Bienlargements on generalized topological spaces

CARLOS CARPINTERO, NAMEGALESH RAJESH and ENNIS ROSAS

ABSTRACT. The aim of this paper is to introduce and study the concept of bienlargement on generalized topological spaces.

1. INTRODUCTION AND PRELIMINARIES

Let X be a nonempty set and μ be a collection of subsets of X. Then μ is called a generalized topology on X if $\emptyset \in \mu$ and $G_i \in \mu$ for $i \in I \neq \emptyset$ implies $\bigcup_{i \in I} G_i \in \mu$. We call the pair (X, μ) a generalized topological spaces on X. The members of μ are called μ -open sets [2] and the complement of a μ -open set is called a μ -closed set. The generalized-closure of a set A of X, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A and the generalized-interior of A, denoted by $i_{\mu}(A)$, is the union of μ -open sets included in A. A mapping $\kappa : \mu \to P(X)$ is called an enlargement [4] on X if $M \subset \kappa M$ ($= \kappa(M)$) whenever $M \in \mu$. Let μ be a generalized topology on X and $\kappa : \mu \to P(X)$ an enlargement of μ . Let us say that a subset $A \subset X$ is κ_{μ} -open [4] if and only if $x \in A$ implies the existence of a μ -open set M such that $x \in M$ and $\kappa M \subset A$. The collection of all κ_{μ} -open sets is a generalized topology on X and is denoted by κ_{μ} [4]. A subset $A \subset X$ is said to be κ_{μ} -closed if and only if $X \setminus A$ is κ_{μ} -open [4]. The set $c_{\kappa_{\mu}}$ (briefly $c_{\kappa}A$) is defined in [4] as the following: $c_{\kappa}(A) = \{x \in X : \kappa(M) \cap A \neq \emptyset$ for every μ -open set M containing x $\}$.

The aim of this paper is introduce and study the concept of bienlargement on generalized topological spaces.

2. On $(\kappa, \kappa')_{\mu}$ -open sets

In this section, in similar form as in [6], we introduce the concept of $(\kappa, \kappa')_{\mu}$ -open set induced by two enlargements κ , κ' of an generalized topology μ , and study some basic properties of this sets.

Definition 2.1. [1] An enlargement κ on μ is said to be regular if for any μ -open sets U, V containing $x \in X$, there exists a μ -open set W containing x such that $\kappa(U) \cap \kappa(V) \supset \kappa(W)$.

Definition 2.2. [1] An enlargement κ on μ is said to be open if for every μ -open set U containing each $x \in X$, there exists a κ_{μ} -open set B such that $x \in B$ and $\kappa(U) \supset B$.

Lemma 2.1. [4] Let A be a generalized topological space (X, μ) , then we have $A \subset c_{\mu}(A) \subset c_{\kappa}(A) \subset c_{\kappa}(A)$.

In the sequel κ, κ' are enlargements defined from μ to the power set of X and λ, λ' are enlargements defined from ν to the power set of Y.

Received: 28.01.2015. In revised form: 30.09.2015. Accepted: 07.10.2015

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10, 54D10.

Key words and phrases. Generalized topology, bienlargement.

Corresponding author: Carlos Carpintero; carpintero.carlos@gmail.com

Definition 2.3. A subset *A* of a generalized topological space (X, μ) is said to be $(\kappa, \kappa')_{\mu}$ open if for each $x \in A$ there exist μ -open sets *U* and *V* containing *x* such that $\kappa(U) \cup \kappa'(V) \subset A$.

Proposition 2.1. Let A be a subset of a generalized topological space (X, μ) . Then we have the following

- (1) A is $(\kappa, \kappa')_{\mu}$ -open if and only if A is κ_{μ} -open and κ'_{μ} -open.
- (2) If A is $(\kappa, \kappa')_{\mu}$ -open, then A is μ -open.
- (3) If A_i is $(\kappa, \kappa')_{\mu}$ -open for every $i \in \Lambda$, then $\cup \{A_i : i \in \Lambda\}$ is $(\kappa, \kappa')_{\mu}$ -open.
- (4) The following statements are equivalent:
 - (a) A is $(\kappa, \kappa)_{\mu}$ -open.
 - (b) A is κ_{μ} -open.

(c) A is $(\kappa, id)_{\mu}$ -open, where $id : \mu \to P(X)$ is the identity enlargement, that is, id(A) = A for every $A \in \mu$.

Proof. (1) (Necessity) Let $x \in A$. Then there exist μ -open sets U and V containing x such that $\kappa(U) \cup \kappa'(V) \subset A$, and so $\kappa(U) \subset A$ and $\kappa'(V) \subset A$. This implies that A is κ_{μ} -open and κ'_{μ} -open.

(Sufficiency) Let $x \in A$. It follows from assumptions that there exist μ -open sets U and V containing x such that $\kappa(U) \subset A$ and $\kappa'(V) \subset A$ and so $\kappa(U) \cup \kappa'(V) \subset A$. Therefore A is $(\kappa, \kappa')_{\mu}$ -open.

(2) Since $\kappa_{\mu} \subset \mu$ [[4], Proposition 1.2] and A is κ_{μ} -open by (1), A is μ -open.

(3) Let $x \in \bigcup \{A_i : i \in \Lambda\}$. Then there exist μ -open sets W and S containing x such that $\kappa(W) \cup \kappa'(S) \subset A_i$ for some $i \in \Lambda$. Therefore $\kappa(W) \cup \kappa'(S) \subset \bigcup \{A_i : i \in \Lambda\}$ and so $\bigcup \{A_i : i \in \Lambda\}$ is $(\kappa, \kappa')_{\mu}$ -open.

(4) (a) \Leftrightarrow (b) is shown by setting $\kappa' = \kappa$ in (1).

(b) \Leftrightarrow (c) is shown by definitions.

Definition 2.4. $(\kappa, \kappa')_{\mu}$ denotes the set of all $(\kappa, \kappa')_{\mu}$ -open sets of (X, μ) .

According the Definition 2.4, the following relation is shown by Proposition 2.1,

$$(\kappa,\kappa')_{\mu} = \kappa_{\mu} \cap \kappa'_{\mu} \subset \mu \quad (\star)$$

Definition 2.5. A generalized topological space (X, μ) is called (κ, κ') -regular if for each point x of X and every μ -open set U containing x there exist μ -open sets W and S containing x such that $\kappa(W) \cup \kappa'(S) \subset U$.

Lemma 2.2. Let $\kappa : \mu \to P(X)$ be an enlargement on a generalized topological space (X, μ) . Then, (X, μ) is a κ -regular space if and only if $\mu = \kappa_{\mu}$ holds.

Proof. Necessity: It is sufficient to prove that $\kappa_{\mu} \supset \mu$. Let *A* be a μ -open set. For any $x \in A$, there exists a μ -open set *U* containing *x* such that $U \subset A$. By the κ -regularity, there exists a μ -open set *W* containing *x* such that $\kappa(W) \subset U$. Thus, for each $x \in A$, we have $x \in W$ and $\kappa(W) \subset A$. Then *A* is κ_{μ} -open. Therefore, we have $\mu \subset \kappa_{\mu}$.

Sufficiency: For each $x \in X$ and for each μ -open set V containing x since $V \in \mu = \kappa_{\mu}$ there exists a μ -open set W containing x such that $\kappa(W) \subset V$. This implies that (X, μ) is κ -regular.

Proposition 2.2. Let $\kappa : \mu \to P(X)$ and $\kappa' : \mu \to P(X)$ be two enlargements on a generalized topological space (X, μ) . Then,

- (1) (X, μ) is (κ, κ') -regular if and only if $(\kappa, \kappa')_{\mu} = \mu$ holds.
- (2) (X, μ) is (κ, κ') -regular if and only if it is κ -regular and κ' -regular.

- (3) The following statements are equivalent:
 - (a) (X, μ) is (κ, κ) -regular.
 - (b) (X, μ) is κ -regular.
 - (c) (X, μ) is (κ, id) -regular.

Proof. (1)(Necessity) By using (\star) see Definition 2.4, it is sufficient to prove $\mu \subset (\kappa, \kappa')_{\mu}$. Let $A \in \mu$ and $x \in A$. There exist μ -open sets W and S containing x such that $\kappa(W) \cup \kappa'(S) \subset A$. This implies that A is $(\kappa, \kappa')_{\mu}$ -open.

(Sufficiency) Let $x \in X$ and let U be a μ -open set containing x. Since U is $(\kappa, \kappa')_{\mu}$ -open, it is shown that (X, μ) is (κ, κ') -regular.

(2) By using (1) and (*), (X, μ) is (κ, κ') -regular if and only if $\mu = \kappa_{\mu} = \kappa'_{\mu} = (\kappa, \kappa')_{\mu}$ holds. By using Lemma 2.2 the proof is complete.

(3) Since $(\kappa, \kappa')_{\mu} = \kappa_{\mu} = (\kappa, id)_{\mu} \subset \mu$ holds in general, the equivalences are proved by using (1).

Definition 2.6. A subset *F* of a generalized topological space (X, μ) is said to be $(\kappa, \kappa')_{\mu}$ closed if its complement $X \setminus F$ is $(\kappa, \kappa')_{\mu}$ -open. Let $\mathcal{F}_{(\kappa,\kappa')}$ be the set of all $(\kappa, \kappa')_{\mu}$ -closed
sets of (X, μ) , that is, $\mathcal{F}_{(\kappa,\kappa')} = \{F : X \setminus F \in (\kappa, \kappa')_{\mu}\}.$

Definition 2.7. For a subset A of (X, μ) and $(\kappa, \kappa')_{\mu'} c_{(\kappa, \kappa')_{\mu}}(A)$ denotes the intersection of all $(\kappa, \kappa')_{\mu}$ -closed sets containing A, that is $c_{(\kappa, \kappa')_{\mu}}(A) = \cap \{F : A \subset F \text{ for all } F \in \mathcal{F}_{(\kappa, \kappa')}\}$.

Proposition 2.3. Let $\kappa : \mu \to P(X)$ and $\kappa' : \mu \to P(X)$ be two enlargements and A a subset of X.

- For a point x of X, x ∈ c_{(κ,κ')µ}(A) if and only if V ∩ A ≠ Ø for every (κ, κ')µ-open set V containing x.
- (2) $A \subset c_{(\kappa,\kappa')_{\mu}}(A)$.
- (3) $A \in \mathcal{F}_{(\kappa,\kappa')}$ if and only if $c_{(\kappa,\kappa')_{\mu}}(A) = A$.
- (4) The set $c_{(\kappa,\kappa')\mu}(A)$ is a $(\kappa,\kappa')\mu$ -closed set of (X,μ)
- (5) if $A \subset B$, then $c_{(\kappa,\kappa')_{\mu}}(A) \subset c_{(\kappa,\kappa')_{\mu}}(B)$.

Proof. (1). Denote $E = \{y \in X : V \cap A \neq \emptyset$ for every $V \in (\kappa, \kappa')_{\mu}$ such that $y \in V\}$. We shall prove that $c_{(\kappa,\kappa')_{\mu}}(A) = E$. Let $x \notin E$. Then there exists a $(\kappa,\kappa')_{\mu}$ -open set V containing x such that $V \cap A = \emptyset$. This implies that $X \setminus V$ is $(\kappa, \kappa')_{\mu}$ -closed and $A \subset X \setminus V$. Hence $c_{(\kappa,\kappa')_{\mu}}(A) \subset X \setminus V$. It follows that $x \notin c_{(\kappa,\kappa')_{\mu}}(A)$. Thus we have that $c_{(\kappa,\kappa')_{\mu}}(A) \subset E$. Conversely, let $x \notin c_{(\kappa,\kappa')_{\mu}}(A)$. Then there exists a $(\kappa, \kappa')_{\mu}$ -closed set F such that $A \subset F$ and $x \notin F$. Then we have that $x \in X \setminus F$, $X \setminus F \in (\kappa, \kappa')_{\mu}$ and $(X \setminus F) \cap A = \emptyset$. This implies that $x \notin E$. Hence $E \subset c_{(\kappa,\kappa')_{\mu}}(A)$. Therefore $c_{(\kappa,\kappa')_{\mu}}(A) = E$. (2). Follows from Definition 2.7.

(2). Follows from Definition 2.7.(3) Necessity: It is straightforward by

(3). Necessity: It is straightforward by definitions. Sufficiency: It suffices to prove that $X \setminus A$ is $(\kappa, \kappa')_{\mu}$ -open. Let $x \in X \setminus A$. It follows from the assumption that $x \notin c_{(\kappa,\kappa')_{\mu}}(A)$ and so there exists a $(\kappa, \kappa')_{\mu}$ -closed set F containing A such that $x \notin F$. This implies that there exists a $(\kappa, \kappa')_{\mu}$ -open set $X \setminus F$ containing x such that $X \setminus A \supset X \setminus F$. Hence $X \setminus A$ is $(\kappa, \kappa')_{\mu}$ -open by Proposition 2.1(3).

(4). Let $x \in c_{(\kappa,\kappa')\mu}(c_{(\kappa,\kappa')\mu}(A))$ and V be any $(\kappa,\kappa')\mu$ -open set containing x. By (1), $V \cap c_{(\kappa,\kappa')\mu}(A) \neq \emptyset$ and hence $V \cap A \neq \emptyset$. This shows that $x \in c_{(\kappa,\kappa')\mu}(A)$. Therefore, by using (1) and (2) we obtain $c_{(\kappa,\kappa')\mu}(c_{(\kappa,\kappa')\mu}(A)) = c_{(\kappa,\kappa')\mu}(A)$ and hence by (3) the proof completes. (5). Follows from Definition 2.7.

Definition 2.8. For a subset *A* of (X, μ) ,

 $c_{(\kappa,\kappa')}(A) = \{x \in X : (\kappa(U) \cup W^{\kappa'}) \cap A \neq \emptyset, \text{ for every } \mu \text{ -open sets } U, W \text{ such that } x \in U \cap W\}.$

Theorem 2.1. Let A be a subset of (X, μ) . Then $c_{(\kappa,\kappa')\mu}(A) = c_{\kappa}(A) \cup c_{\kappa'}(A)$ holds, where $c_{\kappa}(A)$ and $c_{\kappa'}(A)$ are κ -closure and κ' -closure of A, respectively.

Proof. By Definition 2.8, it is shown that the following statements (1)-(5) are equivalent:

- (1) $x \notin c_{(\kappa,\kappa')}(A)$.
- (2) There exist μ -open sets U and W containing x such that $(\kappa(U) \cup \kappa'(W)) \cap A = \emptyset$.
- (3) There exist μ -open sets U and W containing x such that $\kappa(U) \cap A = \emptyset$ and $\kappa'(W) \cap A = \emptyset$.
- (4) $x \notin c_{\kappa}(A)$ and $x \notin c_{\kappa'}(A)$.
- (5) $x \notin c_{\kappa}(A) \cup c_{\kappa'}(A)$.

Theorem 2.2. Let $\kappa : \mu \to P(X)$ and $\kappa' : \mu \to P(X)$ be two enlargements and A a subset of X. *Then we have the following:*

- (1) A is $(\kappa, \kappa')_{\mu}$ -closed if and only if $c_{(\kappa, \kappa')}(A) = A$.
- (2) $c_{(\kappa,\kappa')\mu}(A) = A$ if and only if $c_{(\kappa,\kappa')}(A) = A$.
- (3) *A* is $(\kappa, \kappa')_{\mu}$ -open if and only if $c_{(\kappa,\kappa')}(X \setminus A) = X \setminus A$.

Proof. (1) Necessity: It suffices to prove that $c_{(\kappa,\kappa')}(A) \subset A$. Let $x \notin A$. Then, its complement $X \setminus A$ is a $(\kappa, \kappa')_{\mu}$ -open set containing x. There exist μ -open sets U and W containing x such that $\kappa(U) \cup \kappa'(W) \subset X \setminus A$ and so $(\kappa(U) \cup \kappa'(W)) \cap A = \emptyset$. This shows that $x \notin \operatorname{Cl}_{(\kappa,\kappa')}(A)$.

Sufficiency: Let $x \in X \setminus A$. Since $x \notin c_{(\kappa,\kappa')}(A)$, there exist μ -open sets U and W containing x such that $(\kappa(U) \cup \kappa'(W)) \cap A = \emptyset$ and so $\kappa(U) \cup \kappa'(W) \subset X \setminus A$. This shows that $X \setminus A$ is $(\kappa, \kappa')_{\mu}$ -open; hence A is $(\kappa, \kappa')_{\mu}$ -closed.

(2) It is proved by (1) and Proposition 2.3 (3).

(3) The proof is obvious from (1) and Definition 2.6.

Proposition 2.4. For a subset A of a generalized topological space (X, μ) , the following properties hold:

- (1) $A \subset c_{\mu}(A) \subset c_{(\kappa,\kappa')}(A) \subset c_{(\kappa,\kappa')_{\mu}}(A).$
- (2) If (X, μ) is (κ, κ') -regular, then $c_{\mu}(A) = c_{(\kappa, \kappa')}(A) = c_{(\kappa, \kappa')_{\mu}}(A)$.
- (3) $c_{(\kappa,\kappa')}(A)$ is a μ -closed subset of (X,μ) .
- (4) $c_{(\kappa,\kappa')\mu}(c_{(\kappa,\kappa')}(A)) = c_{(\kappa,\kappa')\mu}(A) = c_{(\kappa,\kappa')\mu}(A).$

Proof. (1) By Theorem 2.1 and Lemma 2.1, it is shown that $c_{(\kappa,\kappa')}(A) = c_{\kappa}(A) \cup c_{\kappa'}(A) \supset c_{\mu}(A)$. It follows from Definition 2.7, that $c_{(\kappa,\kappa')\mu}(A) \supset c_{\kappa\mu}(A) \supset c_{\kappa}(A)$ and $c_{(\kappa,\kappa')\mu}(A) \supset c_{\kappa'}(A)$ similarly. This shows that $c_{(\kappa,\kappa')}(A) \subset c_{(\kappa,\kappa')\mu}(A)$ by Theorem 2.1.

(2) By Proposition 2.2 $\mu = (\kappa, \kappa')_{\mu}$ and hence $c_{(\kappa,\kappa')\mu}(A) = c_{\mu}(A)$. By using (1) it is shown that $c_{\mu}(A) = c_{(\kappa,\kappa')}(A) = c_{(\kappa,\kappa')\mu}(A)$.

(3) It follows from Theorem 2.1 and Proposition 1.3 of [4] that $c_{\mu}(c_{(\kappa,\kappa')}(A)) = c_{\mu}(c_{\kappa}(A)) \cup c_{\mu}(c_{\kappa'}(A)) = c_{(\kappa,\kappa')\mu}(A).$

(4) By Proposition 2.3 (4) and Theorem 2.2 (2), we have that $c_{(\kappa,\kappa')\mu}(A) = c_{(\kappa,\kappa')\mu}(c_{(\kappa,\kappa')\mu}(A))$. It follows from (1) and Proposition 2.3 (5) that $c_{(\kappa,\kappa')}(A) \subset c_{(\kappa,\kappa')\mu}(A) \subset c_{(\kappa,\kappa')\mu}(c_{(\kappa,\kappa')}(A))$. By using these inclusions and Proposition 2.3 (5), (3) we obtain $c_{(\kappa,\kappa')\mu}(c_{(\kappa,\kappa')}(A)) \subset c_{(\kappa,\kappa')\mu}(A) \subset c_{(\kappa,\kappa')\mu}(c_{(\kappa,\kappa')}(A))$ and hence $c_{(\kappa,\kappa')\mu}(A) = c_{(\kappa,\kappa')\mu}(c_{(\kappa,\kappa')}(A))$.

3. On $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous functions

In this section, we introduce a new type of continuity considering two enlargements of a generalized topology in both the domain and range of a function. As in [5] and [7], we give several characterizations for this new type of continuity.

Definition 3.9. A function $f : (X, \mu) \to (Y, \nu)$ is said to be $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous if for each point x of X and each pair of μ -open sets U and V containing x, there exist ν -open sets W and S containing f(x) such that $f(\kappa(U) \cup \kappa'(V)) \subset \lambda(W) \cup \lambda'(S)$.

Theorem 3.3. Let $f: (X, \mu) \to (Y, \nu)$ be a $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous function. Then

- (1) $f(c_{(\kappa,\kappa')}(A)) \subset c_{(\lambda,\lambda')}(f(A))$ holds for every subset A of X.
- (2) For any (λ, λ') -closed set B of (Y, ν) , $f^{-1}(B)$ is (κ, κ') -closed in (X, τ) .

Proof. (1) Let $y \in f(c_{(\kappa,\kappa')}(A))$ and let W and S be any ν -open sets containing y. Then there exist μ -open sets U and V containing x such that f(x) = y and $f(\kappa(U) \cup \kappa'(V)) \subset$ $\lambda(W) \cup \lambda'(S)$. Since $x \in c_{(\kappa,\kappa')}(A)$, we have $(\kappa(U) \cup \kappa'(V)) \cap A \neq \emptyset$. Hence $\emptyset \neq$ $f((\kappa(U) \cup \kappa'(V)) \cap A) \subset f(\kappa(U) \cup \kappa'(V)) \cap f(A) \subset (\lambda(W) \cup \lambda'(S)) \cap f(A)$. This implies that $y \in c_{(\lambda,\lambda')}(f(A))$. Therefore $f(c_{(\kappa,\kappa')}(A)) \subset c_{(\lambda,\lambda')}f((A))$.

(2) Let *B* be a (λ, λ') -closed subset of (Y, ν) . Then $c_{(\lambda,\lambda')}(B) = B$. By using (1) we have $f(c_{(\kappa,\kappa')}(f^{-1}(B))) \subset c_{(\lambda,\lambda')}(f(f^{-1}(B))) \subset c_{(\lambda,\lambda')}(B) = B$. Therefore, we have $c_{(\kappa,\kappa')}(f^{-1}(B)) \subset f^{-1}(B)$. Hence $f^{-1}(B) = c_{(\kappa,\kappa')}(f^{-1}(B))$ implies that $f^{-1}(B)$ is (κ,κ') -closed in (X, τ) .

Theorem 3.4. If a function $f : (X, \mu) \to (Y, \nu)$ is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous on X, then for every (λ, λ') -open subset V in Y, $f^{-1}(V)$ is (κ, κ') -open in X.

Proof. Suppose that f is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous on X. Let V be any (λ, λ') -open subset of Y. We show that $f^{-1}(V)$ is (κ, κ') -open in X. Let $x \in f^{-1}(V)$. Then $f(x) \in V$, which is (λ, λ') -open in Y. Since V is (λ, λ') -open, there exist ν -open sets W and S containing f(x) such that $\lambda(W) \cup \lambda'(S) \subset V$. Now by the $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuity of f, there exist μ -open sets U and T containing x such that $f(\kappa(U) \cup \kappa'(T)) \subset \lambda(W) \cup \lambda'(S)$. Thus $f(\kappa(U) \cup \kappa'(T)) \subset V$ implies $\kappa(U) \cup \kappa'(T) \subset f^{-1}(V)$. This implies that $f^{-1}(V)$ is (κ, κ') -open in X.

Theorem 3.5. A function $f : (X, \mu) \to (Y, \nu)$ is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous on X if for every (λ, λ') -open subset V in Y, $f^{-1}(V)$ is (κ, κ') -open in X, where λ and λ' are open enlargements.

Proof. For any $x \in X$, let V and W be ν -open sets containing f(x). Since λ and λ' are open, there exists a λ -open set B_1 and a λ' -open set B_2 such that

(1) $f(x) \in B_1 \subset \lambda(V)$ and

(2) $f(x) \in B_2 \subset \lambda'(W)$.

Since B_1 and B_2 are λ -open and λ' -open respectively, $f^{-1}(B_1)$ and $f^{-1}(B_2)$ are κ -open and κ' -open in X and $x \in f^{-1}(B_1)$ and $x \in f^{-1}(B_2)$. This gives that there exist μ -open sets U and S containing x such that $\kappa(U) \subset f^{-1}(B_1)$ and $\kappa'(S) \subset f^{-1}(B_2)$. By (1) and (2) we have $\kappa(U) \subset f^{-1}(\lambda(V))$ and $\kappa'(S) \subset f^{-1}(\kappa'(W))$. This implies that $\kappa(U) \cup \kappa'(S) \subset$ $f^{-1}(\lambda(V)) \cup f^{-1}(\lambda'(W)) \subset f^{-1}(\lambda(V) \cup \lambda'(W))$ gives $f(\kappa(U) \cup \kappa'(S)) \subset f(f^{-1}(\lambda(V) \cup \lambda'(W))) \subset (\lambda(V) \cup \lambda'(W))$. This shows that f is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous.

Theorem 3.6. Let $f : (X, \mu) \to (Y, \nu)$ be a function and λ , λ' be open enlargements. Then f is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous if and only if for every (λ, λ') -open subset V in Y, $f^{-1}(V)$ is (κ, κ') -open in X.

Proof. The proof follows from Theorems 3.4 and 3.5.

Theorem 3.7. If for every (λ, λ') -closed subset C in Y, $f^{-1}(C)$ is (κ, κ') -closed in X, then the function $f : (X, \mu) \to (Y, \nu)$ is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous on X, where λ and λ' are open enlargements.

Proof. Suppose that for any (λ, λ') -closed set C in Y, $f^{-1}(C)$ is (κ, κ') -closed in X. Let V be any (λ, λ') -open subset of Y. Then $Y \setminus V$ is (λ, λ') -closed and $f^{-1}(Y \setminus V) = f^{-1}(Y) \setminus f^{-1}(V) = X \setminus f^{-1}(V)$ gives $X \setminus f^{-1}(V)$ is (κ, κ') -closed in X. That is, $f^{-1}(V)$ is (κ, κ') -open in X. Thus by Theorem 3.6, f is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous.

Theorem 3.8. Let $f : (X, \mu) \to (Y, \nu)$ be a function and λ , λ' be open enlargements. Then f is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous if and only if for every (λ, λ') -closed subset C in Y, $f^{-1}(C)$ is (κ, κ') -closed in X.

Proof. The proof follows from Theorem 3.7 and Theorem 1.2 of [3].

Theorem 3.9. If $f(c_{(\kappa,\kappa')}(A)) \subset c_{(\lambda,\lambda')}(f(A))$ holds for every subset A of X. Then $f: (X, \mu) \to (Y, \nu)$ is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous, where λ, λ' be open enlargements.

Proof. Suppose that for any subset A of X, $f(c_{(\kappa,\kappa')}(A)) \subset c_{(\lambda,\lambda')}(f(A))$. We apply Theorem 3.7 to prove that f is $((\kappa,\kappa'), (\lambda,\lambda'))$ -continuous. Let C be (λ,λ') -closed subset of Y and $A = f^{-1}(C)$. We show that A is (κ,κ') -closed in X by proving that $c_{(\kappa,\kappa')}(A) = A$. By assumption, $f(c_{(\kappa,\kappa')}(A)) = f(c_{(\kappa,\kappa')}(f^{-1}(C))) \subset c_{(\lambda,\lambda')}(f(f^{-1}(C))) \subset c_{(\lambda,\lambda')}(C) = C$, because C is (λ,λ') -closed. So that $c_{(\kappa,\kappa')}(A) \subset f^{-1}(f(c_{(\kappa,\kappa')}(A))) \subset f^{-1}(C) = A \subset c_{(\kappa,\kappa')}(A)$. Hence $f^{-1}(C) = A = c_{(\kappa,\kappa')}(A)$ and hence A is (κ,κ') -closed in X. Thus f is $((\kappa,\kappa'), (\lambda,\lambda'))$ -continuous.

Theorem 3.10. Let $f : (X, \mu) \to (Y, \nu)$ be a function and λ , λ' be μ -open enlargements. Then f is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous if and only if $f(c_{(\kappa, \kappa')}(A)) \subset c_{(\lambda, \lambda')}(f(A))$ holds for every subset A of X.

Proof. The proof follows from Theorem 3.9 and Theorem 1.2 of [2].

For a subset *A* of a generalized topological space (X, μ) , we denote:

- (1) $i_{(\kappa,\kappa')}(A) = \{x \in A : \text{there exist } U, V \in \mu \text{ containing } x \text{ such that } \kappa(U) \cup \kappa'(V) \subset A\}.$
- (2) $b_{(\kappa,\kappa')}(A) = \{x \in X : x \notin i_{(\kappa,\kappa')}(A) \text{ or } x \notin i_{(\kappa,\kappa')}(X \setminus A)\}.$
- (3) $e_{(\kappa,\kappa')}(A) = i_{(\kappa,\kappa')}(X \setminus A).$

Theorem 3.11. For a function $f : (X, \mu) \to (Y, \nu)$, the following properties are equivalent:

- (1) f is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous.
- (2) $f^{-1}(i_{(\lambda,\lambda')}(B)) \subset i_{(\kappa,\kappa')}(f^{-1}(B))$ for any subset B of Y.
- (3) $c_{(\kappa,\kappa')}(f^{-1}(B)) \subset f^{-1}(c_{(\lambda,\lambda')}(B))$ for any subset B of Y.
- (4) $b_{(\kappa,\kappa')}f^{-1}(B) \subset f^{-1}(b_{(\lambda,\lambda')}(B))$ for any subset B of Y.

Proof. (1) \Rightarrow (2): Let *B* be any subset of *Y*. Suppose that *f* is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous and $x \in f^{-1}(i_{(\lambda,\lambda')}(B))$. Then $f(x) \in i_{(\lambda,\lambda')}(B)$. Therefore, there exist ν -open sets *U* and *V* containing f(x) such that $\lambda(U) \cup \lambda'(V) \subset B$. Since *f* is $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous, there exist μ -open sets *W* and *T* containing *x* such that $f(\kappa(W) \cup \kappa'(T)) \subset \lambda(U) \cup \lambda'(V)$. Then $f(\kappa(W) \cup \kappa'(T)) \subset B$. This gives $\kappa(W) \cup \kappa'(T) \subset f^{-1}(B)$ which implies $x \in i_{(\kappa,\kappa')}(f^{-1}(B))$.

(2) \Rightarrow (1): For each $x \in X$, let V and W be ν -open sets containing f(x). Since λ and λ' are open enlargements, there exists a λ -open set S_1 and a λ' -open set S_2 such that

 \square

 $f(x) \in S_1 \subset \lambda(V)$ and $f(x) \in S_2 \subset \lambda'(V)$. This implies $f(x) \in S_1 \cup S_2 \subset \lambda(V) \cup \lambda'(W)$. Since S_1 is λ -open and S_2 is λ' -open, $S_1 \cup S_2$ is (λ, λ') -open. Therefore $i_{(\lambda,\lambda')}(S_1 \cup S_2)$. Put $S_3 = S_1 \cup S_2$. Then $i_{(\lambda,\lambda')}(S_3) = S_3$. Now $f^{-1}(S_3) = f^{-1}(i_{(\lambda,\lambda')}(S_3)) \subset i_{(\kappa,\kappa')}(f^{-1}(S_3))$ or $f^{-1}(S_3) \subset i_{(\kappa,\kappa')}(f^{-1}(S_3))$. This proves that $f^{-1}(S_3)$ is (κ, κ') -open. In consequence, there exist μ -open sets U and T containing x such that $\kappa(U) \cup T^{\kappa'} \subset f^{-1}(S_3)$. This gives $f(\kappa(U) \cup \kappa'(T)) \subset f(f^{-1}(S_3)) \subset S_3 = S_1 \cup S_2 \subset \lambda(V) \cup \lambda'(W)$. Consequently, we have $f(\kappa(U) \cup \kappa'(T)) \subset \lambda(V) \cup \lambda'(W)$.

(2) \Rightarrow (3). Let *B* be any subset of *Y*. Then we have $c_{(\kappa,\kappa')}(f^{-1}(B)) = c_{(\kappa,\kappa')}(X \setminus (X \setminus f^{-1}(B)))$ = $X \setminus i_{(\kappa,\kappa')}(X \setminus f^{-1}(B)) = X \setminus i_{(\kappa,\kappa')}(f^{-1}(Y) \setminus f^{-1}(B)) = X \setminus i_{(\kappa,\kappa')}(f^{-1}(Y \setminus B)) \subset X \setminus f^{-1}(i_{(\lambda,\lambda')}(Y \setminus B)) = f^{-1}(Y \setminus i_{(\lambda,\lambda')}(Y \setminus B)) = f^{-1}(c_{(\lambda,\lambda')}(B))$. Consequently, we have $c_{(\kappa,\kappa')}(f^{-1}(B)) = f^{-1}(c_{(\lambda,\lambda')}(B))$.

 $\begin{aligned} (3) &\Rightarrow (4). \text{ Let } B \text{ be any subset of } Y. \text{ Then } b_{(\kappa,\kappa')}(f^{-1}(B)) = c_{(\kappa,\kappa')}(f^{-1}(B)) \cap c_{(\kappa,\kappa')}(X \setminus f^{-1}(B)) \\ &= c_{(\kappa,\kappa')}(f^{-1}(B)) \cap c_{(\kappa,\kappa')}f^{-1}(Y \setminus B) \subset f^{-1}(c_{(\lambda,\lambda')}(B)) \cap f^{-1}(c_{(\lambda,\lambda')}(Y \setminus B)) = f^{-1}((c_{(\lambda,\lambda')}(B))) \\ &\cap c_{(\lambda,\lambda')}(Y \setminus B)) = f^{-1}(b_{\lambda,\lambda'}(B)). \text{ Consequently, we have } bd_{(\kappa,\kappa')}(f^{-1}(B)) \subset f^{-1}(b_{(\kappa,\kappa')}(B). \\ (4) \Rightarrow (2). \text{ Let } B \text{ be any subset of } Y. \text{ Then } f^{-1}(i_{(\lambda,\lambda')}(B)) = f^{-1}(B \setminus b_{(\lambda,\lambda')}(B)) = f^{-1}(B) \setminus f^{-1}(B) \\ &(b_{(\lambda,\lambda')}(B)) \subset f^{-1}(B) \setminus b_{(\kappa,\kappa')}(f^{-1}(B)) = i_{(\kappa,\kappa')}(f^{-1}(B)). \text{ Thus } f^{-1}(i_{(\lambda,\lambda')}(B)) \subset i_{(\kappa,\kappa')}(f^{-1}(B)). \end{aligned}$

Theorem 3.12. Let $f : (X, \mu) \to (Y, \nu)$ be a $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuous function and A be any subset of X. Then

(1) i_(λ,λ')(f(A)) ⊂ f(i_(κ,κ')(A)) if f is injective.
 (2) f(b_(κ,κ')(A)) ⊂ b_(λ,λ')(f(A)).
 (3) e_(λ,λ')(f(A)) ⊂ f(e_(κ,κ')(A)) if f is bijective.

Proof. (1). Let $y \in i_{(\lambda,\lambda')}(f(A))$. Then there exist ν -open sets U and V containing $y \in Y$ such that $\lambda(U) \cup \lambda'(V) \subset f(A)$ and y = f(x). By $((\kappa, \kappa'), (\lambda, \lambda'))$ -continuity of f, there exist μ -open sets W and T containing x such that $f(\kappa(W) \cup \kappa'(T)) \subset \lambda(U) \cup \lambda'(V)$. Thus $f(\kappa(W) \cup \kappa'(T)) \subset f(A)$. Since f is injective, $\kappa(W) \cup \kappa'(T) \subset A$. This gives that $x \in i_{(\kappa,\kappa')}(A)$. So $f(x) \in f(i_{(\kappa,\kappa')}(A))$. Thus $i_{(\lambda,\lambda')}(f(A)) \subset f(i_{(\kappa,\kappa')}(B))$.

(2). By Theorem 3.3, we have $f(b_{(\kappa,\kappa')}(A)) = f(c_{(\kappa,\kappa')}(A) \cap c_{(\kappa,\kappa')}(X \setminus A)) \subset f(c_{(\kappa,\kappa')}(A)) \cap f(c_{(\kappa,\kappa')}(X \setminus A)) \subset c_{(\lambda,\lambda')}(f(A)) \cap c_{(\lambda,\lambda')}(f(X \setminus A)) = b_{(\lambda,\lambda')}(f(A)).$ Thus $f(b_{(\kappa,\kappa')}(B)) \subset b_{(\lambda,\lambda')}(f(A)).$

(3) By (1), we have $e_{(\lambda,\lambda')}(f(A)) = i_{(\lambda,\lambda')}(Y \setminus f(A)) = i_{(\lambda,\lambda')}(f(X) \setminus f(A)) \subset i_{(\lambda,\lambda')}(f(X \setminus A)) \subset f(i_{(\kappa,\kappa')}(X \setminus A)) = f(e_{(\kappa,\kappa')}(A)).$

REFERENCES

- Carpintero, C., Rajesh, N. and Rosas, E., Separation axioms on enlargements of generalized toplogies, Revista Integración, 32 (2014), No. 1, 19–26
- [2] Császár, Á., Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357
- [3] Császár, Á., Generalized open sets in generalized topology, Acta Math. Hungar., 106 (2005), 53-66
- [4] Császár, Á., Enlargements and generalized topologies, Acta Math. Hungar., 120 (2008), 351-354
- Kanibir, A and Sagiroglu, S., A note on enlargements and generalized neighbourhood systems, Acta Math. Hungar., 136 (2012), 270–274
- Kim, Y. K and Min, W. K., Further remarks on enlargements of generalised topologies, Acta Math. Hungar., 135 (2012), 184–191
- [7] Kim, Y. K and Min, W. K., Remarks on enlargements of generalised topologies, Acta Math. Hungar., 130 (2011), 390–395

UNIVERSIDAD DE ORIENTE DEPARTAMENTO DE MATEMÁTICAS CUMANÁ, VENEZUELA *E-mail address*: carpintero.carlos@gmail.com

DEPARTMENT OF MATHEMATICS RAJAH SERFOJI GOVT. COLLEGE THANJAVUR-613005 TAMILNADU, INDIA *E-mail address*: nrajesh.topology@yahoo.co.in

UNIVERSIDAD DE ORIENTE DEPARTAMENTO DE MATEMÁTICAS CUMANÁ, VENEZUELA *E-mail address*: ennisrafael@gmail.com