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k-Combinations of an unlabelled graph

M. R. EBRAHIMI VISHKI, K. MIRZAVAZIRI and M. MIRZAVAZIRI

ABSTRACT. In this paper we extend the notion of the binomial coefficient
(n
k

)
into a new notion

([G]
k

)
, where

[G] is an unlabelled graph with n vertices and 0 6 k 6 n. We call
([G]

k

)
as the graph binomial coefficient and

a version of the graph binomial expansion is also studied. As an application of this notion, we enumerate the
number of ways to color vertices of a path and beads of a necklace.

1. INTRODUCTION AND PRELIMINARIES

Let n be a positive integer and 0 6 k 6 n. The binomial coefficient
(
n
k

)
is the number of

k-combinations of a set with n elements. This is equal to n!
k!(n−k)! and satisfies the recursive

relation
(
n
k

)
=
(
n−1
k−1
)
+
(
n−1
k

)
. The summation

∑n
k=0

(
n
k

)
is then equal to the number of

ways to choose a subset of a fixed set with n elements which is obviously equal to 2n.
The mentioned fixed set with n elements can be vertices of a given labelled graph. But
if we omit the labels then the number of k-combinations is not necessarily equal to

(
n
k

)
.

For a simple example, if we have an unlabelled path with 3 vertices, then the number of
2-combinations is not 3. In fact the two ends of the path play the same role.

Let G be a graph with n vertices labelled by 1, 2, . . . , n. If we ignore the labels we have
an unlabelled graph, denoted by [G], with n vertices. We can formally say that [G] is the class
of all graphsG′which are isomorphic toG. Whence, as a good question we can enumerate
the number of k-combinations of an unlabelled graph [G]. We denote this number by

(
[G]
k

)
and we aim to find some formulas for this. We can also evaluate

∑n
k=0

(
[G]
k

)
for a given

graph G. The number can be interpreted as the number of ways to color the vertices of
[G] with two different colors. We apply this for some special cases such as paths, directed
cycles and indirected cycles.

In the following, we use Burnside’s Lemma, [4], [2] and [6], which asserts that if a group
G acts on a set X , then the number of orbits of G is equal to 1

|G|
∑
g∈G |Xg|, where Xg is the

set of all x ∈ X with (g, x) = x. To see a simple proof of Burnside’s Lemma the reader is
referred to [1]. A discussion about Pólya Enumeration Theorem, [7], which uses Burnside’s
Lemma, can be found in [8].

Recall that the complement of a graph G is a graph G on the same vertices such that two
distinct vertices of G are adjacent if and only if they are not adjacent in G. An automor-
phism of a graph G = (V,E) is a permutation σ of the vertex set V , such that the pair of
vertices (u, v) form an edge if and only if the pair (σ(u), σ(v)) also form an edge. The set
of all automorphisms of a graph G, with the operation of composition of permutations, is
a permutation group which is denoted by Aut(G). See [3] for the terminology and main
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results of permutation group theory. A graph and its complement have the same auto-
morphism group. Frucht [5] proved that every group is the automorphism group of a
graph. Moreover, if the group is finite, the graph can be taken to be finite.

Furthermore, recall that a graph G is called vertex transitive if for each two vertices u
and v of G there is an automorphism σ ∈ Aut(G) such that σ(u) = v.

2. AN EXPLICIT FORMULA

In the following, for a labelled graph G we denote the class of all graphs G′ which are
isomorphic to G by [G]. This is called the unlabelled graph induced by G.

Definition 2.1. Let [G] be an unlabelled graph with n vertices, where n is a positive inte-
ger. For 0 6 k 6 n, a k-combination of [G] is a way of selecting members from [G], such
that the order of members in the selection does not matter. The number of k-combinations
of [G] is denoted by

(
[G]
k

)
(read as [G] choose k) and is called the graph binomial coefficient.

Example 2.1. Let n be a positive integer. For the complete graph Kn and the star graph
K1,n−1 we have

(
[Kn]
k

)
= 1 and

(
[K1,n−1]

k

)
= 2 for each 1 6 k 6 n.

Though for a vertex transitive graph [G] the graph binomial coefficient
(
[G]
1

)
is 1, but(

[G]
2

)
can be a number other than 1.

Example 2.2. Let Q3 be the 3-dimensional cube with vertices labelled as

a = 000, b = 001, c = 010, d = 011, e = 100, f = 101, g = 110, h = 111,

where two vertices are adjacent if and only if they differ in just one position. If we ignore
the labels then there are three 2-combinations of [Q3] which are ab, ad and ah. Note that
any other 2-combination is isomorphic to these.

We have the following two obvious results.

Proposition 2.1. Let G be a labelled graph with n vertices and let 0 6 k 6 n. Then(
[G]

k

)
=

(
[G]

n− k

)
=

(
[G]

k

)
,

where G is the complement of G.

Proposition 2.2. Let G and G′ be two labelled graphs with n vertices and let 0 6 k 6 n. If
Aut(G) ' Aut(G′) then (

[G]

k

)
=

(
[G′]

k

)
.

Theorem 2.1. Let G = (V,E) be a labelled graph with n vertices and let 1 6 k 6 n. Then(
[G]

k

)
=

1

|Aut(G)|
∑

σ∈Aut(G)

|V kσ |,

where V kσ = {{v1, . . . , vk} ⊆ V : σ({v1, . . . , vk}) = {v1, . . . , vk}}.

Proof. Let X be the set of k-subsets of V . Then Aut(G) acts on X by the rule (σ,A) = σ(A)
for eachA ∈ X . Now, by the Burnside’s Lemma, the number of orbits ofX under Aut(G),
which is equal to

(
[G]
k

)
, is 1
|Aut(G)|

∑
σ∈Aut(G) |V kσ |, where V kσ is the set of all members of X

which are fixed under σ. �
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Corollary 2.1. Let Pn be the labelled path with n vertices and let 1 6 k 6 n. Then(
[Pn]

k

)
=

{
1
2

(
n
k

)
if n is even and k is odd

1
2

((
n
k

)
+
(bn2 c
b k2 c

))
otherwise

Proof. There are two automorphisms for Pn: the identity automorphism ι and the auto-
morphism α defined by α(i) = n+1− i for 1 6 i 6 n. For ι we obviously have |V kι | =

(
n
k

)
and for α we see that a subset {v1, . . . , vk} of V is in V kα if and only if i ∈ {v1, . . . , vk}
implies n + 1 − i ∈ {v1, . . . , vk}. If n is even and k is odd, the latter is impossible and for
the other cases we should choose bk2 c of the members of {v1, . . . , vk} from {1, 2, . . . , bn2 c}
and the reminder should be chosen by symmetry. Now we can apply Theorem 2.1 to see
the result. �

Corollary 2.2. Let
−→
Cn be the labelled cycle with n vertices which is clockwise directed and let

1 6 k 6 n. Then (
[
−→
Cn]

k

)
=

1

n

∑
d| gcd(n,k)

ϕ(d)

(n
d
k
d

)
.

Proof. We know that Aut(
−→
Cn) is the cyclic group generated by the permutation α =

(12 . . . n). Thus Aut(
−→
Cn) = {α, α2, . . . , αn}. This group has ϕ(d) elements of order d for

each divisor d of n. An element of order d has n
d cycles of length d. For a subset {v1, . . . , vk}

of V and σ ∈ Aut(
−→
Cn), we have σ({v1, . . . , vk}) = {v1, . . . , vk} if and only if these k ele-

ments consist of full cycles of σ. Whence if d does not divide k then V kσ is empty and if
d|n then choosing a subset {v1, . . . , vk}with the property σ({v1, . . . , vk}) = {v1, . . . , vk} is
equivalent to choosing k

d cycles of the n
d cycles of σ. �

Corollary 2.3. Let Cn be the labelled cycle with n vertices and let 1 6 k 6 n. Then

(
[Cn]

k

)
=


1
2n

∑
d| gcd(n,k) ϕ(d)

(n
d
k
d

)
+ 1

2

(bn2 c−1
b k2 c

)
if n is even and k is odd

1
2n

∑
d| gcd(n,k) ϕ(d)

(n
d
k
d

)
+ 1

2

(bn2 c
b k2 c

)
otherwise

Proof. Aut(G) is the dihedral group consisting of a cyclic subgroup of order n and n re-
flections. If n is odd then a reflection consists of a cycle with order one and n−1

2 cycles of
order two. And if n is even then we have n

2 reflections with n
2 cycles of order two and n

2

reflections with two cycles of order one and n−2
2 cycles of order two. Now we can do as

in the previous corollary. �

3. TWO RECURSIVE FORMULAS

A famous recursive relation for the binomial coefficient is
(
n
k

)
=
(
n−1
k−1
)
+
(
n−1
k

)
. This

simply says that a k-combination of the set [n] = {1, 2, . . . , n} can be chosen in two ways:
{n} union by a (k − 1)-combination of the set [n− 1] or a k-combination of the set [n− 1].
Using this idea, we aim to give a recursive formula for the graph binomial coefficient.
Prior to this, we need some preliminaries.

Definition 3.2. Let G = (V,E) be a labelled graph with n vertices, where n is a positive
integer, and let H be a vertex induced subgraph of G. For 0 6 k 6 n, a k-combination
of H in [G] is a way of selecting members from H , such that the order of members in
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the selection does not matter. The number of k-combinations of H in [G] is denoted by(
[H⊆G]
k

)
and is called the graph binomial coefficient of H with respect to [G].

Example 3.3. Let G = (V,E) be the graph with

V = {1, 2, 3, 4, 5, 6}, E = {12, 23, 31, 34, 45, 56, 64}.

If H is the triangle {1, 2, 3} then
(
[H]
1

)
is 1, but

(
[H⊆G]

1

)
is 2, since we have two different

1-combinations 1 and 3 of H .

Theorem 3.2. Let G = (V,E) be a labelled graph with n vertices, 1 6 k 6 n and let H be a
vertex induced subgraph of G. Then(

[H ⊆ G]
k

)
=

1

|Aut(G)|
∑

σ∈Aut(G)

|Hk
σ |,

where Hk
σ = {{v1, . . . , vk} ⊆ H : σ({v1, . . . , vk}) = {v1, . . . , vk}}.

Proof. LetX be the set of k-subsets ofH . Then Aut(G) acts onX by the rule (σ,A) = σ(A)
for eachA ∈ X . Now, by the Burnside’s Lemma, the number of orbits ofX under Aut(G),
which is equal to

(
[H⊆G]
k

)
, is 1

|Aut(G)|
∑
σ∈Aut(G) |Hk

σ |, where Hk
σ is the set of all members

of X which are fixed under σ. �

Definition 3.3. Let G = (V,E) be a graph, v be a vertex of G and let σ ∈ Aut(G). We
denote the set of all u ∈ V such that u and v are in the same cycle of σ, in the cyclic
representation of σ, by Cycle(v, σ). The set ∪σ∈Aut(G)Cycle(v, σ), denoted by TranG(v), is
called the v-transitive subset of G. The v-transitive subset TranG(v) of G is called strongly
transitive if for each u1, u2 ∈ TranG(v) and u ∈ G, there is a σ ∈ Aut(G) such that σ(u1) =
u2 and σ(u) = u. For a vertex induced subgraph H of G we say that H is v-transitive if
there is a σ ∈ Aut(G) with H = V (v, σ). The set of v-transitive vertex induced subgraphs
of G is denoted by TG(v).

Example 3.4. Let G = (V,E) be the graph with

V = {1, 2, 3, 4, 5}, E = {12, 13, 23, 24, 35, 45}.
Then TranG(1) = {1},TranG(2) = {2, 3} and TranG(4) = {4, 5}. Here, TranG(1) is
strongly transitive but TranG(2) and TranG(4) are not. To see this note that for 2, 3 ∈
TranG(2) and 4 ∈ G there is no σ ∈ Aut(G) with σ(2) = 3 and σ(4) = 4.

The following result is something similar to the recursive relation
(
n
k

)
=
(
n−1
k−1
)
+
(
n−1
k

)
.

Theorem 3.3. Let G = (V,E) be a graph with n vertices, v be a fixed vertex of G and let
1 6 k 6 n. Then (

[G]

k

)
=

∑
H∈TG(v)

(([Hc ⊆ G]
k − |H|

)
+

(
[Hc ⊆ G]

k

))
,

where Hc is the vertex induced subgraph of G whose vertex set is the complement of the vertex set
of H .

Proof. Let σ ∈ Aut(G) and H = V (v, σ). Then

V kσ = {{v1, . . . , vk} : H ⊆ {v1, . . . , vk}, σ({v1, . . . , vk}) = {v1, . . . , vk}}
∪{{v1, . . . , vk} : H ∩ {v1, . . . , vk} = ∅, σ({v1, . . . , vk}) = {v1, . . . , vk}}

= {{v|H|+1, . . . , vk} : {v|H|+1, . . . , vk} ⊆ Hc, σ({v|H|+1, . . . , vk}) = {v|H|+1, . . . , vk}}
∪{{v1, . . . , vk} : {v1, . . . , vk} ⊆ Hc, σ({v1, . . . , vk}) = {v1, . . . , vk}}.
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The above equality is true since for a subset {v1, . . . , vk} of V with σ({v1, . . . , vk}) =
{v1, . . . , vk}, the set should contain a full cycle of σ or none of the members of a cycle.

Since the union is disjoint, we have

|V kσ | = |(Hc)k−|H|σ |+ |(Hc)kσ|.
We now can apply Theorem 3.2. �

For the binomial coefficient
(
n
k

)
we have also the recursive relation

(
n
k

)
=
∑t
`=0

(
t
`

)(
n−t
k−`
)
,

where t can be any fixed integer with 0 6 t 6 n. This simply says that choosing a k-
combination from a group of t boys and n − t girls is equivalent to choosing ` boys and
k − ` girls, where ` can be 0 or 1 or . . . or t.

Theorem 3.4. Let G = (V,E) be a graph with n vertices, v be a fixed vertex of G and let
1 6 k 6 n. If TranG(v) is strongly transitive then(

[G]

k

)
=

|TranG(v)|∑
`=0

(
[TranG(v) ⊆ G]

`

)(
[(TranG(v))

c ⊆ G]
k − `

)
.

Proof. Let {v1, . . . , vk} be a subset of V . Moreover, suppose that {v1, . . . , vk}∩TranG(v) =
{v1, . . . , v`}, where 0 6 ` 6 |TranG(v)|. Then σ({v1, . . . , vk}) = {v1, . . . , vk} if and only if

σ({v1, . . . , v`}) = {v1, . . . , v`}, σ({v`+1, . . . , vk}) = {v`+1, . . . , vk}.
This shows that

|V kσ | =
|TranG(v)|∑

`=0

|(TranG(v))`σ| × |((TranG(v))c)k−`σ |.

Theorem 2.1 and Theorem 3.2 now give the result. �

4. GRAPH BINOMIAL EXPANSION

Recall that the binomial expansion says
∑n
k=0

(
n
k

)
akbn−k = (a+ b)n. In this section we

want to find a graph version of the binomial expansion.

Definition 4.4. Let G = (V,E) be a labelled graph with n vertices, where n is a posi-
tive integer, and let H be a vertex induced subgraph of G. We denote the summation∑n
k=0

(
[H⊆G]
k

)
akbn−k by P[H⊆G](a, b). The expansion is called the graph binomial expan-

sion of H with respect to [G]. For the case H = G we simply write P[G](a, b) instead of
P[G⊆G](a, b).

Proposition 4.3. Let G be a graph with n vertices. The number of ways to color vertices of [G]
with two colors is P[G](1, 1).

As a corollary, using Corollaries 2.1, 2.2 and 2.3, we can compute the number of ways
to color Pn,

−→
Cn (a necklace with rotations but without reflections) or Cn (a necklace with

rotations and reflections) with two colors. For example, we have the following.

Corollary 4.4. Let Cn be the labelled cycle with n vertices which is clockwise directed. Then the
number of ways to color vertices of Cn with two colors is

1 +

n∑
k=1

1

n

∑
d| gcd(n,k)

ϕ(d)

(n
d
k
d

)
.

Furthermore, as a corollary of Theorem 3.4, we can easily prove the following result.
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Theorem 4.5. Let G be a graph with n vertices and v be a fixed vertex of G. If TranG(v) is
strongly transitive then

P[G](a, b) = P[TranG(v)⊆G](a, b)P[(TranG(v))c⊆G](a, b).

Example 4.5. Let G = (V,E) be the graph with

V = {1, 2, 3, 4, 5, 6, 7}, E = {12, 23, 31, 34, 45, 56, 67, 74}.
Then

P[G](a, b) = a7 + 5a6b+ 12a5b2 + 18a4b3 + 18a3b4 + 12a2b5 + 5ab6 + b7.

Considering u = 1 we have TranG(u) = {1, 2}which is strongly transitive. We have

P[TranG(u)⊆G](a, b)(a, b) = a2 + ab+ b2

and
P[(TranG(u))c⊆G](a, b) = a5 + 4a4b+ 7a3b2 + 7a2b3 + 4ab4 + b5.

Note that

a7 + 5a6b+ 12a5b2 + 18a4b3 + 18a3b4 + 12a2b5 + 5ab6 + b7

= (a2 + ab+ b2)(a5 + 4a4b+ 7a3b2 + 7a2b3 + 4ab4 + b5).

On the other hand, considering v = 6 we have TranG(v) = {6} which is strongly transi-
tive. We have

P[TranG(v)⊆G](a, b)(a, b) = a+ b

and
P[(TranG(v))c⊆G](a, b) = a6 + 4a5b+ 8a4b2 + 10a3b3 + 8a2b4 + 4ab5 + b6.

Note that

a7 + 5a6b+ 12a5b2 + 18a4b3 + 18a3b4 + 12a2b5 + 5ab6 + b7

= (a+ b)(a6 + 4a5b+ 8a4b2 + 10a3b3 + 8a2b4 + 4ab5 + b6).

Example 4.6. Let G be the graph introduced in Example 3.4. Then

P[G](a, b) = a5 + 3a4b+ 6a3b2 + 6a2b3 + 3ab4 + b5.

Considering v = 4 we have TranG(v) = {4, 5}which is not strongly transitive. We have

P[TranG(v)⊆G](a, b)(a, b) = a2 + ab+ b2

and
P[(TranG(v))c⊆G](a, b) = a3 + 2a2b+ 2ab2 + b3.

Note that

a5 + 3a4b+ 6a3b2 + 6a2b3 + 3ab4 + b5

6= (a2 + ab+ b2)(a3 + 2a2b+ 2ab2 + b3).

Remark 4.1. Let G be a graph with vertices 1, 2, . . . , n. We add i loop to vertex i of G to
make a new graph G′. Then Aut(G′) is the identity group, since no two vertices of G′

are transitive to each other. This guarantees that
(
[G′]
k

)
=
(
n
k

)
for each 0 6 k 6 n. Thus

P[G′](a, b) =
∑n
k=0

(
n
k

)
akbn−k. On the other hand, for each v ∈ G′ we have TranG′(v) =

{v} which is strongly transitive and so P[TranG′ (v)⊆G′](a, b) = a + b. Thus P[G′](a, b) =
(a+ b)n. This agrees to the famous binomial expansion.
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