The locus of generalized Toricelli-Fermat points

PETRU BRAICA, MIRCEA FĂRCAŞ and DALY MARCIUC

ABSTRACT. In this paper, we obtain the locus of generalized Torricelli-Fermat points of a triangle.

1. Introduction

In the articles [3] and [4], being given the triangle ABC, there were considered the points B' and C', the rotated of points B, and respectively C around the point A, with the same angle α towards the outside of triangle. The lines CB' and BC' intersect each other at point P_A . Similarly, we obtain the points P_B and P_C . It has been shown that the lines AP_A , BP_B and CP_C intersect each other at a point T_α , which generalizes the Torricelli-Fermat point, obtained for $\alpha = 60^\circ$ (Figure 1).

FIGURE 1

Also, considering $Q_A = BA'' \cap CA'$, $Q_B = AB'' \cap CB'$ and $Q_C = BC' \cap AC''$, the lines AQ_A , BQ_B and CQ_C intersect at one point, denoted by S_α (Figure 2).

If a, b and c are real numbers, with a < b and c > 0, we consider the points A(a,0), B(b,0) and C(0,c), so that the triangle ABC should be a scalen triangle. We denote by G the centroid of triangle ABC and by H its orthocenter.

Received: 03.04.2015. In revised form: 09.10.2015. Accepted: 16.10.2015

²⁰¹⁰ Mathematics Subject Classification. 51M04, 51M25, 51M30.

Key words and phrases. Kiepert hyperbola, generalized Torricelli-Fermat point.

Corresponding author: Mircea Fărcaș; mirceafarcas2005@yahoo.com

FIGURE 2

Lemma 1.1. The equation of the rectangular hyperbola determined by the points A, B, C, G and H is given by

$$c(a+b)x^{2}+2(a^{2}+b^{2}-c^{2}-ab)xy-c(a+b)y^{2}-c(a+b)^{2}x+$$

$$(a+b)(c^{2}-ab)y+abc(a+b)=0.$$
(1.1)

Proof. We have $G\left(\frac{a+b}{3},\frac{c}{3}\right)$ and $H\left(0,-\frac{ab}{c}\right)$. The equation of hyperbola is $\alpha x^2+\beta xy-\alpha y^2+\gamma x+\delta y+\epsilon=0$. Substituting the coordinates of the five points, we find $\alpha=c(a+b)$, $\beta=2(a^2+b^2-c^2-ab)$, $\gamma=-c(a+b)^2$, $\delta=(a+b)(c^2-ab)$ and $\epsilon=abc(a+b)$. The invariants of the conic are: $\Delta=\frac{1}{4}c(a-b)^2(a+b)(2ab+c^2-b^2)(2ab+c^2-a^2)$,

The invariants of the conic are: $\Delta = \frac{1}{4}c(a-b)^2(a+b)(2ab+c^2-b^2)(2ab+c^2-a^2)$, $\delta = -c^2(a+b)^2 - (a^2+b^2-c^2-ab)^2$ and I = c(a+b) - c(a+b) = 0 ([2], pp. 441-447). For a scalen triangle, we find that $\Delta \neq 0$ and $\delta < 0$, and the lemma is proved.

Remark 1.1. The hyperbola in Lemma 1.1 is known in the literature as the Kiepert hyperbola ([6], [7]).

Remark 1.2. We can obtain the equations of the asimptotes of the hyperbola, (t_1) : mx + ny + p = 0, where $m = \sqrt{-\delta}$, $n = \sqrt{-\delta} \cdot \frac{a^2 + b^2 - c^2 - ab - \sqrt{-\delta}}{c(a+b)}$ and $p = \frac{a+b}{2} \left((a-b)^2 - \sqrt{-\delta} \right)$, respectively (t_2) : m'x + n'y + p' = 0, where $m' = -\sqrt{-\delta}$, $n' = -\sqrt{-\delta} \cdot \frac{a^2 + b^2 - c^2 - ab + \sqrt{-\delta}}{c(a+b)}$ and $p' = \frac{a+b}{2} \left((a-b)^2 + \sqrt{-\delta} \right)$.

2. Main results

Theorem 2.1. The points T_{α} and S_{α} are on the hyperbola (1.1).

Proof. The affix of intersection point of the lines AA', BB' and CC' is given by $t = \frac{mz_A + nz_B + pz_C}{m + n + p}$, where z_A , z_B and z_C are the affixes of points A, B, respectively C, and $m = \frac{A'B}{A'C}$, $n = \frac{B'C}{B'A}$ and $p = \frac{C'A}{C'B}$ ([1]). But $m = \frac{\sin C \cos(B - \frac{\alpha}{2})}{\sin B \cos(C - \frac{\alpha}{2})}$, $n = \frac{\sin A \cos(C - \frac{\alpha}{2})}{\sin C \cos(A - \frac{\alpha}{2})}$, $p = \frac{\sin B \cos(A - \frac{\alpha}{2})}{\sin A \cos(B - \frac{\alpha}{2})}$ ([3]), and therefore the coordinates of point T_α are:

$$\begin{cases} x(\alpha) = \frac{(a+b)(ab+c^2)\sin\alpha + c(a^2-b^2)\cos\alpha - c(a^2-b^2)}{2(a^2+b^2+c^2-ab)\sin\alpha + 2c(a-b)\cos\alpha - 4c(a-b)} \\ y(\alpha) = \frac{c(a-b)^2\sin\alpha + (a-b)(ab+c^2)\cos\alpha - (a-b)(c^2-ab)}{2(a^2+b^2+c^2-ab)\sin\alpha + 2c(a-b)\cos\alpha - 4c(a-b)}. \end{cases}$$
(2.2)

In case of the point S_{α} , we have $m=\frac{\sin C\sin(B+\alpha)}{\sin B\sin(C+\alpha)}$, $n=\frac{\sin A\sin(C+\alpha)}{\sin C\sin(A+\alpha)}$, $p=\frac{\sin B\sin(A+\alpha)}{\sin A\sin(B+\alpha)}$ ([3]). Therefore, the coordinates of point S_{α} are:

$$\begin{cases} x(\alpha) = \frac{(a+b)(ab+c^2)\sin 2\alpha - c(a^2-b^2)\cos 2\alpha - c(a^2-b^2)}{2(a^2+b^2+c^2-ab)\sin 2\alpha - 2c(a-b)\cos 2\alpha - 4c(a-b)} \\ y(\alpha) = \frac{c(a-b)^2\sin 2\alpha - (a-b)(ab+c^2)\cos 2\alpha - (a-b)(c^2-ab)}{2(a^2+b^2+c^2-ab)\sin 2\alpha - 2c(a-b)\cos 2\alpha - 4c(a-b)}. \end{cases}$$
(2.3)

By substitution, we show that these coordinates verifies equation (1.1).

Remark 2.3. For an isosceles triangle, we have b=-a, $c\neq -a\sqrt{3}$, and we obtain $x(\alpha)=0$, thus the locus is the y axis. If the triangle is equilateral, we have b=-a, $c=-a\sqrt{3}$, and therefore $x(\alpha)=0$ and $y(\alpha)=-\frac{a\sqrt{3}}{3}$, thus the locus is the center of the triangle.

Lemma 2.2. The perpendiculars from the point A at line B'C', from point B at line A''C'' and from point C at line A'B'' intersect at a unique point U_{α} .

Proof. We consider that the vertices of the triangle are A(a,0), B(b,0) si C(0,c) (Figure 3).

FIGURE 3

We have $A'(a\cos\alpha-c\sin\alpha,c(1-\cos\alpha)-a\sin\alpha)$ and $B''(b\cos\alpha+c\sin\alpha,c(1-\cos\alpha)+b\sin\alpha)$. The slope of A'B'' line is $m_{A'B''}=\frac{(a+b)\sin\alpha}{2c\sin\alpha+(b-a)\cos\alpha}$. The slope of the perpendicular from C at A'B'' is $-\frac{1}{m_{A'B''}}=\frac{(a-b)\cos\alpha-2c\sin\alpha}{(a+b)\cos\alpha}$, and abscissa of intersection point of this perpendicular and the line AB is $\frac{c(a+b)\sin\alpha}{2c\sin\alpha-(a-b)\cos\alpha}$. We obtain that this perpendicular divides the side [AB] in the ratio $\frac{\sin B\cos(A-\alpha)}{\sin A\cos(B-\alpha)}$. In the same way, we show that the perpendicular from A at B'C' divides the side [BC] in the ratio $\frac{\sin C\cos(B-\alpha)}{\sin B\cos(C-\alpha)}$, and the perpendicular from B at A''C'' divides the side [AC] in the ratio $\frac{\sin A\cos(C-\alpha)}{\sin C\cos(A-\alpha)}$.

Since the product of three ratios is equal to 1, we deduce, based on Ceva theorem [5], that the three perpendiculars intersect at a single point.

Lemma 2.3. The perpendiculars from A at line A'A'', from B at line B'B'' and from C at line C'C'' intersect at a single point V_{α} .

Proof. We have $C'(a(1-\cos\alpha)-c\sin\alpha,c\cos\alpha-a\sin\alpha)$ and $C''(b(1-\cos\alpha)+c\sin\alpha,c\cos\alpha+a\sin\alpha)$ $b\sin\alpha$) (Figure 4). The slope of line C'C'' is $m_{C'C''}=\frac{(a+b)\sin\alpha}{2c\sin\alpha+(b-a)(1-\cos\alpha)}$. The slope of perpendicular from C at C'C'' is $-\frac{1}{m_{C'C''}}=\frac{(a-b)(1-\cos\alpha)-2c\sin\alpha}{(a+b)\sin\alpha}$, and abscissa of point of intersection of this perpendicular and line AB is $\frac{c(a+b)\sin\alpha}{2c\sin\alpha-(a-b)(1-\cos\alpha)}$. We obtain that this $\sin B \sin \left(A + \frac{\alpha}{2}\right)$ perpendicular divides the side [AB] in the ratio $\frac{1}{\sin A \sin \left(B + \frac{\alpha}{2}\right)}$

FIGURE 4

In the same way, we show that the perpendicular from A at A'A'' divides the side [BC]in the ratio $\frac{\sin C \sin\left(B + \frac{\alpha}{2}\right)}{\sin B \sin\left(C + \frac{\alpha}{2}\right)}$, and the perpendicular from B at B'B'' divides the side [AC] in the ratio $\frac{\sin A \sin(C + \frac{\alpha}{2})}{\sin C \sin(A + \frac{\alpha}{2})}$.

Since the product of three ratios is equal with 1, we deduce, base on Ceva theorem, that the three perpendiculars intersect at a single point.

Theorem 2.2. The points of intersection U_{α} and V_{α} are on the hyperbola (1.1), when α change from 0° to 360° .

Proof. For U_{α} , we have $m = \frac{\sin C \cos(B-\alpha)}{\sin B \cos(C-\alpha)}$, $n = \frac{\sin A \cos(C-\alpha)}{\sin C \cos(A-\alpha)}$, $p = \frac{\sin B \cos(A-\alpha)}{\sin A \cos(B-\alpha)}$ and its coordinates are

$$\begin{cases} x(\alpha) = \frac{(a+b)(ab+c^2)\sin 2\alpha - c(a^2-b^2)\cos 2\alpha + c(a^2-b^2)}{2(a^2+b^2+c^2-ab)\sin 2\alpha - 2c(a-b)\cos 2\alpha + 4c(a-b)} \\ y(\alpha) = \frac{c(a-b)^2\sin 2\alpha - (a-b)(ab+c^2)\cos 2\alpha + (a-b)(c^2-ab)}{2(a^2+b^2+c^2-ab)\sin 2\alpha - 2c(a-b)\cos 2\alpha + 4c(a-b)}. \end{cases}$$
 (2.4) For V_{α} , we have $m = \frac{\sin C\sin(B+\frac{\alpha}{2})}{\sin B\sin(C+\frac{\alpha}{2})}$, $n = \frac{\sin A\sin(C+\frac{\alpha}{2})}{\sin C\sin(A+\frac{\alpha}{2})}$, $p = \frac{\sin B\sin(A+\frac{\alpha}{2})}{\sin A\sin(B+\frac{\alpha}{2})}$ and its coor-

dinates are

$$\begin{cases} x(\alpha) = \frac{(a+b)(ab+c^2)\sin\alpha - c(a^2 - b^2)\cos\alpha - c(a^2 - b^2)}{2(a^2 + b^2 + c^2 - ab)\sin\alpha - 2c(a-b)\cos\alpha - 4c(a-b)} \\ y(\alpha) = \frac{c(a-b)^2\sin\alpha - (a-b)(ab+c^2)\cos\alpha - (a-b)(c^2 - ab)}{2(a^2 + b^2 + c^2 - ab)\sin\alpha - 2c(a-b)\cos\alpha - 4c(a-b)}. \end{cases}$$
(2.5)

By substitution, we show that these coordinates verifies equation (1.1).

Remark 2.4. We have $T_{\alpha} = S_{180^{\circ}-2\alpha}$, $U_{\alpha} = S_{2\alpha}$ and $V_{\alpha} = S_{180^{\circ}-\alpha}$.

Remark 2.5. We have $G = S_{90^{\circ}}$ and $H = T_{0^{\circ}}$.

Remark 2.6. Torricelli point is $S_{60^{\circ}}$, and Vecten point ([5], p. 47) is $S_{45^{\circ}}$.

An image of this locus is (https://www.geogebratube.org/student/mJ4KHBYV0):

REFERENCES

- [1] Andrica, D. and Bişboacă, N. Numere complexe. Probleme rezolvate din manualele alternative, Editura Millenium, Alba Iulia, 2000
- [2] Andrica, D., Duca, D., Purdea, I. and Pop, I., Matematica de bază, Editura Studium, Cluj-Napoca, 2001
- [3] Braica, P. and Bud, A., A generalization of the isogonal point, Internat. J. Geom., 1 (2012), No. 1, 41–45
- [4] Braica, P. and Pop, O. T., O extindere a teoremei lui Torricelli, Gaz. Mat. (Bucharest), 117 (2012), No. 5, 228-231
- [5] Nicolescu, L. and Boskoff, V., Probleme practice de geometrie, Editura Tehnică, București, 1990
- [6] Yiu, P., Some constructions related to the Kiepert hyperbola, Forum Geom., 6 (2006), 343–357
- [7] Zaslavsky, A. A., Geometry of Kiepert and Grinberg-Myakisev hyperbolas, J. Class. Geom., 1 (2012), 65-71

"GRIGORE MOISIL" GYMNASIUM SCHOOL MILENIULUI 1, SATU MARE

E-mail address: pbraica@yahoo.com

"Mihai Eminescu" National College Mihai Eminescu 5, Satu Mare

E-mail address: mirceafarcas2005@yahoo.com

"Mihai Eminescu" National College Mihai Eminescu 5, Satu Mare

E-mail address: daly.marciuc@gmail.com