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A numerical study on the robustness and efficiency of the
PL homotopy algorithm for solving unconstrained
optimization problems

ANDREI BOZANTAN 1 and VASILE BERINDE 1,2

ABSTRACT. Our aim in this paper is to illustrate the relevance of the fixed point piecewise-linear homotopy
algorithm for solving unconstrained optimization problems. The numerical tests are performed by using an
implementation of the piecewise-linear homotopy algorithm in the modern programming language C#, as de-
scribed previously in [Bozantan, A., An implementation of the piecewise-linear homotopy algorithm for the computation
of fixed points, Creat. Math. Inform., 19 (2010), No. 2, 140–148] and [Bozantan, A. and Berinde, V., Applications
of the PL homotopy algorithm for the computation of fixed points to unconstrained optimization problems, Creat. Math.
Inform., 22 (2013), No. 1, 41–46]. As shown by the numerical experiments done on a set of classic test func-
tions in optimization theory, the PL homotopy algorithm appears to be more reliable than the classical Newton’s
method and some other important methods for finding local or global minima.

1. INTRODUCTION

We consider the unconstrained optimization problem

min f(x), x ∈ Rn, (1.1)

where f : Rn → R is continuously differentiable. There exists many (Newton type) itera-
tive methods in literature for solving problem (1.1), see for example [12], [16], [18]. Such
an iterative method produces a monotone or non monotone sequence x0, x1, x2, ..., where
xk+1 is generated from xk, the current direction dk, and the stepsize αk by the rule

xk+1 = xk + αkdk. (1.2)

Amongst the most reliable and largely used iterative methods in unconstrained optimiza-
tion, Newton’s method and Newton type methods play an important role, due to the fact
that they allow us to identify by a certain procedure the search directions.

In order to decide which one of these methods should be more appropriate for a certain
problem, it would be desirable to know a priori, if possible, a scale of the most efficient and
robust techniques, for as many as possible classes of objective functions.

Efficiency is an important feature of any iterative procedure, since in concrete prob-
lems for more than three or four variables trial and error becomes impractical because, in
some regions, the optimization algorithm may progress very slowly toward the optimum,
requiring excessive computer time.

Robustness, i.e., the ability to achieve a solution, is equally or even more important
because a general nonlinear function is unpredictable in its behavior: there may be local
maxima or minima, saddle points, regions of convexity, concavity, and so on. Therefore,
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it is of great theoretical and practical importance to draw an extensive experience in test-
ing optimization algorithms for unconstrained functions to evaluate their efficiency and
robustness.

The main aim of this paper is to illustrate the relevance of the piecewise-linear homo-
topy algorithm (which has been designed and implemented for fixed point approxima-
tion, see [4], [6] and [5]), for solving unconstrained optimization problems and to compare
its performances to well known iterative methods: Newton’s method, Broyden-Fletcher-
Goldfarb-Shanno, conjugate gradient method, and nonlinear conjugate gradient method.
This empirical study is done on a set of representative test functions taken from literature,
see [13], [14], [22], [23], [24].

2. PRELIMINARIES

This new approach to unconstrained optimization problems is based on the fact that al-
gorithm (1.2) can be regarded as a particular case of a classic fixed point iterative method,
that is, of the Picard iteration or successive approximations method associated to a certain
nonlinear fixed point equation

x = Tx, (2.3)
where T is a given self operator of a spaceX . SupposeX and T are such that the equation
(2.3) has at least one solution (usually called a fixed point of T ). A typical situation of this
kind is illustrated by the well known Brouwer’s fixed point theorem, see [17].

Theorem 2.1. Every continuous mapping f from a convex compact subsetK of a Euclidean space
to K itself has a fixed point.

Under the assumptions of Theorem 2.1, the Picard iteration associated to (2.3), defined
by x0 ∈ X and

xn+1 = Txn, n = 0, 1, 2, . . . , (2.4)
does not converge, in general, even though in many cases (e.g., for contractive type map-
pings, see [2]) it is a useful method to solve nonlinear fixed point equations.

Any contraction mapping is continuous but the reverse is not true. This is the reason
why several authors tried to find specific algorithms that could be successfully used to
compute fixed points of continuous but not contractive mappings.

In this context, in 1967 Herbert Scarf proposed a method for approximating fixed points
of continuous mappings [25]. The algorithm proposed by Scarf, which is also a numeri-
cally implementable constructive proof of the Brouwer fixed point theorem, has its origins
in the Lemke-Howson complementary pivoting algorithm for solving linear complemen-
tarity problems [20]. Beside the generalization and applications in fixed point theory, the
Lemke-Howson algorithm is also famous for its applications in finding Nash equilibrium
points for bimatrix games.

Several improvements to the algorithm developed by Scarf were made by Terje Hansen
in 1967, see [26] and by Harold W. Kuhn in 1968 [19]. But the decisive advancements came
in 1972, when Eaves [10] and then Eaves and Saigal [11] described a piecewise-linear
(PL) homotopy deformation algorithm as an improvement for the algorithm proposed
by Scarf. Another PL algorithm, related to the one proposed by Eaves and Saigal, was
presented by Orin H. Merrill in 1972 [21]. The main practical advantage of the PL homo-
topy methods is that they don’t require smoothness of the underlying map, and in fact
they can be used to calculate fixed points of set-valued maps. Although PL methods can
be viewed in the more general context of complementary pivoting algorithms, they are
usually considered in the special class of homotopy or continuation methods [1].
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Since the piecewise-linear homotopy method could be in particular applied to solve
optimization problems, the main aim of this paper is to test numerically the efficiency
and robustness of the PL homotopy algorithm in the case of unconstrained optimization
problems and to compare it with some of the well known and widely used methods in
optimization.

The tests reported in Section 4 of this paper clearly illustrate the fact that, for almost
all test functions we have considered, but especially for the non differentiable ones, the
piecewise-linear homotopy method is more robust (even though not always more ef-
ficient) than Newton’s method, Broyden-Fletcher-Goldfarb-Shanno, conjugate gradient
method, nonlinear conjugate gradient method. This reveals the usefulness and numerical
potential of the PL homotopy algorithm for solving unconstrained optimization problems.

3. PIECEWISE-LINEAR HOMOTOPY ALGORITHMS

A detailed description of the implementation and use of the piecewise-linear homo-
topy algorithm for solving some unconstrained optimization problems is given in [4] and
[5]. To make this paper self contained we present some excerpts in the following, for the
convenience of the reader.

The homotopy methods are useful alternatives and aides for the Newton methods in
solving systems of n nonlinear equations in n variables:

F (x) = 0, F : Rn → Rn. (3.5)

mainly when very little a priori knowledge regarding the zero points of F is available and
so, a poor starting value could cause a divergent Newton iteration sequence. The idea of
the homotopy method is to consider a new function G : Rn → Rn, related to F , with a
known solution, and then to gradually deform this new function into the original function
F . Typically one can define the convex homotopy:

H(x, t) = t ·G(x) + (1− t) · F (x) (3.6)

and can try to trace the implicitly defined curve

H−1(0) = {x ∈ Rn | ∃ t ∈ [0, 1] such that H(x, t) = 0} (3.7)

from a starting point (x0, 1) to a solution point (x∗, 0). The implicit function theorem
ensures that the set H−1(0) is at least locally a curve under the assumption that (x0, 1) is
a regular value of H , i.e. the Jacobian H ′(x0, 1) has full rank n. However, because there
is no smoothness condition on F , a more complex approach involving piecewise-linear
approximations is needed.

We define the “refining” triangulation J3 of Rn × (0, 1] such that the vertices of this
triangulation are given by the set of points:

J0
3 = {(v1, . . . , vn+1) | vn+1 = 2−k, k ∈ N and

vi
vn+1

∈ Z}.

So, every (n+1)-simplex of this triangulation is contained in some slab Rn× [2−k, 2−k−1],
k ∈ N.

Let σ = [v1, v2, . . . , vn+1, vn+2] ∈ J3 be an (n+1)-simplex and let π : Rn×R→ R be the
following canonical projection: π(x, t) = t. We define the level of σ as maxi=1,n+2 π(vi),
which is the maximum of the last co-ordinates of all vertices of σ. We call J3 a refining
triangulation of Rn × R because the diameter of σ tends to zero as the level of σ tends to
zero.
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We define the piecewise linear homotopy mapHJ3 which interpolatesH on the vertices
of the given refining triangulation J3:

• HJ3(x, 1) = G(x), HJ3(x, 0) = F (x);

• HJ3(x, t) =

n+2∑
i=1

λiH(vi, t), where: (vi, t) are vertices of σ ∈ J3 and

(x, t) =

n+2∑
i=1

λi(vi, t),
n+2∑
i=1

λi = 1, λi ≥ 0.

The algorithm will trace the unique component of the polygonal path H−1J3 (0) which
contains (x0, 1), with nodes on the n-faces of the triangulation J3.

The algorithm starts with the unique simplex σ0 which contains the initial point (x0, 1).
Then, for each i = 0, 1, . . . it will perform the following steps in a loop:

• It will trace the restriction of H−1J3 (0) to the current simplex σi, from the point
(xi, ti) and finds the intersection point (xi+1, ti+1) with some other facet of σi.
This step is called “door-in-door-out step”, see [1]. Sometimes this step is also
called linear programming step because it involves the solving of linear equations
in a manner typical for linear programming methods.

• It performs a pivoting step, which means to find the new simplex σi+1 which is
adjacent to the current simplex and which contains the point (xi+1, ti+1). This step
is usually performed using only a few operations which define the pivoting rules
of the triangulation.

The generated sequence (x0, 1), (x1, t1), . . . will converge to a solution (x∗, 0) of the
homotopy map H , that is, to a solution x∗ of the equation F (x) = 0.

4. NUMERICAL TESTS ON THE ROBUSTNESS AND EFFICIENCY OF PL HOMOTOPY
ALGORITHM FOR UNCONSTRAINED OPTIMIZATION PROBLEMS

In order to find local or global minima of a nonlinear multivariable function F : Rn →
R, the following homotopy map is defined and used in the PL homotopy algorithm [11]:

H : Rn × R→ Rn, H(x, t) =

{
x− x0 for t ≤ 0,
∇F (x) for t > 0.

(4.8)

The numerical experiments were performed for the case n = 2 (Example 4.1, Example
4.2, Example 4.3) and for n = 10 in Example 4.4 (but the graph is done for n = 2, too). All
the numerical results are computed to a maximal final error of 1e− 4.

We shall use the following symbols in the tables that synthesise the numerical experi-
ments we have done:

• BFGS = Broyden-Fletcher-Goldfarb-Shanno method (a quasi-Newton method)
• CG = conjugate gradient method
• NCG = nonlinear conjugate gradient method
• PLH = piecewise linear homotopy algorithm
• ∞ = method does not converge
• 6= = method converges, but not to the correct global/local minimum

Example 4.1. (The sixth Bukin function)

F (x, y) = 100 ·
√
|y − 0.01 · x2|+ 0.01 · |x+ 10|, (x, y) ∈ R2.
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The global minimum value of F is F (−10, 1) = 0. It is usually evaluated on the rec-
tangle (x, y) ∈ [−15,−5] × [−3, 3]. The sixth Bukin function has many local minima, all
of which lie in a ridge. Note also that F is not differentiable on the set {(−10, b) : b ∈
R} ∪ {(10

√
|b|, b) : b ∈ R}.

From the table above we note that all algorithms taken into consideration in our com-
parison study for the PL homotopy algorithm do not converge in the case of the start-
ing points (−15, 0), (−10, 0), (−11, 3), (−11,−3) (and, of course, for many other starting
points). This is mainly due to the fact that the objective function F is not differentiable at
some points.

The merit of the PL homotopy algorithm is that it converges in all those cases and
reaches the minimal value.

Example 4.2. (Easom function)

F (x, y) = − cos(x) · cos(y) · e−(x−π)2−(y−π)2 , (x, y) ∈ R2.

The global minimum value of F is F (π, π) = −1 within −100 ≤ x, y ≤ 100. It has many
local minima.

Example 4.3. (Rosenbrock function, also known as banana function)

F (x, y) = (1− x)2 + 100(y − x2)2, (x, y) ∈ R2.

The function is unimodal, and the global minimum value, F (1, 1) = 0, lies in a narrow,
parabolic valley. Usually it is evaluated within the rectangle −5 ≤ x, y ≤ 5.

Example 4.4. (Schwefel function)

F (x1, . . . , xn) =

n∑
i=1

−xi · sin
(√
|xi|
)

We will test the optimization algorithms for n = 10, in the hypercube xi ∈ [−10, 10] , i =
1..n. The function has a single minimum in this input domain which is:

F

(
5π

3
, . . . ,

5π

3

)
=
−7.89 · n

2
.

Note also that the Schwefel function F is not differentiable on the set {(0, a2, . . . , an) :
a2, . . . , an ∈ R} ∪ {(a1, 0, a3, . . . , an) : a1, a3, · · · ∈ R} ∪ . . . .

We shall use the following starting points for comparing the algorithms:

c1 = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5), c2 = (5, 5, 5, 5, 5, 5, 5, 5, 5, 1), c3 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2),

c4 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 1), c5 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), c6 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0),

c7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

5. CONCLUSIONS AND FUTURE WORK

We tested numerically the efficiency and robustness of the PL homotopy algorithm for
some typical unconstrained optimization problems and compared it with some of the well
known and widely used methods in optimization: Newton’s method, Broyden-Fletcher-
Goldfarb-Shanno, conjugate gradient method, and nonlinear conjugate gradient method.

The numerical results clearly illustrate the fact that, for almost all test functions we
have considered, but especially for the non differentiable ones, the piecewise-linear ho-
motopy method is more robust (even though not always more efficient) than Newton’s
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method, Broyden-Fletcher-Goldfarb-Shanno, conjugate gradient method, and nonlinear
conjugate gradient method. The main generic advantages of the PL homotopy methods is
that they don’t require smoothness of the underlying map. This fact is clearly illustrated
by the numerical results in Examples 4.1 and 4.4. Also another important feature of these
methods is that they can be applied when no a priori knowledge regarding the solutions
of the system to be solved is available, and thus to choose a suitable starting point for the
iterative method.

This study reveals the usefulness as well as the numerical potential of the PL homotopy
algorithm for solving unconstrained optimization problems and is thus encouraging us
to continue the study by considering other important optimization test functions from
literature ([13], [14], [22], [23], [24].
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FIGURE 1. Bukin Function N. 6
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x0, y0 -15,0 -10,0 -11,3 -13, -3
Newton iterations ∞ ∞ ∞ ∞
BFGS iterations ∞ ∞ ∞ ∞
BFGS func evals
BFGS gradient evals
CG iterations ∞ ∞ ∞ ∞
CG func evals
CG gradient evals
NCG iterations ∞ ∞ ∞ ∞
NCG func evals
NCG gradient evals
NCG hessian evals
PLH iterations 199 35 92 104
PLH label evals 308 64 146 158

Table 1. Comparing numerical results for Bukin Function N. 6
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FIGURE 2. Easom Function
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x0, y0 0,0 1,1 2,2 3,3
Newton iterations 6= 6= 6= 4
BFGS iterations ∞ 6= 3 3
BFGS func evals 9 5
BFGS gradient evals 9 5
CG iterations ∞ 6= 1 2
CG func evals 18 5
CG gradient evals 6 5
NCG iterations 2 6= 3 4
NCG func evals 14 9 5
NCG gradient evals 15 11 8
NCG hessian evals 2 3 4
PLH iterations 6= 6= 11 5
PLH label evals 17 11

Table 2. Comparing numerical results for Eason Function
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FIGURE 3. Rosenbrock Function
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x1, x2 0,0 2,2 3,3 10,10 10000,10000
Newton iterations 4 7 8 9 ∞
BFGS iterations 21 20 38 49 6=
BFGS func evals 26 30 57 69
BFGS gradient evals 26 30 57 69
CG iterations 17 6= 31 6= 6=
CG func evals 33 78
CG gradient evals 33 78
NCG iterations 33 24 31 51 6=
NCG func evals 53 37 44 83
NCG gradient evals 85 60 74 133
NCG hessian evals 33 24 31 51
PLH iterations 115 91 100 169 308
PLH label evals 174 136 145 214 380

Table 3. Comparing numerical results for Rosenbrock Function
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FIGURE 4. Schwefel Function for n = 2
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x0 c1 c2 c3 c4 c5 c6 c7
Newton iterations 2 ∞ ∞ ∞ 4 ∞ ∞
BFGS iterations 3 6= 5 6= 4 6= ∞
BFGS func evals 4 6 6
BFGS gradient evals 4 6 6
CG iterations 1 6= 6= 6= 2 6= ∞
CG func evals 15 6
CG gradient evals 4 6
NCG iterations 3 6= 3 6= 4 ∞ ∞
NCG func evals 4 5 5
NCG gradient evals 6 7 8
NCG hessian evals 3 3 4
PLH iterations 14 20 43 44 45 50 45
PLH label evals 28 29 51 53 53 58 58

Table 4. Comparing numerical results for Schwefel Function (n = 2)
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