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Some identities involving divided differences

DAN BĂRBOSU

ABSTRACT. To study approximation properties of linear positive operators various identities involving di-
vided differences are used. The aim of this note is to present two types of such kind of identities. The first one
was used by Abel and Ivan [Abel, U. and Ivan, M., Some identities for the operator of Bleimamm, Butzer and Hahn
involving divided differences, Calcolo, 36 (1999), 143–160; Abel, U. and Ivan, M., New representation of the remain-
der in the Bernstein approximation, J. Math. Anal. Appl., 381 (2011), No. 2, 952–956] to derive approximation
properties of Bleimann, Butzer and Hahn (BBH) operators from the corresponding properties of the classical
Bernstein operators. The second type of identifies can be used to derive some approximation properties of the
BBH operators from the properties of some Stancu type operators.

1. INTRODUCTION

Suppose that I ⊆ R is a non-empty interval, m is a positive integer and x1, . . . , xm ∈ I
are distinct points. If f ∈ RI , the divided differences of f are defined recursively by

[x1; f ] = f(x1), [x1, x2, . . . , xm; f ] =
[x2, . . . , xm; f ]− [x1, . . . , xm−1; f ]

xm − x1
. (1.1)

It is well known that the divided difference [x1, . . . , xm; f ] is the coefficient of xm−1 in the
(m− 1)-th degree Lagrange polynomial interpolating the function f in the distinct points
x1, x2, . . . , xm.
If V (x1, x2, . . . , xm) denotes the Vandermonde determinant, i.e.,

V (x1, x2, . . . , xm) =

∣∣∣∣∣∣
1 x1 x2

1 . . . xm−1
1

. . . . . . . . . . . . . . . . . .
1 xm x2

m . . . xm−1
m

∣∣∣∣∣∣ (1.2)

and Wf(x1, x2, . . . , xm) is the determinant

Wf(x1, x2, . . . , xm) =

∣∣∣∣∣∣
1 x1 . . . xm−2

1 f(x1)
. . . . . . . . . . . . . . . . . . . . .
1 xm . . . xm−2

m f(xm)

∣∣∣∣∣∣ , (1.3)

then the divided difference [x1, x2, . . . , xm; f ] can be expressed under the form

[x1, x2, . . . , xm; f ] =
Wf(x1, x2, . . . , xm)

V (x1, x2, . . . , xm)
. (1.4)

In [12], to any f ∈ R[0,+∞) was associated the function f̃ ∈ R[0,1], defined by

f̃(x) =

{
(1− x)f

(
x

1−x

)
, x ∈ [0, 1);

0 , x = 1,
(1.5)
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and were presented some relations between the divided differences of f and respec-
tively f̃ . These relations were used in [1] and [12] to obtain approximation properties
of Bleimann, Butzer and Hahn operators directly from the properties of Bernstein opera-
tors. They will be mentioned in Section 2, after the proof of Proposition 2.1.
In [7], to any f ∈ R[0,+∞) was associated the function F ∈ R[0,1], defined by

F (y) =

{
f
(

y
1−y

)
, y ∈ [0, 1);

0 , y = 1,
(1.6)

and was obtained a Voronovskaja type theorem for the operators of Bleimann, Butzer and
Hahn, derived from the corresponding result for the Stancu operators P (0,1)

m .
The purposes of this paper are the following two: first, to prove the identities presented
in [1], [12] and second to establish some relationships between the divided differences of
the functions f and F .

2. MAIN RESULTS

We start by proving the following

Proposition 2.1. ([1], [12]). Let f ∈ R[0,+∞) be given and let f̃ ∈ R[0,1] be defined by (1.5). The
following identities

(i)

[
x1

1− x1
,

x2

1− x2
,

x3

1− x3
; f

]
= (1− x1)(1− x2)(1− x3)[x1, x2, x3; f̃ ]; (2.7)

(ii)

[
x1

1− x1
,

x2

1− x2
; f

]
= −(1− x1)(1− x2)[x1, x2, 1; f̃ ]; (2.8)

(iii)

[
y1

1 + y1
,

y2
1 + y2

,
y3

1 + y3
; f̃

]
= (1 + y1)(1 + y2)(1 + y3)[y1, y2, y3; f ] (2.9)

hold, for any x1, x2, x3 ∈ [0, 1) (0 ≤ x1 < x2 < x3 < 1) and any y1, y2, y3 ∈ [0,+∞)
(0 ≤ y1 < y2 < y3).

Proof. In all cases formula (1.4) will be applied.
(i) Some elementary calculations lead to

Wf

(
x1

1− x1
,

x2

1− x2
,

x3

1− x3

)
=

1

(1− x1)(1− x2)(1− x3)
Wf̃(x1, x2, x3)

and

V

(
x1

1− x1
,

x2

1− x2
,

x3

1− x3

)
=

1

(1− x1)2(1− x2)2(1− x3)2
V (x1, x2, x3).

Taking the above equations into account and applying (1.4) we obtain (2.7).
(ii) By direct computation, it follows

Wf̃(x1, x2, 1) = −(1− x1)(1− x2)Wf

(
x1

1− x1
,

x2

1− x2

)
and

V (x1, x2, 1) = (1− x1)
2(1− x2)

2V

(
x1

1− x1
,

x2

1− x2

)
.

Consequently, (1.4) leads to (2.8).
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(iii) In a similar way, one obtains

Wf̃

(
y1

1 + y1
,

y2
1 + y2

,
y3

1 + y3

)
=

1

(1 + y1)(1 + y2)(1 + y3)
Wf(y1, y2, y3)

and

V

(
y1

1 + y1
,

y2
1 + y2

,
y3

1 + y3

)
=

1

(1 + y1)2(1 + y2)2(1 + y3)2
V (y1, y2, y3).

Next, applying (1.4) one obtains (2.9). �

Remark 2.1. The proof of Proposition 2.1 is elementary, but it has a capital importance
in order to obtain identities involving divided differences for the Bleimann, Butzer and
Hahn operators from the corresponding identities in case of the Bernstein operators [1],
[12]. In what follows, we recall some of the above mentioned identities.

Let f : [0,+∞) → R be a continuous function. The operator of Bleimann, Butzer and
Hahn is defined in [11] by the following formula.

Lmf(x) =
1

(1 + x)m

m∑
k=0

(
m

k

)
xkf

(
k

n+ 1− k

)
, x ∈ [0,+∞). (2.10)

In [12], Ivan established the following formula connecting the Bleimann, Butzer and Hahn
operator and the Bernstein operator by means of a transformation independent of m.

Theorem 2.1. For f : [0,+∞)→ R, the following formula is satisfied

Lmf(x) = (1 + x)Bm+1f̃

(
x

1 + x

)
, x ∈ [0,+∞). (2.11)

By virtue of (2.11) some of the best known properties of the BBH operator can easily
be obtained from the properties of Bernstein operator, taking into account Proposition 2.1.
The following theorems present some of them, that can be directly transferred to Lm by
means of formula (2.11).

Theorem 2.2. (Averbach, [1]) For g ∈ R[0,1],m ≥ 1, the following formula holds true

Bmg(t)−Bm+1g(t) =
t(1− t)

m(m+ 1)

m−1∑
k=0

pm−1,k(t)

[
k

m
,
k + 1

m+ 1
,
k + 1

m
; g

]
.

Theorem 2.3. (Stancu, [1]) For g ∈ R[0,1], n ≥ 1 t ∈ [0, 1]\
{

k
m |k = 0, . . . ,m

}
the following

formula holds true

Bmg(t)− g(t) =
t(1− t)

m

m−1∑
k=0

pm−1,k(t)

[
t,

k

m
,
k + 1

m
; g

]
.

Theorem 2.4. (Aramă, [5]) If g ∈ C[0, 1], then, for any t ∈ [0, 1] there exist the distinct points
t1, t2, t3 ∈ [0, 1] such that

Bmg(t)− g(t) =
t(1− t)

m
[t1, t2, t3; g].

In [1], Abel and Ivan presented, among others, the corresponding results for the Bleimann,
Butzer and Hahn operator.
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Proposition 2.2. If f ∈ R[0,+∞) and F ∈ R[0,1] is defined by (1.6), the following identities hold
true

(i)

[
x1

1− x1
,

x2

1− x2
,

x3

1− x3
; f

]
= (1− x1)(1− x2)(1− x3)[x1, x2, x3; (1− x)F ] (2.12)

(ii)

[
y1

1 + y1
,

y2
1 + y2

,
y3

1 + y3
;F

]
= (1 + y1)(1 + y2)(1 + y3)[y1, y2, y3; (1 + y)f ] (2.13)

for any x1, x2, x3 ∈ [0, 1) (0 ≤ x1 < x2 < 1) and any y1, y2, y3 ∈ [0,+∞) (0 ≤ y1 < y2 < y3).

Proof. We shall proceed similarly to the proof of Proposition 2.1.
(i) After some elementary calculations, one gets

Wf

(
x1

1− x1
,

x2

1− x2
,

x3

1− x3

)
=

1

(1− x1)(1− x2)(1− x3)
W ((1− x)F )(x1, x2, x3).

Taking into account that

V

(
x1

1− x1
,

x2

1− x2
,

x3

1− x3

)
=

1

(1− x1)2(1− x2)2(1− x3)2
V (x1, x2, x3),

and applying (1.4) one obtains the desired identity (2.12).
(ii) As at (i), is follows that

WF

(
y1

1 + y1
,

y2
1 + y2

,
y3

1 + y3

)
=

1

(1 + y1)(1 + y2)(1 + y3)
W ((1 + y)f)(y1, y2, y3).

Now, the identity

V

(
y1

1 + y1
,

y2
1 + y2

,
y3

1 + y3

)
=

1

(1 + y1)2(1 + y2)2(1 + y3)2
V (y1, y2, y3)

and (1.4) lead to (2.13). �

Let P (0,1)
m : C[0, 1]→ C[0, 1] be the Stancu operator defined by

P (0,1)
m f(x) =

m∑
k=0

pm,k(x)f

(
k

m+ 1

)
. (2.14)

In [7] the following relationship between the Bleimann, Butzer and Hahn operator and
the Stancu type operator P (0,1)

m has been proved.

Theorem 2.5. For any f : [0,+∞)→ R, the following formula

Lmf(x) = P (0,1)
m F

(
x

1− x

)
(2.15)

holds true for any x ∈ [0,+∞), where F is defined by (1.6).

Using the equality (2.13) and the Voronovskaja theorem for the Stancu operators, in [7]
the following Voronovskaja-type theorem for the Bleimann, Butzer and Hahn operators
has been proved.

Theorem 2.6. If the bounded function f ∈ B∗[0,+∞) is differentiable in some neighbourhood of
a point x ∈ [0,+∞) and has the second order derivative f ′′(t) and F is bounded, the following
Voronovskaja-type formula holds

lim
m→∞

m
(
Lmf(x)− f(x)

)
=

x(1 + x)2

2
f ′′(x), (2.16)
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Using Proposition 2.2 and Theorem 2.5 it is possible to recover identities involving
divided differences for the Bleimann, Butzer and Hahn operators, corresponding to those
verified by the Stancu operator.
Aknowledgement. The author thanks the referees for their suggestions that contributed
to the improvement of the manuscript.
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