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Coefficient inequality for transforms of starlike and convex
functions

D. VAMSHEE KRISHNA, B. VENKATESWARLU and T. RAMREDDY

ABSTRACT. The objective of this paper is to obtain an upper bound for the second Hankel functional as-

sociated with the kth root transform
[
f(zk)

] 1
k of normalized analytic function f(z) belonging to starlike and

convex functions, defined on the open unit disc in the complex plane, using Toeplitz determinants.

1. INTRODUCTION

Let A denote the class of all functions f(z) of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of uni-
valent functions. For a univalent function in the class A, it is well known that the nth

coefficient is bounded by n. The bounds for the coefficients give information about the
geometric properties of these functions. For example, the bound for the second coefficient
of normalized univalent function readily yields the growth and distortion properties of
univalent functions. The Hankel determinant of f for q ≥ 1 and n ≥ 1 was defined by
Pommerenke [9] as

Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

, (a1 = 1).

This determinant has been considered by many authors in the literature. In particular
cases, q = 2, n = 1, a1 = 1 and q = 2, n = 2, a1 = 1, the Hankel determinant simplifies
respectively to

H2(1) =
a1 a2
a2 a3

= a3 − a22,

and H2(2) =
a2 a3
a3 a4

= a2a4 − a23.

We refer to H2(2) as the second Hankel determinant. It is well known that for the uni-
valent function of the form (1.1) the sharp inequality H2(1) = |a3 − a22| ≤ 1 holds true
[4]. For a family T of functions in S, the more general problem of finding sharp estimates
for the functional |a3 − µa22|(µ ∈ R or µ ∈ C) is popularly known as the Fekete-Szegö
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problem for T . Ali [3] found sharp bounds to the first four coefficients and sharp esti-
mate for the Fekete-Szegö functional |γ3− tγ22 |, where t is real for the inverse function of f
defined as f−1(w) = w+

∑∞
n=2 γnw

n when it belongs to the class of strongly starlike func-
tions of order α (0 < α ≤ 1) denoted by S̃T (α). Janteng, Halim and Darus [6] obtained
the second Hankel determinant and sharp upper bounds for the familiar subclasses of
S, namely, starlike and convex functions denoted by ST and CV and have shown that
|a2a4 − a23| ≤ 1 and |a2a4 − a23| ≤ 1

8 respectively. Recently, several authors have defined
certain subclasses of univalent, multivalent analytic functions and obtained sharp upper
bounds to the second Hankel determinant for the functions in these classes. R. M. Ali, S. K.
Lee, V. Ravichandran and S. Supramaniam [2] obtained sharp bound for the Fekete-Szegö

functional denoted by |b2k+1 − µb2k+1| associated with the kth root transform
[
f(zk)

] 1
k of

the function given in (1.1), belonging to certain subclasses of S. The kth root transform for
the function f given in (1.1) is defined as

F (z) :=
[
f(zk)

] 1
k = z +

∞∑
n=1

bkn+1z
kn+1. (1.2)

In this paper, we obtain an upper bound to the functional |bk+1b3k+1 − b22k+1|, called the
second Hankel determinant for the kth root transform for the function f when it belongs
to the familiar subclasses ST and CV of S, defined as follows.

Definition 1.1. A function f(z) ∈ A is said to be in ST, if it satisfies the condition

Re

{
zf ′(z)

f(z)

}
> 0, ∀z ∈ E. (1.3)

Definition 1.2. A function f(z) ∈ A is said to be in CV, if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, ∀z ∈ E. (1.4)

From the Definitions 1.1 and 1.2, we observe that, there exists an Alexander type The-
orem [1], which relates the classes ST and CV , stated as follows.

f ∈ CV ⇔ zf ′ ∈ ST.

Some preliminary Lemmas required for proving our results are as follows:

2. PRELIMINARY RESULTS

Let P denote the class of functions consisting of p, such that

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 +

∞∑
n=1

cnz
n, (2.5)

which are regular in the open unit disc E and satisfy Rep(z) > 0, for any z ∈ E. Here p(z)
is called the Carathéodory function [4].

Lemma 2.1. ([8, 10]) If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the inequality is sharp for the
function 1+z

1−z .
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Lemma 2.2. ([5]) The power series for p(z) = 1 +
∑∞
n=1 cnz

n given in (2.5) converges in the
open unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
c−2 c−1 2 · · · cn−2

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3....

and c−k = ck, are all non-negative. They are strictly positive except for p(z) =
∑m
k=1 ρkp0(e

itkz),
ρk > 0, tk real and tk 6= tj , for k 6= j, where p0(z) = 1+z

1−z ; in this case Dn > 0 for n < (m− 1)

and Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition found in [5] is due to Carathéodory and Toeplitz.
We may assume without restriction that c1 > 0. On using Lemma 2.2, for n = 2, we have

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8 + 2Re{c21c2} − 2 | c2 |2 − 4|c1|2] ≥ 0,

which is equivalent to

2c2 = {c21 + x(4− c21)}, for some x, |x| ≤ 1. (2.6)

For n = 3,

D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

≥ 0

and is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2| ≤ 2(4− c21)2 − 2|(2c2 − c21)|2. (2.7)

Simplifying the relations (2.6) and (2.7), we get

4c3 = {c31 + 2c1(4 − c21)x − c1(4 − c21)x
2 + 2(4 − c21)(1 − |x|2)z}, with |z| ≤ 1. (2.8)

In obtaining our results, we refer to the classical method devised by Libera and Zlotkiewicz
[7].

3. MAIN RESULTS

Theorem 3.1. If f given by (1.1) belongs to ST and F is the kth root transformation of f given
by (1.2) then

|bk+1b3k+1 − b22k+1| ≤
1

k2

and the inequality is sharp.

Proof. For f(z) = z +
∑∞
n=2 anz

n ∈ ST, there exists an analytic function p ∈ P in the open
unit disc E with p(0) = 1 and Re[p(z)] > 0 such that

zf ′(z)

f(z)
= p(z) ⇔ zf ′(z) = p(z)f(z). (3.9)
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Using the series representations for f(z), f ′(z) and p(z) in (3.9), we have

z

{
1 +

∞∑
n=2

nanz
n−1

}
=

{
1 +

∞∑
n=1

cnz
n

}{
z +

∞∑
n=2

anz
n

}
. (3.10)

Upon Simplification, on equating the coefficients in (3.10) yields,

a2 = c1; a3 =
1

2
(c21 + c2); a4 =

1

3
(c3 +

3

2
c1c2 +

c31
2
). (3.11)

For a function f given by (1.1), a computation shows that

[
f(zk)

] 1
k =

[
zk +

∞∑
n=2

anz
nk

] 1
k

=
[
z +

1

k
a2z

k+1 +
{1
k
a3 +

(1− k)
2k2

a22

}
z2k+1

+
{1
k
a4 +

(1− k)
k2

a2a3 +
(1− k)(1− 2k)

6k3
a32

}
z3k+1 + · · ·

]
. (3.12)

Simplifying the expressions (1.2) and (3.12) along with (3.11), we get

bk+1 =
c1
k

; b2k+1 =
1

2k2
(kc2 + c21) ;

b3k+1 =
1

6k3
(2k2c3 + 3kc1c2 + c31). (3.13)

Substituting the values of bk+1, b2k+1 and b3k+1 from (3.13) in the second Hankel deter-
minant | bk+1b3k+1 − b22k+1 | to the kth transformation for the function f ∈ ST, which
simplifies to

|bk+1b3k+1 − b22k+1| =
1

12k4
|4k2c1c3 − 3k2c22 − c41|. (3.14)

From Lemma 2.2, substituting the values of c2 and c3 from (2.6) and (2.8) respectively, on
the right-hand side of the expression (3.14), we have

|bk+1b3k+1 − b22k+1| =
∣∣∣∣ 4k2c1 × 1

4

{
c31 + 2c1(4− c21)x− c1(4− c21)x2

+2(4− c21)(1− |x|2)z
}
− 3k2 × 1

2

{
c21 + x(4− c21)

}
− c41

∣∣∣∣ .
Using triangle inequality and the fact that |z| < 1, we get

|bk+1b3k+1 − b22k+1| ≤
∣∣(k2 − 4)c41 + 8k2c1(4− c21) + 2k2c21(4− c21)|x|

−(c1 + 2)(c1 + 6)k2(4− c21)|x|2
∣∣ . (3.15)

Since c1 = c ∈ [0, 2], noting that (c1+a)(c1+ b) ≥ (c1−a)(c1− b), where a, b ≥ 0, applying
triangle inequality and replacing |x| by µ on the right-hand side of (3.15), we obtain

4|bk+1b3k+1 − b22k+1| ≤
[ (

4− k2)c4 + 8k2c(4− c2) + 2k2c2(4− c2)µ
+ (c− 2)(c− 6)k2(4− c2)µ2

]
= F (c, µ), for 0 ≤ µ = |x| ≤ 1, (3.16)

where F (c, µ) =
(
4− k2)c4 + 8k2c(4− c2) + 2k2c2(4− c2)µ

+ (c− 2)(c− 6)k2(4− c2)µ2. (3.17)
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We next maximize the function F (c, µ) on the closed region [0, 2] × [0, 1]. Differentiating
F (c, µ) given in (3.17) partially with respect to µ, we get

∂F

∂µ
= 2k2

{
c2 + (c− 2)(c− 6)µ

}
(4− c2). (3.18)

For 0 < µ < 1, for fixed c with 0 < c < 2, from (3.18), we observe that ∂F∂µ > 0. Therefore,
F (c, µ) is an increasing function of µ and hence it cannot have a maximum value at any
point in the interior of the closed region [0, 2]× [0, 1]. Further, for fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c). (3.19)

Simplifying the relations (3.17) and (3.19), we get

G(c) = −4(k2 − 1)c4 + 48k2, (3.20)

G′(c) = −16(k2 − 1)c3. (3.21)
From the expression (3.21), we observe that G′(c) ≤ 0 for every c ∈ [0, 2] and for all values
of k. Therefore, G(c) is a decreasing function of c in the interval [0, 2], whose maximum
value occurs at c = 0 only and from (3.20), it is given by

max
0≤c≤2

G(0) = 48k2. (3.22)

Simplifying the expressions (3.16) and ( 3.22) along with (3.14), we obtain

|bk+1b3k+1 − b22k+1| ≤
1

k2
. (3.23)

Choosing c1 = c = 0 and selecting x = 1 in (2.6) and (2.8), we find that c2 = 2 and c3 = 0.
Using these values in (3.14), we observe that equality is attained which shows that our
result is sharp and for these values, we derive the extremal function, given by

zf ′(z)

f(z)
=

1 + z2

1− z2
= 1 + 2z2 + 2z4 + .... (3.24)

This completes the proof of our Theorem 3.1. �

Remark 3.1. In particular, for k = 1 in (3.23), the result coincides with that of Janteng,
Halim and Darus [6].

Theorem 3.2. If f given by (1.1) belongs to CV and F is the kth root transformation of f given
by (1.2) then

| bk+1b3k+1 − b22k+1 |≤
(2k2 + 1)

3k2(5k2 + 3)
.

Proof. For f(z) = z +
∑∞
n=2 anz

n ∈ CV, from the Definition 1.2, there exists an analytic
function p ∈ P in the unit disc E with p(0) = 1 and Rep(z) > 0 such that{

1 +
zf ′′(z)

f ′(z)

}
= p(z) ⇔ f ′(z) + zf ′′(z) = p(z)f ′(z). (3.25)

Replacing f ′(z), f ′′(z) and p(z) with their equivalent expressions in (3.25), we have{
1 +

∞∑
n=2

nanz
n−1

}
+ z

{ ∞∑
n=2

n(n− 1)anz
n−2

}

=

{
1 +

∞∑
n=1

cnz
n

}{
z +

∞∑
n=2

nanz
n−1

}
. (3.26)
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Simplifying and equating the coefficients in (3.26) yields,

a2 =
c1
2
; a3 =

1

6
(c21 + c2); a4 =

1

12
(c3 +

3

2
c1c2 +

c31
2
). (3.27)

Applying the same procedure as described in Theorem 3.1, a computation shows that

bk+1 =
c1
2k

; b2k+1 =
1

24k2
[4kc2 + (k + 3)c21] ;

b3k+1 =
1

48k3
[4k2c3 + 2k(k + 2)c1c2 + (1 + k)c31]. (3.28)

Further, we have

|bk+1b3k+1 − b22k+1| =
1

576k4
|24k2c1c3 + 4k2c21c2 − 16k2c22 − (k2 + 3)c41|. (3.29)

From Lemma 2.2, substituting the values of c2 and c3 from (2.6) and (2.8) respectively on
the right-hand side of (3.29) and applying the same procedure as described in Theorem
3.1, we obtain

|24k2c1c3 + 4k2c21c2 − 16k2c22 − (k2 + 3)c41| ≤
∣∣3(k2 − 1)c41 + 12k2c1(4− c21)+

6k2c21(4− c21)|x| − 2k2(c1 + 2)(c1 + 4)(4− c21)|x|2
∣∣ . (3.30)

Since c1 = c ∈ [0, 2], applying the same procedure as described in Theorem 3.1, we get

|24k2c1c3 + 4k2c21c2 − 16k2c22 − (k2 + 3)c41| ≤
[
3(k2 − 1)c4 + 12k2c(4− c2)+

6k2c2(4− c2)µ+ 2k2(c− 2)(c− 4)(4− c2)µ2
]

(3.31)

= F (c, µ), for 0 ≤ µ = |x| ≤ 1.

Using the same procedure as described in Theorem 3.1, we observe that ∂F
∂µ > 0 and

further we have
G(c) = −(5k2 + 3)c4 + 16k2c2 + 64k2, (3.32)

G′(c) = −4(5k2 + 3)c3 + 32k2c, (3.33)
G′′(c) = −12(5k2 + 3)c2 + 32k2. (3.34)

For optimum value of c, consider G′(c) = 0. From (3.33), we get

−4
[
(5k2 + 3)c2 − 8k2

]
c = 0. (3.35)

Let us have the following cases.
Case1: For c = 0, from (3.34), we get G′′(0) = 32k2 > 0, for each value of k. Therefore, by
the second derivative test G(c) has minimum value at c = 0.
Case2: For c 6= 0 and for every value of k, from (3.35), we obtain

c2 =
8k2

5k2 + 3
∈ [0, 2]. (3.36)

Substituting the value of c2 in (3.34), it simplifies to G′′(c) = −64k2 < 0, for each k, which
implies that G(c) has maximum value at c, where c2 is given by (3.36). Using the value of
c2 in (3.32), the maximum value of G(c) is obtained to be

Gmax = G(c2) =
192k2(2k2 + 1)

(5k2 + 3)
. (3.37)

Simplifying the expressions (3.31) and (3.37) along with (3.29), we obtain

|bk+1b3k+1 − b22k+1| ≤
(2k2 + 1)

3k2(5k2 + 3)
. (3.38)



Coefficient inequality for transforms of starlike and convex functions 75

This completes the proof of our Theorem 3.2.

Remark 3.2. Choosing k = 1 in (3.38), the result coincides with that of Janteng, Halim
and Darus [6] and the inequality is sharp.
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