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Computing the Wiener index of graphs on triples

M. GHORBANI

ABSTRACT. Let S be a set of size n ≥ 8 and V be the set of all subsets of S of size 3. Three types of intersection
graphs Gi(n), i = 0, 1, 2, can be defined with the vertex set V whose Wiener indices will be calculated in this
paper.

1. INTRODUCTION

Let G = (V,E) be a simple connected graph with vertex set V and edge set E, where
both are finite sets. The distance between the vertices u and v of G is denoted by d(u, v)
and it is the length of the shortest path joining u to v. The distance of a vertex v, denoted by
d(v), is the sum of all the distances between v and all vertices u ofG, i. e. d(v) =

∑
u∈v

d(u, v).

We always denote an edge joining the vertices u and v by {u, v}.
The Wiener index of the graph G is denoted by W (G) and is defined by W (G) =∑

u∈v⊆V
d(u, v), which can be written as W (G) =

1

2

∑
v∈v

d(v).

The Wiener index is one of the oldest descriptors associated to a graph, originally a
molecular graph. It is an invariant of a graph in the sense that it is unchanged under
applying any automorphism of the graph, and it is called a topological index because it
deals with distances between vertices. The Wiener index was first proposed in [11] and
was concerned with the determination of the boiling point of paraffin. The Wiener’s orig-
inal definition of his index was different, but in terms of the distances between vertices
is due to Hosoya [8]. Computing the Wiener index of a graph is of great interest among
mathematicians and to see a few works one is referred to [1], [3], [6]. Also finding other
topological indices of graphs, such as hyper-Wiener index and Szeged index, are of inter-
est and the reader may refer to [4], [5], [10], and [9].

In this paper we will consider the so called intersection graphs defined in [7]. Let S be
a set of size n, where we assume n ≥ 8 to avoid triviality, and let V be the set of subsets of
S of size 3. We define three graphs Gi(n), i = 0, 1, 2, as follows: the vertex set of Gi(n) is
S with adjacency defined by two vertices being adjacent if the sets of size 3 meet in zero,
one, or two elements, respectively. We callGi(n), i = 0, 1, 2, graphs on triples and our aim
in this paper is to calculate the Wiener indices of these graphs.

2. PRELIMINARIES

Let G = (V,E) be a simple connected graph with vertex set V and edge set E. An
automorphism of G is a permutation on V which preserves adjacency. The set of all the
automorphisms of G under the composition of mappings forms a group that is called the
automorphism group of G and is denoted by Aut(G). In [2] it is shown that if Aut(G) acts
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transitively on V , then there is a simple way of calculating the Wiener index W (G) of G.
By transitivity ofAut(G) on V we mean that if u and v are two arbitrary vertices of V , then
there is σ ∈ Aut(G) such that uσ = v. In this case the graph G is called a vertex-transitive
graph. We will use the following result which is proved in [2].

Result 1. Let G = (V,E) be a simple connected graph. If Aut(G) acts transitively on V ,

then W (G) =
1

2
|V | d(v), for any v ∈ V .

Next we define the graphs whose Wiener indices are going to be calculated. Let S be a
set of n ≥ 8 elements and V be the set of all the 3-subsets of S. The graphGi(n), i = 0, 1, 2,
has its vertex set V and two vertices (as 3-subsets) are joined if and only if they intersects

in a set of cardinality i. Therefore, the number of vertices of Gi(n), i = 0, 1, 2, is
(
n

3

)
and they are regular graphs of degree

(
n− 3

3

)
, 3
(
n− 3

2

)
and 3(n − 3) for i = 0, 1, 2,

respectively. Therefore, the number of edges of these graphs are:

|E(G0(n))| =
1

2

(
n− 3

3

)(
n

3

)
,

|E(Gi(n))| =
3

2

(
n− 3

2

)(
n

3

)
,

and

|E(G2(n))| =
3

2
(n− 3)

(
n

3

)
.

3. COMPUTING THE WIENER INDICES OF Gi(n), i = 0, 1, 2

In order to be able to use Result 1, first we prove that each of the graphs Gi(n), i =
0, 1, 2, is a vertex-transitive graph.

Lemma 3.1. The automorphism group of Gi(n), i = 0, 1, 2, has a subgroup isomorphic to the
symmetric group on n letters Sn. Moreover, each of the graphs Gi(n), i = 0, 1, 2, is a vertex-
transitive graph.

Proof. Let σ : S → S be a one-to-one mapping. Then σ induces a permutation on V =

S{3}, the set of all the 3-subsets of S, by letting: {a, b, c}σ = {aσ, bσ, cσ}. Now if u =
{a, b, c} and v = {d, e, f} are two vertices in V , then uσ ∩ vσ = (u ∩ v)σ , hence from
|u ∩ v| = i we deduce |uσ ∩ vσ| = i, proving that {u, v} is an edge in Gi(n), i = 0, 1, 2.
This proves that σ ∈ Aut(Gi(n)), hence the automorphism group of Gi(n) has a subgroup
isomorphic to Sn.

In order to prove the vertex transitivity of the graph, let u = {a, b, c} and v = {d, e, f}
be two vertices of the graph Gi(n), i = 0, 1, 2. By previous part there is a permutation σ of
Sn taking u to v. But σ induces an automorphism of Gi(n) such that uσ = v, proving the
vertex transitivity of each of the graphs Gi(n), i = 0, 1, 2. �

Lemma 3.2. Let u and v be two vertices of Gi(n), i = 0, 1, 2. Then d(u, v) is at most 2, unless
i = 2, where d(v, u) = 3 also occurs.

Proof. Without loss of generality we set S = {1, 2, ..., n} and v = {1, 2, 3} a vertex ofGi(n),
i = 0, 1, 2. Let u be another vertex of Gi(n). If u = v, then d(u, v) = 0, hence we assume
u 6= v. We consider three graphs Gi(n), i = 0, 1, 2, one by one.

Case (a) i = 0. If u ∩ v = ∅, then d(u, v) = 1, hence we assume u ∩ v 6= ∅.
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If |u ∩ v| = 1, then we may assume u = {1, 4, 5}. In this case if we set w = {6, 7, 8} then
{v, w} and {u,w} are edges of G0(n), hence d(u, v) = 2.

If |u ∩ v| = 2, then we may assume u = {1, 2, 4}. In this case if we set w = {5, 6, 7}, then
{v, w} and {u,w} are edges of G0(n), hence d(u, v) = 2.

Case (b) i = 1. If |u ∩ v| = 1, then d(u, v) = 1, otherwise u ∩ v 6= ∅ or |u ∩ v| = 2.
If |u ∩ v| = ∅, then we may assume u = {4, 5, 6}, and in this case if we set w = {1, 4, 7},

then {v, w} and {u,w} are edges of G1(n), hence d(u, v) = 2.
If |u ∩ v| = 2, then we may assume u = {1, 2, 4}, hence if w = {1, 5, 6}, then {v, w} and

{u,w} are edges of G1(n), hence d(u, v) = 2.
Case (c) i = 2. If |u ∩ v| = 2, then d(u, v) = 1, otherwise u ∩ v 6= ∅ or |u ∩ v| = 1.
If |u ∩ v| = ∅, then we may set u = {4, 5, 6}, and in this case ifw = {1, 2, 4}, x = {1, 4, 5}

then {v, w}, {w, x} and {x, u} are edges of G2(n), hence d(u, v) = 3.
If |u ∩ v| = 1, then we may assume u = {1, 4, 5}, hence with w = {1, 2, 4} we have

d(u, v) = 2.
The proof is completed. �

Theorem 3.1. The Wiener indices of the graph Gi(n), i = 0, 1, 2, are as follows:

W (G0(n)) =
1

12

(
n

3

)
(n− 3)(n2 + 9n− 16),

W (G1(n)) =
1

12

(
n

3

)
(n− 3)(2n2 − 9n+ 40),

W (G2(n)) =
1

4

(
n

3

)
(n− 3)(n2 − 3n− 2).

Proof. By Lemma 3.1, Aut(Gi(n)) acts transitively on the vertices of the graph Gi(n), i =

0, 1, 2. Hence by Result 1 we can write W (Gi(n)) =
1

2
|V | d(v), where v is any vertex of

Gi(n), where d(v) =
∑
u∈v

d(u, v). In the following we calculate d(v) for each Gi(n), from

which the formulae in Theorem 3.1 follows.
Case (a) i = 0. By Lemma 3.2 Case (a), we have d(u, v) = 0, 1, or 2. The number of

vertices at distance 1 from v is equal to the number of 3-subsets of S which intersect v in

the empty set, which is equal to
(
n− 3

3

)
. The number of vertices at distance 2 from v

are those 3-subsets S which intersect v in 1 or 2 elements, which is equal to 3

(
n− 3

2

)
+

3

(
n− 3

1

)
. Therefore, d(v) =

(
n− 3

3

)
+ 6

(
n− 3

2

)
+ 6

(
n− 3

1

)
=

1

6
(n− 3)(n2 + 9n− 16)

and the formula follows.
Case (b) i = 1. By Lemma 3.2 Case (b), the vertices u at distance 1 from v are those with

|u ∩ v| = 1, and those with distance 2 from v have the property |u ∩ v| = 0 or 2.

For a 3-subset v of S, the number of 3-subsets of S that intersect v in 1 point is 3
(
n− 3

2

)
,

and the number of 3-subsets of S that intersect v in 0 or 2 points is
(
n− 3

3

)
+ 3

(
n− 3

1

)
.

Therefore, d(v) = 3

(
n− 3

2

)
+ 2

(
n− 3

3

)
+ 6

(
n− 3

1

)
=

1

6
(n − 3)(2n2 − 9n + 40) and the

formula follows.
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Case (c) i = 2. Again by Lemma 3.2 Case (c), if |u ∩ v| = 2, then d(u, v) = 1, hence the

number of these u is equal to 3

(
n− 3

1

)
. If |u ∩ v| = ∅, then d(u, v) = 3 and the number of

such u is equal to
(
n− 3

3

)
, and if |u ∩ v| = 1, then d(u, v) = 2, and the number of such u

is 3
(
n− 3

2

)
. Therefore, d(v) = 3

(
n− 3

1

)
+ 6

(
n− 3

2

)
+ 3

(
n− 3

3

)
= 1

2 (n− 3)(n2 − 3n− 2)

and the formula follows. The proof is completed. �
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