x_1, Tx_0)\}$$

$$= \varphi(M(x_0, x_1))$$

$$= \varphi\left(\max\left\{\begin{array}{c} d(x_0, x_1), D(x_0, Tx_0), D(x_1, Tx_1), \\ \frac{1}{2}[D(x_0, Tx_1) + D(x_1, Tx_0)] \end{array}\right\}\right)$$

$$\leq \varphi(d(x_0, x_1))$$

$$< q\varphi(d(x_0, x_1))$$

where q > 1 is a constant. Therefore, there exists $x_2 \in Tx_1$ such that

$$d(x_1, x_2) < q\varphi(d(x_0, x_1)).$$

Since φ is strictly increasing, we have

$$0 < \varphi(d(x_1, x_2)) < \varphi(q\varphi(d(x_0, x_1)))$$

Get $q_1 = \frac{\varphi(q\varphi(d(x_0,x_1)))}{\varphi(d(x_1,x_2))}$. Then $q_1 > 1$. Since $(x_0, x_1) \in E(G)$, $x_1 \in Tx_0$ and $x_2 \in Tx_1$, using weakly graph-preserving property we can write $(x_1, x_2) \in E(G)$. Then

$$D(x_2, Tx_2) \leq H(Tx_1, Tx_2) \\ \leq \varphi(M(x_1, x_2)) + L\min\{D(x_1, Tx_2), D(x_2, Tx_1)\} \\ = \varphi(M(x_1, x_2)) \\ \leq \varphi(d(x_1, x_2)) \\ < q_1\varphi(d(x_1, x_2))$$

Therefore there exists $x_3 \in Tx_2$ such that

$$d(x_2, x_3) \le q_1 \varphi(d(x_2, x_1)) = \varphi(q\varphi(d(x_0, x_1))).$$

Since φ is strictly increasing, we have

$$0 < \varphi(d(x_2, x_3)) < \varphi^2(q\varphi(d(x_0, x_1))).$$

Get $q_2 = \frac{\varphi^2(q\varphi(d(x_0,x_1)))}{\varphi(d(x_2,x_3))}$. Then $q_2 > 1$. By induction, we can find a sequence $\{x_n\}$ in X such that $x_{n+1} \in Tx_n$, $(x_n, x_{n+1}) \in E(G)$ and

$$d(x_n, x_{n+1}) \le \varphi^n(q\varphi(d(x_0, x_1))).$$

In order to show that $\{x_n\}$ is a Cauchy sequence, consider $m, n \in \mathbb{N}$ such that m > n. Using the triangular inequality for the metric, we have

$$d(x_n, x_m) \leq \sum_{k=n}^{m-1} d(x_k, x_{k+1})$$
$$\leq \sum_{k=n}^{m-1} \varphi^k(q\varphi(d(x_0, x_1)))$$

Since φ is a (*c*)-comparision function, by the convergence of the series, we get $d(x_n, x_m) \rightarrow 0$ as $n \rightarrow \infty$. This yields that $\{x_n\}$ is a Cauchy sequence in (X, d). Since (X, d) is a complete metric space, the sequence $\{x_n\}$ converges to some point $z \in X$, that is, $\lim_{n \to \infty} x_n = z$. Since *T* is upper semicontinuous, then by Lemma 2.1 we have $z \in Tz$.

Theorem 3.5. Let (X, d) be a complete metric space, G be a directed graph on X satisfies the following property:

$$(P) - property \begin{cases} \text{for any } \{x_n\} \text{ in } X, \text{ if } x_n \to x \text{ and } (x_n, x_{n+1}) \in E(G), \\ \text{then there is a subsequence } \{x_{n_k}\} \text{ with } (x_{n_k}, x) \in E(G). \end{cases}$$

Let $T : X \to CB(X)$ be a multivalued mapping. Assume that T is weakly graph-preserving map. Suppose that the following assertions hold:

(i) There exists a strictly increasing (c)-comparison function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ and $L \ge 0$ such that

$$H(Tx, Ty) \le \varphi(M(x, y)) + L\min\{D(x, Ty), D(y, Tx)\}$$

for all $(x, y) \in E(G)$. (ii) X_T is nonempty. Then T has a fixed point.

Proof. By similar way of proof of Theorem 3.4, we can construct a sequence $\{x_n\}$ such that $x_n \to z$ for some $z \in X$. By the (P)-property, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $(x_{n_k}, z) \in E(G)$ for each $k \in \mathbb{N}$. Now assume that D(z, Tz) > 0. Since $\lim_{n\to\infty} D(x_{n_k}, x_{n_k+1}) = 0$, $\lim_{n\to\infty} D(x_{n_k}, z) = 0$, there exists $n_0 \in \mathbb{N}$ such that for $n_k > n_0$

$$D(x_{n_k}, x_{n_k+1}) < \frac{1}{3}D(z, Tz)$$
(3.7)

and there exists $n_1 \in \mathbb{N}$ such that for $n_k > n_1$

$$D(x_{n_k}, z) < \frac{1}{3}D(z, Tz).$$
 (3.8)

If we take $n_k > \max\{n_0, n_1\}$, then by 3.7 and 3.8, we have

$$D(x_{n_{k}+1}, Tz)) \leq H(Tx_{n_{k}}, Tz)$$

$$\leq \varphi(M(x_{n_{k}}, z)) + L\min\{D(x_{n_{k}}, Tz), D(z, Tx_{n_{k}})\}$$

$$\leq \varphi\left(\max\left\{\begin{array}{c}d(x_{n_{k}}, z), D(x_{n_{k}}, Tx_{n_{k}}), D(z, Tz),\\ \frac{1}{2}[D(x_{n_{k}}, Tz) + D(z, Tx_{n_{k}})]\end{array}\right\}\right)$$

$$+L\min\{D(x_{n_{k}}, Tz), D(z, x_{n_{k}+1})\}$$

$$< \varphi(D(z, Tz)) + L\min\{D(x_{n_{k}}, Tz), d(z, x_{n_{k}+1})\}$$

Taking the limit $k \to \infty$, we have $D(z,Tz) \le \varphi(D(z,Tz)) < D(z,Tz)$, which is a contradiction. Thus *T* has a fixed point.

If we assume that $T : X \to K(X)$ in the previous theorems, we don't need to necessity of being strictly increasing of φ . So we can state the proof of theorems as following:

Corollary 3.1. Let (X, d) be a complete metric space, G be a directed graph on X and $T : X \to K(X)$ be a multivalued mapping. Assume that T is upper semicontinuous and weakly graph-preserving map. Suppose that the following assertions hold:

*(i)*There exists a (c)-comparison function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ and L > 0 such that

$$H(Tx, Ty) \le \varphi(M(x, y)) + L\min\{D(x, Ty), D(y, Tx)\}$$

for all $(x, y) \in E(G)$ (*ii*) X_T is nonempty. Then T has a fixed point. *Proof.* Let $x_0 \in X_T$. There exists $x_1 \in Tx_0$ such that $(x_0, x_1) \in E(G)$. So we can use the condition (i) for x_0 and x_1 . Then we have

$$D(x_1, Tx_1) \leq H(Tx_0, Tx_1) \\ \leq \varphi(M(x_0, x_1)) + L\min\{D(x_0, Tx_1), D(x_1, Tx_0)\} \\ = \varphi(M(x_0, x_1)) \\ = \varphi\left(\max\left\{\begin{array}{c} d(x_0, x_1), D(x_0, Tx_0), D(x_1, Tx_1), \\ \frac{1}{2}[D(x_0, Tx_1) + D(x_1, Tx_0)] \end{array}\right\}\right) \\ \leq \varphi(d(x_0, x_1))$$

Since Tx_1 is compact, there exists $x_2 \in Tx_1$ such that $d(x_1, x_2) = D(x_1, Tx_1)$. So

$$d(x_1, x_2)) \le \varphi(d(x_0, x_1)).$$

Since $(x_0, x_1) \in E(G)$, $x_1 \in Tx_0$ and $x_2 \in Tx_1$, using weakly graph-preserving property, we can write $(x_1, x_2) \in E(G)$. Then

$$D(x_2, Tx_2) \leq H(Tx_1, Tx_2) \\ \leq \varphi(M(x_1, x_2)) + L\min\{D(x_1, Tx_2), D(x_2, Tx_1)\} \\ = \varphi(M(x_1, x_2)) \\ \leq \varphi(d(x_1, x_2)).$$

Since Tx_2 is compact, there exists $x_3 \in Tx_2$ such that $d(x_2, x_3) = D(x_2, Tx_2)$. Therefore we have

$$d(x_2, x_3) \le \varphi(d(x_2, x_1)).$$

By induction, we can find a sequence $\{x_n\}$ in X such that $x_{n+1} \in Tx_n$, $(x_n, x_{n+1}) \in E(G)$ and

$$d(x_n, x_{n+1}) \leq \varphi(d(x_{n-1}, x_n))$$

$$\leq \varphi^2(d(x_{n-2}, x_{n-1}))$$

$$\vdots$$

$$\leq \varphi^n(d(x_0, x_1)).$$

The rest of the proof can be completed as in the proof of Theorem3.4.

Corollary 3.2. Let (X, d) be a complete metric space, G be a directed graph on X satisfies the (P)-property. Let $T : X \to K(X)$ be a multivalued mapping. Assume that T is weakly graph-preserving map. Suppose that the following assertions hold:

*(i)*There exists a (c)-comparison function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ and L > 0 such that

$$H(Tx, Ty) \le \varphi(M(x, y)) + L\min\{D(x, Ty), D(y, Tx)\}$$

for all $(x, y) \in E(G)$. (ii) X_T is nonempty. Then T has a fixed point.

Corollary 3.3. Let (X, d) be a complete metric space, G be a directed graph on X and $T : X \to K(X)$ be a multivalued mapping. Assume that T is upper semicontinuous and weakly graphpreserving map. Also suppose that there exists a (c)-comparison function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ and L > 0 such that

$$H(Tx, Ty) \le \varphi(d(x, y))$$

for all $(x, y) \in E(G)$ and X_T is nonempty. Then T has a fixed point.

Corollary 3.4. Let (X, d) be a complete metric space, G be a directed graph on X satisfies the (P)-property. Let $T : X \to K(X)$ be a multivalued mapping. Assume that T is weakly graph-preserving map. Also suppose that there exists a (c)-comparison function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ and L > 0 such that

$$H(Tx, Ty) \le \varphi(d(x, y))$$

for all $(x, y) \in E(G)$ and X_T is nonempty. Then T has a fixed point.

REFERENCES

- [1] Acar, Ö. and Altun, I., Multivalued F-contractive mappings with a graph and some fixed point results, Submitted
- [2] Agarwal, R. P., O'Regan, D. and Sahu, D. R., Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, New York, 2009
- [3] Beg, I. and Butt, A. R., Fixed point of set-valued graph contractive mappings, J. Inequal. Appl., 2013 (2013), 252, 7 pp.
- [4] Berinde, V., Approximating fixed points of weak φ-contractions using the picard iteration, Fixed Point Theory, (2003), 131–147
- [5] Berinde, V., On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19 (2003), No. 1, 7–22
- [6] Berinde, V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9 (2004), No. 1, 43–53
- [7] Berinde, V., Iterative Approximation of Fixed Points, Springer-Verlag, Berlin Heidelberg, 2007
- [8] Berinde, V. and Berinde, M., On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772–782
- [9] Berinde, V. and Păcurar, M., The role of the Pompeiu-Hausdorff metric in fixed point theory, Creat. Math. Inform., 22 (2013), No. 2, 35–42
- [10] Chifu, C., Petruşel, G. and Bota, M-F., Fixed points and strict fixed points for multivalued contractions of Reich type on metric spaces endowed with a graph, Fixed Point Theory Appl., 2013:203, 12 pp.
- [11] Dinevari, T. and Frigon, M., Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl., 405 (2013), No. 2, 507–517
- [12] Johnsonbaugh, R., Discrete mathematics, Prentice-Hall, Inc., New Jersey, 1997
- [13] Nadler, S. B., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488
- [14] Sultana, A. and Vetrivel, V., Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications, J. Math. Anal. Appl., 417 (2014), No. 1, 336–344

DEPARTMENT OF MATHEMATICS KIRIKKALE UNIVERSITY FACULTY OF SCIENCE AND ARTS 71450 YAHSIHAN, KIRIKKALE, TURKEY *E-mail address*: ishakaltun@yahoo.com

DEPARTMENT OF MATHEMATICS KIRIKKALE UNIVERSITY, FACULTY OF SCIENCE AND ARTS, 71450 YAHSIHAN, KIRIKKALE, TURKEY *E-mail address*: acarozlem@ymail.com