Coefficient bounds for certain subclasses of bi-univalent functions

Şahsene Altinkaya and Sibel Yalçin

ABSTRACT. In this paper we discuss some newly constructed subclasses of bi-univalent functions and establish bounds for the coefficients of the functions in the subclasses $S_{\Sigma}(\lambda, \alpha)$ and $S_{\Sigma}(\lambda, \beta)$.

1. Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$, and let S be the subclass of A consisting of the functions of the form (1.1) which are also univalent in U.

The Koebe one-quarter theorem [6] states that the image of U under every function f from S contains a disk of radius $\frac{1}{4}$. Thus every such univalent function has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z(z \in U)
$$

and

$$
f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denote the class of bi-univalent functions defined in the unit disk U.

For a brief history and interesting examples in the class Σ, see [14]. Examples of functions in the class Σ are

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right), \ldots
$$

However, the familiar Koebe function is not a member of Σ. Other common examples of functions in S such as

$$
z-\frac{z^{2}}{2} \text { and } \frac{z}{1-z^{2}}
$$

are also not members of Σ (see [14]). Lewin [10] studied the class of bi-univalent functions, obtaining the bound 1.51 for modulus of the second coefficient $\left|a_{2}\right|$. Subsequently, Brannan and Clunie [3] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$ for $f \in \Sigma$. Later, Netanyahu [12] showed
that $\max \left|a_{2}\right|=\frac{4}{3}$ if $f(z) \in \Sigma$. Brannan and Taha [4] introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $S^{\star}(\beta)$ and $K(\beta)$ of starlike and convex functions of order $\beta(0 \leq \beta<1)$, respectively (see [12]). Thus, following Brannan and Taha [4], a function $f(z) \in A$ is said to be in the class $S_{\Sigma}^{\star}(\alpha)$ of strongly bi-starlike functions of order $\alpha(0<\alpha \leq 1)$ if each of the following two conditions:

$$
f \in \Sigma,\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in U)
$$

and

$$
\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in U)
$$

is satisfied. It is said to be in the class $K_{\Sigma}(\alpha)$ of strongly bi-convex functions of order α $(0<\alpha<1)$ if each of the following two conditions:

$$
f \in \Sigma, \quad\left|\arg \left(1+\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in U)
$$

and

$$
\left|\arg \left(1+\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in U)
$$

is satisfied, where g is the extension of f^{-1} to U.
The classes $S_{\Sigma}^{\star}(\alpha)$ and $K_{\Sigma}(\alpha)$ of bi-starlike functions of order α and bi-convex functions of order α, corresponding to the function classes $S^{\star}(\alpha)$ and $K(\alpha)$, were also introduced analogously. For each of the function classes $S_{\Sigma}^{\star}(\alpha)$ and $K_{\Sigma}(\alpha)$, they found non-sharp estimates on the initial coefficients. In fact, the aforecited work of Srivastava et al. [14] essentially revived the investigation of various subclasses of the bi-univalent function class Σ in recent years. Recently, many authors investigated bounds for various subclasses of bi-univalent functions ([1], [2], [7], [11], [14], [15], [16]). Not much is known about the bounds on the general coefficient $\left|a_{n}\right|$ for $n \geq 4$. In the literature, there exist only a few works determining the general coefficient bounds $\left|a_{n}\right|$ for the analytic bi-univalent functions [5], [8], [9]). The coefficient estimate problem for each of $\left|a_{n}\right|$ $(n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}=\{1,2,3, \ldots\})$ is still an open problem.

The aim of the this paper is to introduce two new subclasses of the function class Σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the functions.

We remind the following lemma which will be useful to derive our basic results.
Lemma 1.1. [13] If $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$ is an analytic function in U with positive real part, then

$$
\left|p_{n}\right| \leq 2 \quad(n \in \mathbb{N}=\{1,2, \ldots\})
$$

and

$$
\begin{equation*}
\left|p_{2}-\frac{p_{1}^{2}}{2}\right| \leq 2-\frac{\left|p_{1}\right|^{2}}{2} \tag{1.2}
\end{equation*}
$$

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $S_{\Sigma}(\lambda, \alpha)$

Definition 2.1. A function $f \in \Sigma$ is said to be in the class $S_{\Sigma}(\lambda, \alpha)$ if the following two conditions

$$
\begin{equation*}
f \in \Sigma, \quad\left|\arg \frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\lambda}}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1,0<\lambda \leq 1, \quad z \in U) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\lambda}}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1,0<\lambda \leq 1, w \in U) \tag{2.4}
\end{equation*}
$$

are satisfied, where $g=f^{-1}$.
Theorem 2.1. Let f given by (1.1) be in the class $S_{\Sigma}(\lambda, \alpha), 0<\alpha \leq 1$. Then

$$
\left|a_{2}\right| \leq \frac{4 \alpha \lambda}{\sqrt{\alpha\left(3 \lambda^{2}+1\right)+(\lambda+1)^{2}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha \lambda}{\lambda+1}+\frac{16 \alpha^{2} \lambda^{2}}{(\lambda+1)^{2}}
$$

Proof. Let $f \in S_{\Sigma}(\lambda, \alpha)$. Then

$$
\begin{align*}
& \frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\lambda}}\right)=[p(z)]^{\alpha} \tag{2.5}\\
& \frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\lambda}}\right)=[q(w)]^{\alpha} \tag{2.6}
\end{align*}
$$

where $g=f^{-1}, p, q \in P$ (i.e., are polynomials) and have the forms

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots
$$

and

$$
q(w)=1+q_{1} w+q_{2} w^{2}+\cdots
$$

Now, equating the coefficients in (2.5) and (2.6), we get

$$
\begin{gather*}
\frac{\lambda+1}{2 \lambda} a_{2}=\alpha p_{1} \tag{2.7}\\
\frac{\lambda+1}{2 \lambda}\left(2 a_{3}-a_{2}^{2}\right)+\frac{1-\lambda}{4 \lambda^{2}} a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2} \tag{2.8}
\end{gather*}
$$

and

$$
\begin{gather*}
-\frac{\lambda+1}{2 \lambda} a_{2}=\alpha q_{1}, \tag{2.9}\\
\frac{\lambda+1}{2 \lambda}\left(3 a_{2}^{2}-2 a_{3}\right)+\frac{1-\lambda}{4 \lambda^{2}} a_{2}^{2}=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} . \tag{2.10}
\end{gather*}
$$

From (2.7) and (2.9) we obtain

$$
\begin{equation*}
p_{1}=-q_{1} . \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(\lambda+1)^{2}}{2 \lambda^{2}} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.12}
\end{equation*}
$$

Also by (2.8), (2.10) and (2.12) we have

$$
\begin{gathered}
\frac{2 \lambda^{2}+\lambda+1}{2 \lambda^{2}} a_{2}^{2}=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \\
=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2} \frac{(\lambda+1)^{2}}{2 \lambda^{2} \alpha^{2}} a_{2}^{2},
\end{gathered}
$$

and therefore, we get

$$
\begin{equation*}
a_{2}^{2}=\frac{4 \alpha^{2} \lambda^{2}\left(p_{2}+q_{2}\right)}{2 \alpha\left(2 \lambda^{2}+\lambda+1\right)-(\alpha-1)(\lambda+1)^{2}} . \tag{2.13}
\end{equation*}
$$

Applying Lemma 1.1 for the coefficients p_{2} and q_{2}, we obtain

$$
\left|a_{2}\right| \leq \frac{4 \alpha \lambda}{\sqrt{\alpha\left(3 \lambda^{2}+1\right)+(\lambda+1)^{2}}}
$$

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.10) from (2.8), we obtain

$$
\frac{2(\lambda+1)}{\lambda}\left(a_{3}-a_{2}^{2}\right)=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right) .
$$

Then, in view of (1.2) and (2.12) , we have

$$
\left|a_{3}\right| \leq \frac{2 \alpha \lambda}{\lambda+1}+\frac{16 \alpha^{2} \lambda^{2}}{(\lambda+1)^{2}}
$$

3. COEFFICIENT BOUNDS FOR THE FUNCTIONS IN THE CLASS $S_{\Sigma}(\lambda, \beta)$

Definition 3.2. A function $f \in \Sigma$ is said to be in the class $S_{\Sigma}(\lambda, \beta)$ if the following conditions

$$
\begin{equation*}
f \in \Sigma, \operatorname{Re}\left(\frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\lambda}}\right)\right)>\beta \quad(0 \leq \beta<1,0<\lambda \leq 1, z \in U) \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\lambda}}\right)\right)>\beta \quad(0 \leq \beta<1,0<\lambda \leq 1, w \in U) \tag{3.15}
\end{equation*}
$$

are satisfied, where we denoted $g=f^{-1}$.
Theorem 3.2. Let f given by (1.1) be in the class $S_{\Sigma}(\lambda, \beta), 0 \leq \beta<1$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{8 \lambda^{2}(1-\beta)}{2 \lambda^{2}+\lambda+1}}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \lambda(1-\beta)}{\lambda+1}+\frac{16 \lambda^{2}}{(\lambda+1)^{2}}
$$

Proof. Let $f \in S_{\Sigma}(\lambda, \beta)$. Then

$$
\begin{align*}
\frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\lambda}}\right) & =\beta+(1-\beta) p(z) \tag{3.16}\\
\frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\lambda}}\right) & =\beta+(1-\beta) q(w) \tag{3.17}
\end{align*}
$$

where $p, q \in P$ and $g=f^{-1}$.

It follows from (3.16) and (3.17) that

$$
\begin{gather*}
\frac{\lambda+1}{2 \lambda} a_{2}=(1-\beta) p_{1} \tag{3.18}\\
\frac{\lambda+1}{2 \lambda}\left(2 a_{3}-a_{2}^{2}\right)+\frac{1-\lambda}{4 \lambda^{2}} a_{2}^{2}=(1-\beta) p_{2} \tag{3.19}
\end{gather*}
$$

and

$$
\begin{gather*}
-\frac{\lambda+1}{2 \lambda} a_{2}=(1-\beta) q_{1}, \tag{3.20}\\
\frac{\lambda+1}{2 \lambda}\left(3 a_{2}^{2}-2 a_{3}\right)+\frac{1-\lambda}{4 \lambda^{2}} a_{2}^{2}=(1-\beta) q_{2} . \tag{3.21}
\end{gather*}
$$

From (3.19) and (3.21) we obtain

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(\lambda+1)^{2}}{2 \lambda^{2}} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{3.23}
\end{equation*}
$$

Also from (3.19), (3.21) and (3.22) we have

$$
\frac{2 \lambda^{2}+\lambda+1}{2 \lambda^{2}} a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right) .
$$

Therefore, we have

$$
\begin{equation*}
a_{2}^{2}=\frac{2(1-\beta) \lambda^{2}\left(p_{2}+q_{2}\right)}{2 \lambda^{2}+\lambda+1} . \tag{3.24}
\end{equation*}
$$

Appying Lemma 1.1. for the coefficients p_{2} and q_{2}, we obtain

$$
\left|a_{2}\right| \leq \sqrt{\frac{8 \lambda^{2}(1-\beta)}{2 \lambda^{2}+\lambda+1}}
$$

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (3.21) from (3.19), we obtain

$$
\frac{2(\lambda+1)}{\lambda}\left(a_{3}-a_{2}^{2}\right)=(1-\beta)\left(p_{2}-q_{2}\right)
$$

Then, in view of (1.2) and (3.23), we have

$$
\left|a_{3}\right| \leq \frac{2(1-\beta) \lambda}{\lambda+1}+\frac{16(1-\beta)^{2} \lambda^{2}}{(\lambda+1)^{2}}
$$

Taking $\lambda=1$ in Theorems 2.1 and 3.1, one can get the following corollaries.
Corollary 3.1. Let f given by (1.1) be in the class $S_{\Sigma}(\alpha), 0<\alpha \leq 1$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{\alpha+1}}
$$

and

$$
\left|a_{3}\right| \leq \alpha+4 \alpha^{2} .
$$

Corollary 3.2. Let f given by (1.1) be in the class $S_{\Sigma}(\beta), 0 \leq \beta<1$. Then

$$
\left|a_{2}\right| \leq \sqrt{2(1-\beta)}
$$

and

$$
\left|a_{3}\right| \leq(1-\beta)+4(1-\beta)^{2} .
$$

REFERENCES

[1] Altınkaya, Ş. and Yalçın, S., Initial coefficient bounds for a general class of bi-univalent functions, Int. J. Anal., 2014, Art. ID 867871, 4 pp.
[2] Altınkaya, Ş. and Yalçın, S., Coefficient Estimates for Two New Subclasses of Bi-univalent Functions with respect to Symmetric Points, J. Funct. Spaces, 2014, Art. ID 145242, 5 pp.
[3] Brannan, D. A. and Clunie, J., Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute Held at University of Durham, New York: Academic Press, (1979)
[4] Brannan, D. A. and Taha, T. S., On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31 (1986), No. 2, 70-77
[5] Bulut, S., Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Math. Acad. Sci. Paris Ser. I, 352 (2014), No. 6, 479-484
[6] Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, 1983
[7] Frasin, B. A. and Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011) 1569-1573.
[8] Hamidi, S. G. and Jahangiri, J. M., Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I, 352 (2014), No. 1, 17-20
[9] Jahangiri, J. M. and Hamidi, G. S., Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013, Art. ID 190560, 4 pp.
[10] Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68
[11] Magesh, N. and Yamini, J., Coefficient bounds for a certain subclass of bi-univalent functions, Int. Math. Forum, 8 (2013), No. 27, 1337-1344
[12] Netanyahu, E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration. Mech. Anal., 32 (1969), 100-112
[13] Pommerenke, C., Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975
[14] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), No. 10, 1188-1192
[15] Srivastava, H. M., Bulut, S., Çağlar, M. and Yağmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), No. 5, 831-842
[16] Xu, Q. H., Gui, Y. C. and Srivastava, H. M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990-994

Uludag University

Department of Mathematics
Faculty of Arts and Science
16059 BURSA,TURKEY
E-mail address: sahsene@uludag.edu.tr

