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Coefficient inequality for transforms of starlike and convex
functions

D. VAMSHEE KRISHNA, B. VENKATESWARLU and T. RAMREDDY

ABSTRACT. The objective of this paper is to obtain an upper bound for the second Hankel functional as-

1
sociated with the k*” root transform [f (z’“)} % of normalized analytic function f(z) belonging to starlike and
convex functions, defined on the open unit disc in the complex plane, using Toeplitz determinants.

1. INTRODUCTION

Let A denote the class of all functions f(z) of the form
flz)=z+ Z anz" (1.1)
n=2

in the open unit disc £ = {z : |z| < 1}. Let S be the subclass of A consisting of uni-
valent functions. For a univalent function in the class A, it is well known that the n'"
coefficient is bounded by n. The bounds for the coefficients give information about the
geometric properties of these functions. For example, the bound for the second coefficient
of normalized univalent function readily yields the growth and distortion properties of
univalent functions. The Hankel determinant of f for ¢ > 1 and n > 1 was defined by
Pommerenke [9] as

Qp n41 Un+4q—1
anJrl an+2 e anJrq
Hq(”) = . : : . ,((11 = 1)
Antq—1 Qn4q " (An42g-2

This determinant has been considered by many authors in the literature. In particular
cases, ¢ = 2,n = l,a1 = land ¢ = 2,n = 2, a; = 1, the Hankel determinant simplifies
respectively to

_|ar a2 | _ 2
HQ(l) = ay  as = as Aa,
and Hs(2) = 22 = agay — a3.
3

We refer to H-2(2) as the second Hankel determinant. It is well known that for the uni-
valent function of the form (1.1) the sharp inequality Hs(1) = |az — a3| < 1 holds true
[4]. For a family 7 of functions in .S, the more general problem of finding sharp estimates
for the functional |a3 — pa3|(n € R or p € C) is popularly known as the Fekete-Szegi
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problem for 7. Ali [3] found sharp bounds to the first four coefficients and sharp esti-
mate for the Fekete-Szego functional |y3 — tv3|, where ¢ is real for the inverse function of f
defined as f~!(w) = w+ .7, v,w" when it belongs to the class of strongly starlike func-
tions of order o (0 < « < 1) denoted by ﬁ(a). Janteng, Halim and Darus [6] obtained
the second Hankel determinant and sharp upper bounds for the familiar subclasses of
S, namely, starlike and convex functions denoted by ST and CV and have shown that
lasas — a3] < 1 and |azas — a3| < & respectively. Recently, several authors have defined
certain subclasses of univalent, multivalent analytic functions and obtained sharp upper
bounds to the second Hankel determinant for the functions in these classes. R. M. Alj, S. K.
Lee, V. Ravichandran and S. Supramaniam [2] obtained sharp bound for the Fekete-Szego

functional denoted by |ba41 — pb7 | associated with the k™ root transform [f(z*)]* of

the function given in (1.1), belonging to certain subclasses of S. The k'" root transform for
the function f given in (1.1) is defined as

F(2)i= [f0)])F = 24 S brnga 2o, (1.2)

n=1

In this paper, we obtain an upper bound to the functional by 41bsk41 — b3+, called the

second Hankel determinant for the k" root transform for the function f when it belongs
to the familiar subclasses ST and CV of S, defined as follows.

Definition 1.1. A function f(z) € Ais said to be in ST, if it satisfies the condition

!
Re { i (Z)} >0, Vz€E. (1.3)
f(z)
Definition 1.2. A function f(z) € Ais said to be in C'V, if and only if
1
Re{l—f—zf, (2)} >0,z € E. (1.4)
f'(2)

From the Definitions 1.1 and 1.2, we observe that, there exists an Alexander type The-
orem [1], which relates the classes ST and C'V, stated as follows.

feCV & zf € ST.

Some preliminary Lemmas required for proving our results are as follows:

2. PRELIMINARY RESULTS

Let P denote the class of functions consisting of p, such that
p(z)=1+crz+cz?+c32®+ ... = 1+chz", (2.5)
n=1
which are regular in the open unit disc E and satisfy Rep(z) > 0, for any z € E. Here p(z)

is called the Carathéodory function [4].

Lemma 2.1. ([8, 10]) If p € P, then |c,| < 2, for each k > 1 and the inequality is sharp for the

function 2.
—Zz
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Lemma 2.2. ([5]) The power series for p(z) = 1+ Y7, ¢,2" given in (2.5) converges in the
open unit disc E to a function in P if and only if the Toeplitz determinants

2 c1 Co Cn
C_1 2 C1 tee Cn—1
D, =|¢2 ¢ 2 2| p=1,2.3...
C.n Cny1 C_pi2 - 2

and c_y, = ¢y, are all non-negative. They are strictly positive except for p(z) = > | prpo(e'*z),
pr > 0, ty real and t, # t;, for k # j, where py(z) = 1E£; in this case D,, > 0 for n < (m — 1)
and D,, = 0 for n > m.

This necessary and sufficient condition found in [5] is due to Carathéodory and Toeplitz.
We may assume without restriction that ¢; > 0. On using Lemma 2.2, for n = 2, we have

2 C1 Co
Dy=|c 2 ¢ |=[8+2Re{cica} —2]ca|?—4]ei]?] >0,
Ty €1 2

which is equivalent to

2cy = {c? +x(4 - ¢})}, for some z, x| < 1. (2.6)
Forn = 3,
2 Ci1 C2 C3
C1 2 C1 C2
= >
Ds Ccs €1 2 |~ 0
Cc3 Cy ¢ 2

and is equivalent to
|(4es — deren + ci’)(4 — c?) + ¢1(2¢0 — c?)2| <2(4- c?)2 —2|(2¢9 — c%)\g. (2.7)
Simplifying the relations (2.6) and (2.7), we get
des = {3+ 2c1(4 — A — (4 — eD)a® +2(4 — D) (1 — |z[})z}, with 2] < 1. (2.8)
In obtaining our results, we refer to the classical method devised by Libera and Zlotkiewicz
[7].
3. MAIN RESULTS

Theorem 3.1. If f given by (1.1) belongs to ST and F is the k' root transformation of f given
by (1.2) then

1
b4 103841 — b3p ] < =

and the inequality is sharp.

Proof. For f(z) = z+ > -, anz" € ST, there exists an analytic function p € P in the open
unit disc F with p(0) = 1 and Re[p(z)] > 0 such that

2f'(2)
f(2)

=p(2) & zf'(2) = p(2)f(2). (3.9)
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Using the series representations for f(z), f’(z) and p(z) in (3.9), we have

Z{1+i nanznl}{1+icnz”}{z+ianz"}. (3.10)
n=2 n=1 n=2

Upon Simplification, on equating the coefficients in (3.10) yields,

3

1 1 3 c
as =c1; ag = 5(0? +c2); ag = 5(03 + 50102 + 51) (3.11)

For a function f given by (1.1), a computation shows that

1

1 00 E
[f9))* = |28+ Z anz"kl
n=2
Lo k1 1 (1—k) 2\ ort1
= [z—l-%an +{Ea3—|— 22 a2}z
1 1-k 1—Fk)(1 -2k
—l—{%az; + ( 2 )agag + —( ()il(c3 )a‘;’}zng + } (3.12)
Simplifying the expressions (1.2) and (3.12) along with (3.11), we get
c 1
b1 = El s boky = @(7%2 +cf);
1
skl = 6?(%%3 + 3keieg + ¢3). (3.13)

Substituting the values of by1,bax+1 and bgr4+1 from (3.13) in the second Hankel deter-
minant | bgy1bskt1 — b%k 41 | to the k" transformation for the function f € ST, which
simplifies to

1
12k4
From Lemma 2.2, substituting the values of ¢z and c3 from (2.6) and (2.8) respectively, on
the right-hand side of the expression (3.14), we have

|bk+1b3k+1 - b§k+1| = |4k28163 — 3]@263 — Cﬂ (314)

1
|bks1b3k1 — V3| = | 4k%ct x Z{C§ +2c1(4— ) — (4 — c2)x?

1
+2(4 = c})(1 — [z]?)2} — 3K* x 5{0? +z(d—c)} —cif.
Using triangle inequality and the fact that |z| < 1, we get
b 103841 — D3| < | (K7 — 4)ef + 8k cr(4 — ) + 2k (4 — o) ||
—(c1 +2)(e1 +6)k* (4 — F)[z|*]. (3.15)

Since ¢; = ¢ € [0, 2], noting that (¢1 +a)(c1 +b) > (¢1 —a)(c1 —b), where a, b > 0, applying
triangle inequality and replacing |z| by i on the right-hand side of (3.15), we obtain

Abry1bsprr — b3ppq| <[ (4—K%)c* + 8k%c(4 — ) + 2k°P (4 — P)p
T (c—2)(c— 6k (4 — *)u?]
= F(e,p), for0 < p=|z| <1, (3.16)
where F(c, 1) = (4 — k*)c* 4+ 8k*c(4 — %) + 2k*c*(4 — )
+(c—2)(c—6)k*(4 — ). (3.17)
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We next maximize the function F'(c, ) on the closed region [0, 2] x [0, 1]. Differentiating
F(c, ) given in (3.17) partially with respect to i, we get
OF
5= 2k*{c* + (¢ — 2)(c — 6)pu} (4 — ). (3.18)
1
For 0 < pu < 1, for fixed ¢ with 0 < ¢ < 2, from (3.18), we observe that ‘g—i > 0. Therefore,
F(c, p) is an increasing function of p and hence it cannot have a maximum value at any
point in the interior of the closed region [0,2] x [0, 1]. Further, for fixed c € [0, 2], we have

Jnax, F(e,p) = F(c,1) = G(e). (3.19)

Simplifying the relations (3.17) and (3.19), we get
G(c) = —4(k? — 1)c* + 48k2, (3.20)
G'(c) = —16(k* — 1)c. (3.21)
From the expression (3.21), we observe that G’(¢) < 0 for every ¢ € [0, 2] and for all values

of k. Therefore, G(c) is a decreasing function of c in the interval [0, 2], whose maximum
value occurs at ¢ = 0 only and from (3.20), it is given by

TP
01;123?2 G(0) = 48k~. (3.22)
Simplifying the expressions (3.16) and ( 3.22) along with (3.14), we obtain
1
[Brabarr = B3| < 13 (3.23)

Choosing ¢; = ¢ = 0 and selecting = 1 in (2.6) and (2.8), we find that ¢c; = 2 and ¢35 = 0.

Using these values in (3.14), we observe that equality is attained which shows that our
result is sharp and for these values, we derive the extremal function, given by

2f'(z) _1+2°

fla)  1-2°

This completes the proof of our Theorem 3.1. O

=1+22%2 4224 ... (3.24)

Remark 3.1. In particular, for ¥ = 1 in (3.23), the result coincides with that of Janteng,
Halim and Darus [6].

Theorem 3.2. If f given by (1.1) belongs to CV and F is the k'™ root transformation of f given
by (1.2) then

) (2k2 +1)
| Dry1b3k1 — bopyq |< 32(5k2 +3)°

Proof. For f(z) = z+ > ooy a,2™ € CV, from the Definition 1.2, there exists an analytic
function p € P in the unit disc £ with p(0) = 1 and Rep(z) > 0 such that

Zf//(Z) — n(z (4 2 (2) = p(2) (2
{1+ 8 =00 & 1@+ 2070 = pa s G 6.25)

Replacing f'(z), f"(z) and p(z) with their equivalent expressions in (3.25), we have

{1 + i nanz"_l} +z {i n(n — l)anz"_Q}
n=2 n=2
= {1 + i cnz"} {z + i nanz”_l} . (3.26)
n=1 n=2
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Simplifying and equating the coefficients in (3.26) yields,

c1 1 1 3 3

a9 = 5, asz = 6(6%+02); a4 = 12(03+ 20162+51). (327)

Applying the same procedure as described in Theorem 3.1, a computation shows that

1
bet1 = 2% bok+1 = 24k2 [4kco + (k + 3)ci] ;
b1 = 48k3 [Ak%cz + 2k(k + 2)ciea + (14 k)cl]. (3.28)
Further, we have
|bk41b3k41 — b3jpn| = = 6k4 |24k?cyc3 + 4k c ey — 16Kk%c5 — (K% + 3)c|. (3.29)

From Lemma 2.2, substituting the values of ¢; and c3 from (2.6) and (2.8) respectively on
the right-hand side of (3.29) and applying the same procedure as described in Theorem
3.1, we obtain

|24k>cic3 + Ak cley — 16k%c3 — (K + 3)ci| < |3(K* — 1)cf + 12k%c1 (4 — o)+
6k*ci(4 — c})|z| — 2k%(c1 + 2)(c1 + 4)(4 — ¢])[z[?] . (3.30)
Since ¢; = ¢ € [0, 2], applying the same procedure as described in Theorem 3.1, we get
|24k cies + 4k*cles — 16k%c5 — (K + 3)ct| <[ 3(k* — 1)c* + 12k%c(4 — ¢*)+
6k°c*(4 — A)u+2k*(c—2)(c—4) (4= A)p* ] (3.31)
=F(c,p), for0 < p=|z| <1.

Using the same procedure as described in Theorem 3.1, we observe that g—i > 0 and
further we have

G(c) = —(5k* + 3)c* + 16k%c? + 64Kk2, (3.32)
G'(c) = —4(5k? + 3)c® + 32k%c, (3.33)
G"(c) = —12(5k* + 3)c* + 32k (3.34)
For optimum value of ¢, consider G’(c) = 0. From (3.33), we get
—4 [(5k* + 3)c® — 8k*] ¢ = 0. (3.35)

Let us have the following cases.
Casel: For ¢ = 0, from (3.34), we get G (0) = 32k? > 0, for each value of k. Therefore, by
the second derivative test G(c) has minimum value at ¢ = 0.
Case2: For ¢ # 0 and for every value of k, from (3.35), we obtain

9 8k?

“ sz 02

Substituting the value of ¢? in (3.34), it simplifies to G’ (¢) = —64k? < 0, for each k, which
implies that G(c) has maximum value at ¢, where ¢? is given by (3.36). Using the value of
2 in (3.32), the maximum value of G(c) is obtained to be

192k2(2k% + 1)

(3.36)

max — B 7
Gmar = G(¢") = ) (3:37)
Simplifying the expressions (3.31) and (3.37) along with (3.29), we obtain
(2k% 4+ 1)
|bk+1b3k+1 b2k+1| < m (338)
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This completes the proof of our Theorem 3.2.

Remark 3.2. Choosing k£ = 1 in (3.38), the result coincides with that of Janteng, Halim
and Darus [6] and the inequality is sharp.
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