The locus of generalized Toricelli-Fermat points

Petru Braica, Mircea Fărcaş and Daly Marciuc

ABSTRACT. In this paper, we obtain the locus of generalized Torricelli-Fermat points of a triangle.

1. Introduction

In the articles [3] and [4], being given the triangle $A B C$, there were considered the points B^{\prime} and C^{\prime}, the rotated of points B, and respectively C around the point A, with the same angle α towards the outside of triangle. The lines $C B^{\prime}$ and $B C^{\prime}$ intersect each other at point P_{A}. Similarly, we obtain the points P_{B} and P_{C}. It has been shown that the lines $A P_{A}, B P_{B}$ and $C P_{C}$ intersect each other at a point T_{α}, which generalizes the Torricelli-Fermat point, obtained for $\alpha=60^{\circ}$ (Figure 1).

Figure 1
Also, considering $Q_{A}=B A^{\prime \prime} \cap C A^{\prime}, Q_{B}=A B^{\prime \prime} \cap C B^{\prime}$ and $Q_{C}=B C^{\prime} \cap A C^{\prime \prime}$, the lines $A Q_{A}, B Q_{B}$ ąnd $C Q_{C}$ intersect at one point, denoted by S_{α} (Figure 2).

If a, b and c are real numbers, with $a<b$ and $c>0$, we consider the points $A(a, 0)$, $B(b, 0)$ and $C(0, c)$, so that the triangle $A B C$ should be a scalen triangle. We denote by G the centroid of triangle $A B C$ and by H its orthocenter.

Figure 2

Lemma 1.1. The equation of the rectangular hyperbola determined by the points A, B, C, G and H is given by

$$
\begin{gather*}
c(a+b) x^{2}+2\left(a^{2}+b^{2}-c^{2}-a b\right) x y-c(a+b) y^{2}-c(a+b)^{2} x+ \tag{1.1}\\
(a+b)\left(c^{2}-a b\right) y+a b c(a+b)=0 .
\end{gather*}
$$

Proof. We have $G\left(\frac{a+b}{3}, \frac{c}{3}\right)$ and $H\left(0,-\frac{a b}{c}\right)$. The equation of hyperbola is $\alpha x^{2}+\beta x y-$ $\alpha y^{2}+\gamma x+\delta y+\epsilon=0$. Substituting the coordinates of the five points, we find $\alpha=c(a+b)$, $\beta=2\left(a^{2}+b^{2}-c^{2}-a b\right), \gamma=-c(a+b)^{2}, \delta=(a+b)\left(c^{2}-a b\right)$ and $\epsilon=a b c(a+b)$.

The invariants of the conic are: $\Delta=\frac{1}{4} c(a-b)^{2}(a+b)\left(2 a b+c^{2}-b^{2}\right)\left(2 a b+c^{2}-a^{2}\right)$, $\delta=-c^{2}(a+b)^{2}-\left(a^{2}+b^{2}-c^{2}-a b\right)^{2}$ and $I=c(a+b)-c(a+b)=0$ ([2], pp. 441-447). For a scalen triangle, we find that $\Delta \neq 0$ and $\delta<0$, and the lemma is proved.

Remark 1.1. The hyperbola in Lemma 1.1 is known in the literature as the Kiepert hyperbola ([6], [7]).

Remark 1.2. We can obtain the equations of the asimptotes of the hyperbola, $\left(t_{1}\right): m x+$ $n y+p=0$, where $m=\sqrt{-\delta}, n=\sqrt{-\delta} \cdot \frac{a^{2}+b^{2}-c^{2}-a b-\sqrt{-\delta}}{c(a+b)}$ and $p=\frac{a+b}{2}\left((a-b)^{2}-\sqrt{-\delta}\right)$, respectively $\left(t_{2}\right): m^{\prime} x+n^{\prime} y+p^{\prime}=0$, where $m^{\prime}=-\sqrt{-\delta}, n^{\prime}=-\sqrt{-\delta} \cdot \frac{a^{2}+b^{2}-c^{2}-a b+\sqrt{-\delta}}{c(a+b)}$ and $p^{\prime}=\frac{a+b}{2}\left((a-b)^{2}+\sqrt{-\delta}\right)$.

2. Main results

Theorem 2.1. The points T_{α} and S_{α} are on the hyperbola (1.1).
Proof. The affix of intersection point of the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ is given by $t=$ $\frac{m z_{A}+n z_{B}+p z_{C}}{m+n+p}$, where z_{A}, z_{B} and z_{C} are the affixes of points A, B, respectively C, and $m=\frac{A^{\prime} B}{A^{\prime} C}, n=\frac{B^{\prime} C}{B^{\prime} A}$ and $p=\frac{C^{\prime} A}{C^{\prime} B}$ ([1]). But $m=\frac{\sin C \cos \left(B-\frac{\alpha}{2}\right)}{\sin B \cos \left(C-\frac{\alpha}{2}\right)}, n=\frac{\sin A \cos \left(C-\frac{\alpha}{2}\right)}{\sin C \cos \left(A-\frac{\alpha}{2}\right)}$, $p=\frac{\sin B \cos \left(A-\frac{\alpha}{2}\right)}{\sin A \cos \left(B-\frac{\alpha}{2}\right)}([3])$, and therefore the coordinates of point T_{α} are:

$$
\left\{\begin{array}{l}
x(\alpha)=\frac{(a+b)\left(a b+c^{2}\right) \sin \alpha+c\left(a^{2}-b^{2}\right) \cos \alpha-c\left(a^{2}-b^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}-a b\right) \sin \alpha+2 c(a-b) \cos \alpha-4 c(a-b)} \tag{2.2}\\
y(\alpha)=\frac{c(a-b)^{2} \sin \alpha+(a-b)\left(a b+c^{2}\right) \cos \alpha-(a-b)\left(c^{2}-a b\right)}{2\left(a^{2}+b^{2}+c^{2}-a b\right) \sin \alpha+2 c(a-b) \cos \alpha-4 c(a-b)}
\end{array}\right.
$$

In case of the point S_{α}, we have $m=\frac{\sin C \sin (B+\alpha)}{\sin B \sin (C+\alpha)}, n=\frac{\sin A \sin (C+\alpha)}{\sin C \sin (A+\alpha)}, p=\frac{\sin B \sin (A+\alpha)}{\sin A \sin (B+\alpha)}$ ([3]). Therefore, the coordinates of point S_{α} are:

$$
\left\{\begin{array}{l}
x(\alpha)=\frac{(a+b)\left(a b+c^{2}\right) \sin 2 \alpha-c\left(a^{2}-b^{2}\right) \cos 2 \alpha-c\left(a^{2}-b^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}-a b\right) \sin 2 \alpha-2 c(a-b) \cos 2 \alpha-4 c(a-b)} \tag{2.3}\\
y(\alpha)=\frac{c(a-b)^{2} \sin 2 \alpha-(a-b)\left(a b+c^{2}\right) \cos 2 \alpha-(a-b)\left(c^{2}-a b\right)}{2\left(a^{2}+b^{2}+c^{2}-a b\right) \sin 2 \alpha-2 c(a-b) \cos 2 \alpha-4 c(a-b)}
\end{array}\right.
$$

By substitution, we show that these coordinates verifies equation (1.1).
Remark 2.3. For an isosceles triangle, we have $b=-a, c \neq-a \sqrt{3}$, and we obtain $x(\alpha)=$ 0 , thus the locus is the y axis. If the triangle is equilateral, we have $b=-a, c=-a \sqrt{3}$, and therefore $x(\alpha)=0$ and $y(\alpha)=-\frac{a \sqrt{3}}{3}$, thus the locus is the center of the triangle.
Lemma 2.2. The perpendiculars from the point A at line $B^{\prime} C^{\prime}$, from point B at line $A^{\prime \prime} C^{\prime \prime}$ and from point C at line $A^{\prime} B^{\prime \prime}$ intersect at a unique point U_{α}.

Proof. We consider that the vertices of the triangle are $A(a, 0), B(b, 0)$ şi $C(0, c)$ (Figure 3).

Figure 3
We have $A^{\prime}(a \cos \alpha-c \sin \alpha, c(1-\cos \alpha)-a \sin \alpha)$ and $B^{\prime \prime}(b \cos \alpha+c \sin \alpha, c(1-\cos \alpha)+$ $b \sin \alpha$). The slope of $A^{\prime} B^{\prime \prime}$ line is $m_{A^{\prime} B^{\prime \prime}}=\frac{(a+b) \sin \alpha}{2 c \sin \alpha+(b-a) \cos \alpha}$. The slope of the perpendicular from C at $A^{\prime} B^{\prime \prime}$ is $-\frac{1}{m_{A^{\prime} B^{\prime \prime}}}=\frac{(a-b) \cos \alpha-2 c \sin \alpha}{(a+b) \cos \alpha}$, and abscissa of intersection point of this perpendicular and the line $A B$ is $\frac{c(a+b) \sin \alpha}{2 c \sin \alpha-(a-b) \cos \alpha}$. We obtain that this perpendicular divides the side $[A B]$ in the ratio $\frac{\sin B \cos (A-\alpha)}{\sin A \cos (B-\alpha)}$. In the same way, we show that the perpendicular from A at $B^{\prime} C^{\prime}$ divides the side $[B C]$ in the ratio $\frac{\sin C \cos (B-\alpha)}{\sin B \cos (C-\alpha)}$, and the perpendicular from B at $A^{\prime \prime} C^{\prime \prime}$ divides the side $[A C]$ in the ratio $\frac{\sin A \cos (C-\alpha)}{\sin C \cos (A-\alpha)}$.

Since the product of three ratios is equal to 1, we deduce, based on Ceva theorem [5], that the three perpendiculars intersect at a single point.

Lemma 2.3. The perpendiculars from A at line $A^{\prime} A^{\prime \prime}$, from B at line $B^{\prime} B^{\prime \prime}$ and from C at line $C^{\prime} C^{\prime \prime}$ intersect at a single point V_{α}.
Proof. We have $C^{\prime}(a(1-\cos \alpha)-c \sin \alpha, c \cos \alpha-a \sin \alpha)$ and $C^{\prime \prime}(b(1-\cos \alpha)+c \sin \alpha, c \cos \alpha+$ $b \sin \alpha$) (Figure 4). The slope of line $C^{\prime} C^{\prime \prime}$ is $m_{C^{\prime} C^{\prime \prime}}=\frac{(a+b) \sin \alpha}{2 c \sin \alpha+(b-a)(1-\cos \alpha)}$. The slope of perpendicular from C at $C^{\prime} C^{\prime \prime}$ is $-\frac{1}{m_{C^{\prime} C^{\prime \prime}}}=\frac{(a-b)(1-\cos \alpha)-2 c \sin \alpha}{(a+b) \sin \alpha}$, and abscissa of point of intersection of this perpendicular and line $A B$ is $\frac{c(a+b) \sin \alpha}{2 c \sin \alpha-(a-b)(1-\cos \alpha)}$. We obtain that this perpendicular divides the side $[A B]$ in the ratio $\frac{\sin B \sin \left(A+\frac{\alpha}{2}\right)}{\sin A \sin \left(B+\frac{\alpha}{2}\right)}$.

Figure 4
In the same way, we show that the perpendicular from A at $A^{\prime} A^{\prime \prime}$ divides the side $[B C]$ in the ratio $\frac{\sin C \sin \left(B+\frac{\alpha}{2}\right)}{\sin B \sin \left(C+\frac{\alpha}{2}\right)}$, and the perpendicular from B at $B^{\prime} B^{\prime \prime}$ divides the side $[A C]$ in the ratio $\frac{\sin A \sin \left(C+\frac{\alpha}{2}\right)}{\sin C \sin \left(A+\frac{\alpha}{2}\right)}$.

Since the product of three ratios is equal with 1, we deduce, base on Ceva theorem, that the three perpendiculars intersect at a single point.
Theorem 2.2. The points of intersection U_{α} and V_{α} are on the hyperbola (1.1), when α change from 0° to 360°.
Proof. For U_{α}, we have $m=\frac{\sin C \cos (B-\alpha)}{\sin B \cos (C-\alpha)}, n=\frac{\sin A \cos (C-\alpha)}{\sin C \cos (A-\alpha)}, p=\frac{\sin B \cos (A-\alpha)}{\sin A \cos (B-\alpha)}$ and its coordinates are

$$
\left\{\begin{array}{l}
x(\alpha)=\frac{(a+b)\left(a b+c^{2}\right) \sin 2 \alpha-c\left(a^{2}-b^{2}\right) \cos 2 \alpha+c\left(a^{2}-b^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}-a b\right) \sin 2 \alpha-2 c(a-b) \cos 2 \alpha+4 c(a-b)} \tag{2.4}\\
y(\alpha)=\frac{c(a-b)^{2} \sin 2 \alpha-(a-b)\left(a b+c^{2}\right) \cos 2 \alpha+(a-b)\left(c^{2}-a b\right)}{2\left(a^{2}+b^{2}+c^{2}-a b\right) \sin 2 \alpha-2 c(a-b) \cos 2 \alpha+4 c(a-b)}
\end{array}\right.
$$

For V_{α}, we have $m=\frac{\sin C \sin \left(B+\frac{\alpha}{2}\right)}{\sin B \sin \left(C+\frac{\alpha}{2}\right)}, n=\frac{\sin A \sin \left(C+\frac{\alpha}{2}\right)}{\sin C \sin \left(A+\frac{\alpha}{2}\right)}, p=\frac{\sin B \sin \left(A+\frac{\alpha}{2}\right)}{\sin A \sin \left(B+\frac{\alpha}{2}\right)}$ and its coordinates are

$$
\left\{\begin{array}{l}
x(\alpha)=\frac{(a+b)\left(a b+c^{2}\right) \sin \alpha-c\left(a^{2}-b^{2}\right) \cos \alpha-c\left(a^{2}-b^{2}\right)}{2\left(a^{2}+b^{2}+c^{2}-a b\right) \sin \alpha-2 c(a-b) \cos \alpha-4 c(a-b)} \tag{2.5}\\
y(\alpha)=\frac{c(a-b)^{2} \sin \alpha-(a-b)\left(a b+c^{2}\right) \cos \alpha-(a-b)\left(c^{2}-a b\right)}{2\left(a^{2}+b^{2}+c^{2}-a b\right) \sin \alpha-2 c(a-b) \cos \alpha-4 c(a-b)}
\end{array}\right.
$$

By substitution, we show that these coordinates verifies equation (1.1).
Remark 2.4. We have $T_{\alpha}=S_{180^{\circ}-2 \alpha}, U_{\alpha}=S_{2 \alpha}$ and $V_{\alpha}=S_{180^{\circ}-\alpha}$.
Remark 2.5. We have $G=S_{90^{\circ}}$ and $H=T_{0^{\circ}}$.
Remark 2.6. Torricelli point is $S_{60^{\circ}}$, and Vecten point ([5], p. 47) is $S_{45^{\circ}}$.
An image of this locus is (https://www.geogebratube.org/student/mJ4KHBYV0):

REFERENCES
[1] Andrica, D. and Bişboacă, N. Numere complexe. Probleme rezolvate din manualele alternative, Editura Millenium, Alba Iulia, 2000
[2] Andrica, D., Duca, D., Purdea, I. and Pop, I., Matematica de bază, Editura Studium, Cluj-Napoca, 2001
[3] Braica, P. and Bud, A., A generalization of the isogonal point, Internat. J. Geom., 1 (2012), No. 1, 41-45
[4] Braica, P. and Pop, O. T., O extindere a teoremei lui Torricelli, Gaz. Mat. (Bucharest), 117 (2012), No. 5, 228-231
[5] Nicolescu, L. and Boskoff, V., Probleme practice de geometrie, Editura Tehnică, Bucureşti, 1990
[6] Yiu, P., Some constructions related to the Kiepert hyperbola, Forum Geom., 6 (2006), 343-357
[7] Zaslavsky, A. A., Geometry of Kiepert and Grinberg-Myakisev hyperbolas, J. Class. Geom., 1 (2012), 65-71

```
"Grigore Moisil" Gymnasium School
Mileniului 1, Satu Mare
E-mail address: pbraica@yahoo.com
"Mihai Eminescu" National College
Mihai Eminescu 5, Satu Mare
E-mail address: mirceafarcas2005@yahoo.com
"Mihai Eminescu" National College
Mihai Eminescu 5, Satu Mare
E-mail address: daly.marciuc@gmail.com
```

