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Commuting Regularity degree of finite semigroups

A. FIRUZKUHY and H. DOOSTIE

ABSTRACT. A pair (x, y) of elements x and y of a semigroup S is said to be a commuting regular pair, if there
exists an element z ∈ S such that xy = (yx)z(yx). In a finite semigroup S, the probability that the pair (x, y)
of elements of S is commuting regular will be denoted by dcr(S) and will be called the Commuting Regularity
degree of S. Obviously if S is a group, then dcr(S) = 1. However for a semigroup S, getting an upper bound
for dcr(S) will be of interest to study and to identify the different types of non-commutative semigroups. In
this paper, we calculate this probability for certain classes of finite semigroups. In this study we managed to
present an interesting class of semigroups where the probability is 1

2
. This helps us to estimate a condition on

non-commutative semigroups such that the commuting regularity of (x, y) yields the commuting regularity of
(y, x).

1. INTRODUCTION

For a semigroup S the ordered pair (x, y) of the elements x, y ∈ S is called a commut-
ing regular pair if there exists an element z ∈ S such that xy = (yx)z(yx). A semigroup S
is called a commuting regular semigroup, if every pair of the elements x, y ∈ S is a com-
muting regular pair. A natural question may be posed here that ”for a non-commutative
non-commuting regular semigroup, if (x, y) is a commuting regular pair, when (y, x) is
also a commuting regular pair?” Investigating this question needs the following defini-
tion which was formerly used in [5].

Definition 1.1. The Commuting Regularity degree of a semigroup S denoted by dcr(S),
is the probability of choosing two elements x and y of S such that (x, y) is a commuting
regular pair.

Obviously, dcr(S) = 1 if S is a commuting regular semigroup. The article [5] computes
this number for certain sub-semigroups of transformation semigroups and here we use
this probability to investigate the above question. Indeed, we consider two infinite classes
of finite non-commutative non-commuting regular semigroups, and by means of their
Commuting Regularity degrees we propose a conjecture related to the above question.

Our notations are merely standard, following [7] one may get the elementary concepts
of semigroups. Also we need some remarks and descriptions on the presentation of semi-
groups.

For a set A (often called the alphabet), let A∗ be the set of all finite words over A and
A+ be the set of all non-empty words in A∗. A semigroup presentation is an ordered pair
〈A | R〉 where, R ⊆ A+ × A+. The semigroup defined by a presentation 〈A | R〉 is indeed
A+/ρ where ρ is the smallest congruence on A+ containing R.

In fact, a semigroup S is defined by the presentation 〈A | R〉 if S ∼= A+/ρ. So each
word of A+ represents an element of S. For ω1, ω2 ∈ A+, we write ω1 ≡ ω2 if ω1 and
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ω2 are identical words and ω1 = ω2 if they represent the same element of S. Thus, for
an example if A = {a, b} and R is {ab = ba}, then aba = a2b but aba 6≡ a2b. For a
detailed information on the presentation of semigroups one may see [2, 3, 10, 11]. As
usual, we denote a semigroup presented by a presentation π = 〈A | R〉 as Sg(π) and a
group presented by π as Gp(π).

In this paper for every n ≥ 2, we consider the semigroups S1 = Sg(π1) and S2 = Sg(π2)
where,

π1 = 〈a, b|a3 = a, bna = a, abab2 = b〉
and

π2 = 〈a, b|a3 = a, bn+1 = b, abab2 = b〉.
These well-known semigroups are of orders 4n and 6n+2, respectively. They are indeed,
the semigroups related to the dihedral groups.

Before giving our main results we would like to provide a short history of such proba-
bilistic numbers of algebraic structures indicating their importance and interests in calcu-
lation.

For a given algebraic structure A, the commutativity degree of A, denoted by Pr(A) is
defined as the probability of choosing a pair (x, y) of the elements of A such that x and y

commute, i.e; Pr(A) = |{(x,y)∈A2|xy=yx}|
|A2| . If A is a group it is proved that Pr(A) =

κ(A)

|A|
where, κ(A) is the number of conjugacy classes of A ( see [4]). As an interest upper bound
Gustafon [6] showed that Pr(A) ≤ 5

8 , for a finite non-abelian group A and MacHale [9]
proved that Pr(A) ≤ 5

8 , for a finite non-abelian ring. Estimating Pr(A) for a group A,
when it is less that or greater than 1

2 was of interest and Lescot [8] studied some groups
satisfying 1

2 ≤ Pr(A) ≤
5
8 and Doostie [4] presented certain classes of finite groups where

Pr(A) ≤ 1
2 . In continuation of this research the article [1] proved that the number 5

8 is not
an upper bound for Pr(A) when A is a semigroups.

Our main results on the semigroups S1 and S2 are as follows:

Proposition A. Let S1 = Sg(π1). For every positive integer n ≥ 2, the number of ordered pairs
of elements of S1, which are commuting regular equals 8n2. Moreover, dcr(S1) =

1
2 .

Proposition B. For the semigroup S2 = Sg(π2), dcr(S2) =
12n2 + 8n+ 4

(6n+ 2)2
, for all positive

integers n ≥ 2 . Moreover, dcr(S2) is strictly less than 1
2 for sufficiently large values of n.

2. THE PROOF OF PROPOSITIONS A AND B

We use the following key lemma concerning useful new relators in the semigroup S1.

Lemma 2.1. The following relators hold in S1:
(i) bn+1 = b, bna2 = a2,
(ii) a2bi = bi, (1 ≤ i ≤ n),
(iii) bab = abn and biabi = bab, (i ≥ 2),
(iv) (ab)2 = bn,
(v) biab = abn+1−i, (i ≤ n− 1),
(vi) abia = bn−ia2, (i ≤ n− 1).

Moreover, |S1| = 4n.
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Proof. Let R1 : a3 = a, R2 : bna = a and R3 : abab2 = b. Then, R3 yields bn(abab2) = bn+1

and by using R2, we get the relator abab2 = bn+1. So bn+1 = b. The second part of (i) is a
quick result of R2.

The assertion (ii) is obvious for i = 1 (by multiplying both sides of R3 by a from the
left and using R1.) For every i ≥ 2 we multiply both sides of R3 by a2 (from the left) and
by bi−1 (from the right). Then we get a3bab2bi−1 = a2bi which yields abab2bi−1 = a2bi. So,
a2bi = bi.

Proving (iii) needs the relatorR3. MultiplyingR3 by a from the left and using (ii), gives
us bab2 = ab. By multiplying this new relator by bn−1 from the left and using (i), we get
the result. One may get the second part of (iii) by using bab = abn and (i).

The assertion (iv) is a quick result of (ii) and (iii).
The relator (v) for i = 1 is exactly the first assertion of (iii). Let i ≥ 2. Then, (iii) yields

biab = bi−1(bab) = bi−1abn or, bi−1abn = bi−1abi−1bn−(i−1) = abnbn−(i−1). Since i− 1 < n
so, n− (i− 1) ≥ 1 and then (i) yields abnbn−(i−1) = abn−i+1. Finally, (vi) is a result of (v)
and the relators R1 and R2.

These assertions estimate the lengths of the elements of S1 and we get that S1 = X∪Y ∪
Z ∪ T where, X = {a, a2}, Y = {b, b2, . . . , bn}, Z = {abi|i = 1, . . . , n} and T = {biaj |1 ≤
i ≤ n− 1, j = 1, 2}. Consequently, |S1| = 4n. �

Proof of Proposition A. Using the results of above lemma we intend to find all of the pairs
of elements which are commuting regular. In the following table we have summarized all
the cases for commuting regular pair (x, y) together with the suitable z such that xy =
(yx)z(yx)holds.

x y z
ai aj ai+j

bi bj bt t ≡ n− (i+ j) (mod n)
abi abj bt t ≡ 3(i− j) (mod n)
bia bja bt t ≡ 3(i− j) (mod n)

bia bja2 ab4n−(i+3j)

bia2 bja ab3i−j

bia2 bja2 b2n−(i+j)

a bia bn−3i

a bia2 b3ia
bia a b3i

bia2 a b3n−3ia
a2 bia abn−i

bia a2 abn−i

a2 bia2 bn−i

bia2 a2 bn−i

bi abj b4n−(3i+j)

abj bi bn+3j−i

All of the remained pairs are not commuting regular, for example, if (x, y) = (a, bj) then
there is no element z ∈ S1 satisfying xy = (yx)z(yx). To prove this, we have to examine
all possible values of z. The possible values for z are z = a, z = a2, z = bi, z = abi, z = bia
and z = bia2. Considering each case we get the contradictions as follows:

z = a⇒ bjazbja = b2ja 6= abj ,

z = a2 ⇒ bjazbja = bjabja = abna = a2 6= abj ,
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z = bi ⇒ bjazbja = bjabibja = bjabjbia = abnbia = abia
= bn−ia2 6= abj ,

z = abi ⇒ bjazbja = bja2bibja = b2j+ia 6= abj ,

z = bia⇒ bjazbja = bjabiabja = bjbn−ia2bja = bn−i+2ja 6= abj ,

z = bia2 ⇒ bjazbja = bjabia2bja = bjabibja = bjabjbia = abnbia
= abia = bn−ia2 6= abj .

So, the pair (a, bj) is not a commuting regular pair. A similar proof may be used for
other pairs which are absent in the above table. Counting all of the commuting regular
pairs appeared in the table gives us:
|{(x, y)|x, y ∈ S1, xy = yxzyx}| = 4 + 2n2 + 4(n− 1)2 + 8(n− 1) + 2n2 = 8n2.

So, dcr(S1) =
8n2

(4n)2
= 1

2 , as required.

Proving the Proposition B needs certain new information about S2. In the semigroup
S2, the relators biabi = abn and a2bi = bi hold for every i (1 ≤ i ≤ n). Moreover, for every

i and j where i 6= j, we get biabj =
{
abj−i, j > i
abn−(i−j), j < i.

Summarizing these information, we easily get |S2| = 6n+ 2.

Proof of Proposition B. An almost similar proof to that of Proposition A may be used
here. A table of commuting regular pairs, similar to that of S1 is as follows:

x y z
ai aj ai+j

bi bj bt t ≡ n− (i+ j) (mod n)
a2 bia bia
a2 bia2 abia
bia a2 bia
bia2 a2 abia
a2 abia bi

a2 abia2 abi

abia a2 bi

abia2 a2 abi

bi abj abj+3i

abi abj bt t ≡ 3(i− j) (mod n)
abia abja bi+j

abia2 abja2 bt t ≡ 3(i− j) (mod n)
bia bja a
abi bj bta t ≡ 3j − i (mod n)
bia2 bja2 abi+ja
bja abia abt t ≡ 3i− j (mod n)
abia bja ab3i+j

bja2 abia2 ab4n−(i+3j)

abia2 bja2 abt t ≡ 3j − i (mod n)

By considering the relators of S2 we conclude that the ordered pairs of the forms
(a, bja), (a, bja2), (abia, abja),. . . are not commuting regular pairs. Enumerating the pairs
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which have been appeared in this table shows that:

|{(x, y)|x, y ∈ S2,∃z ∈ S, xy = (yx)z(yx)}| = 12n2 + 8n+ 4

Hence dcr(S2) =
12n2 + 8n+ 4

(6n+ 2)2
. A simple hand calculation shows that dcr(S2) is strictly

less than 1
2 .

3. CONCLUSION

One may see easily that
12n2 + 8n+ 4

(6n+ 2)2
is a decreasing sequence and also

lim
n→∞

12n2 + 8n+ 4

(6n+ 2)2
=

1

3
.

So, 1
3 is a lower bound for dcr(S2). Obviously, the number 17

49 as the upper bound will
be achieved for n = 2. Hence, 1

3 ≤ dcr(S2) ≤ 17
49 . This yields that 1

2 is an upper bound
for both of the semigroups dcr(S1) and dcr(S2). Considering the results of the tables of
Propositions A and B gives us some evidences to provide the following conjecture:

Conjecture. For every non-commutative non-commuting regular semigroup S, if dcr(S) =
1
2 then the commuting regularity of the pair (x, y) results the commuting regularity of the
pair (y, x). But not vice versa.

We examined the conjecture for S1 where, dcr(S1) =
1
2 . Also, our experimental results

on S2 proves the converse of this conjecture where, commuting regularity of every pair
(x, y) gives the commuting regularity of (y, x), however, dcr(S2) <

1
2 .
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