On the equal variables method applied to real variables

Vasile Cîrtoaje

Abstract

As it is known, the equal variables method can be used to create and solve difficult symmetric inequalities in nonnegative variables involving the expressions $x_{1}+x_{2}+\cdots+x_{n}, x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}$ and $f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)$, where k is a real constant, and f is a differentiable function on $(0, \infty)$ such that $g(x)=f^{\prime}\left(x^{\frac{1}{k-1}}\right)$ is strictly convex. In this paper, we extend the equal variables method to real variables.

1. Introduction

The Equal Variables Theorem (EV-Theorem) for nonnegative real variables has the following statement (see [2], [3]).

Theorem 1.1. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed nonnegative real numbers, and let

$$
0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}
$$

such that

$$
x_{1}+x_{2}+\cdots+x_{n}=a_{1}+a_{2}+\cdots+a_{n}
$$

and

$$
x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}=a_{1}^{k}+a_{2}^{k}+\cdots+a_{n}^{k},
$$

where k is a real number; for $k=0$, assume that

$$
x_{1} x_{2} \cdots x_{n}=a_{1} a_{2} \cdots a_{n}>0 .
$$

Let $f: \mathbb{I} \rightarrow \mathbb{R}$, where $\mathbb{I}=[0, \infty)$ when f is continuous at $x=0$, and $\mathbb{I}=(0, \infty)$ when $f\left(0_{+}\right)=$ $\pm \infty$. In addition, f is differentiable on $(0, \infty)$ and the associated function $g:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
g(x)=f^{\prime}\left(x^{\frac{1}{k-1}}\right)
$$

is strictly convex on $(0, \infty)$. Let

$$
S_{n}=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right) .
$$

(1) If $k \leq 0$, then S_{n} is maximum for

$$
x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n},
$$

and is minimum for

$$
x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}
$$

(2) If $k>0$ and either f is continuous at $x=0$ or $f\left(0_{+}\right)=-\infty$, then S_{n} is maximum for

$$
x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}
$$

(3) If $k>0$ and either f is continuous at $x=0$ or $f\left(0_{+}\right)=\infty$, then S_{n} is minimum for

$$
x_{1}=\cdots=x_{j-1}=0, \quad x_{j+1}=\cdots=x_{n}, \quad j \in\{1,2, \ldots, n\}
$$

Received: 14.03.2015. In revised form: 29.09.2015. Accepted: 06.10.2015
2010 Mathematics Subject Classification. 26D07, 26D10, 41A44.
Key words and phrases. Equal variables method, inequalities, real variables, convex function, convex derivative.

From EV-Theorem, we can obtain some interesting particular results, which are useful in many applications.
Corollary 1.1. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed nonnegative real numbers, and let

$$
0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}
$$

such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}
\end{aligned}
$$

Let $f: \mathbb{I} \rightarrow \mathbb{R}$, where $\mathbb{I}=[0, \infty)$ when f is continuous at $x=0$, and $\mathbb{I}=(0, \infty)$ when $f\left(0_{+}\right)= \pm \infty$. In addition, f is differentiable on $(0, \infty)$ and the derivative f^{\prime} is strictly convex on $(0, \infty)$. Let

$$
S_{n}=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right) .
$$

If either f is continuous at $x=0$ or $f\left(0_{+}\right)=-\infty$, then S_{n} is maximum for

$$
x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n} .
$$

If either f is continuous at $x=0$ or $f\left(0_{+}\right)=\infty$, then S_{n} is minimum for

$$
x_{1}=\cdots=x_{j-1}=0, \quad x_{j+1}=\cdots=x_{n}, \quad j \in\{1,2, \ldots, n\} .
$$

Corollary 1.2. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed positive real numbers, and let

$$
0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}
$$

such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
x_{1} x_{2} \cdots x_{n} & =a_{1} a_{2} \cdots a_{n}
\end{aligned}
$$

Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that $g:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
g(x)=f^{\prime}(1 / x)
$$

is strictly convex on $(0, \infty)$. Then, the sum $S_{n}=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)$ is maximum for

$$
x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n},
$$

and is minimum for

$$
x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}
$$

Corollary 1.3. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed positive real numbers, and let

$$
0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}
$$

such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} & =\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}
\end{aligned}
$$

Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that $g:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
g(x)=f^{\prime}(1 / \sqrt{x})
$$

is strictly convex on $(0, \infty)$; in addition, assume that either f is continuous at $x=0$ or $f\left(0_{+}\right)=$ $\pm \infty$. Then, the sum $S_{n}=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)$ is maximum for

$$
x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}
$$

and is minimum for

$$
x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}
$$

Notice that this paper deals with constrained optimization for real variables in a framework initiated by author in [2] for positive variables. A closely related framework of constrained optimization for positive variables can be found in [1], where Grahame Bennett gave the following result.

Theorem 1.2. Suppose that a, b, c, d and w, x, y, z are positive numbers. Then the inequality

$$
a^{p}+b^{p}+c^{p}+d^{p} \leq w^{p}+x^{p}+y^{p}+z^{p}
$$

is valid whenever $|p| \geq 1$, and it reverses direction whenever $|p| \leq 1$, if and only if the following five conditions are satisfied:

$$
\begin{aligned}
& a+b+c+d=w+x+y+z, \\
& \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=\frac{1}{w}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \\
& a b c d=w x y z, \\
& \max \{a, b, c, d\} \leq \max \{w, x, y, z\}, \quad \min \{a, b, c, d\} \geq \min \{w, x, y, z\} .
\end{aligned}
$$

In the following section, we will extend the EV-Theorem (Theorem 1.1) to the case where $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers.

2. MAIN RESULTS

The main results of this paper are given by Theorem 2.3, Proposition 2.1 and Proposition 2.2.

Theorem 2.3. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed real numbers, let $x_{1}, x_{2}, \ldots, x_{n}$ be real variables such that

$$
\begin{aligned}
x_{1} \leq x_{2} & \leq \cdots \leq x_{n}, \\
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n}, \\
x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k} & =a_{1}^{k}+a_{2}^{k}+\cdots+a_{n}^{k},
\end{aligned}
$$

where k is an even positive integer, and let f be a differentiable function on \mathbb{R} such that the associated function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
g(x)=f^{\prime}(\sqrt[k-1]{x})
$$

is strictly convex on \mathbb{R}. Then, the sum

$$
S_{n}=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)
$$

is minimum for $x_{2}=x_{3}=\cdots=x_{n}$, and is maximum for $x_{1}=x_{2}=\cdots=x_{n-1}$.
Taking $k=2$ in Theorem 2.3, we obtain the following corollary.
Corollary 2.4. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed real numbers, and let $x_{1}, x_{2}, \ldots, x_{n}$ be real variables such that

$$
\begin{aligned}
x_{1} \leq x_{2} & \leq \cdots \leq x_{n}, \\
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n}, \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} .
\end{aligned}
$$

If f is a differentiable function on \mathbb{R} such that the derivative f^{\prime} is strictly convex on \mathbb{R}, then the sum

$$
S_{n}=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)
$$

is minimum for $x_{2}=x_{3}=\cdots=x_{n}$, and is maximum for $x_{1}=x_{2}=\cdots=x_{n-1}$.

For $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(t)=t^{m},
$$

where m is a positive odd number such that $m>k$, the associated function

$$
g(x)=m \sqrt[k-1]{x^{m-1}}
$$

is strictly convex on \mathbb{R} because its derivative

$$
g^{\prime}(x)=\frac{m(m-1)}{k-1} \sqrt[k-1]{x^{m-k}}
$$

is strictly increasing on \mathbb{R}. Thus, the following corollary holds.
Corollary 2.5. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed real numbers, and let $x_{1}, x_{2}, \ldots, x_{n}$ be real variables such that

$$
\begin{gathered}
x_{1} \leq x_{2} \leq \cdots \leq x_{n} \\
x_{1}+x_{2}+\cdots+x_{n}=a_{1}+a_{2}+\cdots+a_{n} \\
x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}=a_{1}^{k}+a_{2}^{k}+\cdots+a_{n}^{k}
\end{gathered}
$$

where k is an even positive integer. For any positive odd number $m, m>k$, the power sum

$$
S_{n}=x_{1}^{m}+x_{2}^{m}+\cdots+x_{n}^{m}
$$

is minimum for $x_{2}=x_{3}=\cdots=x_{n}$, and is maximum for $x_{1}=x_{2}=\cdots=x_{n-1}$.
In order to show the effectiveness of Theorem 2.3 and its corollaries, we will prove the inequality

$$
\begin{equation*}
\frac{\left(x_{1}^{m}+x_{2}^{m}+\cdots+x_{n}^{m}\right)^{2}}{\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{m}} \leq \frac{\left[(n-1)^{m-1}-1\right]^{2}}{n^{m}(n-1)^{m-2}}, \tag{2.1}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots, x_{n}(n \geq 3)$ are real numbers such that

$$
x_{1}+x_{2}+\cdots+x_{n}=0
$$

and $m \geq 3$ is an odd number. Due to homogeneity, we may set

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=n(n-1),
$$

when the inequality becomes

$$
\left|x_{1}^{m}+x_{2}^{m}+\cdots+x_{n}^{m}\right| \leq(n-1)^{m}-n+1 .
$$

Assume that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. According to Corollary 2.5, it suffices to consider the case when $n-1$ of $x_{1}, x_{2}, \ldots, x_{n}$ are equal; that is, either $x_{1}=-n+1$ and $x_{2}=\cdots=x_{n}=1$, or $x_{1}=\cdots=x_{n-1}=-1$ and $x_{n}=n-1$. For each of these two cases, the desired inequality becomes an equality. Thus, the proof is completed. The equality holds for

$$
\frac{-x_{1}}{n-1}=x_{2}=\cdots=x_{n}
$$

(or any cyclic permutation).
Writing the inequality (2.1) for $n+1$ real numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ and setting then $x_{n+1}=-1$, we get the following result.

Let $x_{1}, x_{2}, \ldots, x_{n}(n \geq 2)$ be real numbers such that $x_{1}+x_{2}+\cdots+x_{n}=1$. If $m \geq 3$ is an odd number, then

$$
\begin{equation*}
\frac{\left(x_{1}^{m}+x_{2}^{m}+\cdots+x_{n}^{m}-1\right)^{2}}{\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}+1\right)^{m}} \leq \frac{\left(n^{m-1}-1\right)^{2}}{n^{m-2}(n+1)^{m}}, \tag{2.2}
\end{equation*}
$$

with equality for $x_{1}=x_{2}=\cdots=x_{n}=1 / n$, and also for $x_{1}=n$ and $x_{2}=\cdots=x_{n}=-1$ (or any cyclic permutation).

In our opinion, an extension of the EV-Theorem for real variables to other functions f than those in Theorem 2.3 is an interesting open problem. For instance, the function
$f(t)=t^{4}$ does not satisfy the condition in Theorem 2.3 because the associated function $g(x)=4 \sqrt[k-1]{x^{3}}$ is not convex on \mathbb{R} when k is an even positive number. However, the following proposition holds.
Proposition 2.1. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed real numbers, and let $x_{1}, x_{2}, \ldots, x_{n}$ be real variables such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}
\end{aligned}
$$

The power sum

$$
S_{n}=x_{1}^{4}+x_{2}^{4}+\cdots+x_{n}^{4}
$$

is minimum and maximum when at least $n-1$ of $x_{1}, x_{2}, \ldots, x_{n}$ are equal.
To give an application of Proposition 2.1, we will prove the inequality

$$
\begin{equation*}
\frac{x_{1}^{4}+x_{2}^{4}+\cdots+x_{n}^{4}}{\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{2}} \geq \frac{n^{2}+3}{n\left(n^{2}-1\right)} \tag{2.3}
\end{equation*}
$$

where $n \geq 3$ is an odd number, and $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers such that

$$
x_{1}+x_{2}+\cdots+x_{n}=0
$$

According to Proposition 2.1, it suffices to consider that

$$
x_{1}=\cdots=x_{j}:=x, \quad x_{j+1}=\cdots=x_{n}:=y, \quad j \in\{1,2, \ldots, n\} .
$$

Therefore, we need to show that $j x+(n-j) y=0$ implies

$$
j x^{4}+(n-j) y^{4} \geq \frac{n^{2}+3}{n\left(n^{2}-1\right)}\left[j x^{2}+(n-j) y^{2}\right]^{2}
$$

This inequality is equivalent to

$$
(n-j)\left[(n-2 j)^{2}-1\right] y^{4} \geq 0
$$

which is true for any odd $n, n \geq 3$. Thus, the proof is completed. The equality holds for $j=(n-1) / 2$ and

$$
\frac{x_{1}}{n+1}=\cdots=\frac{x_{j}}{n+1}=\frac{-x_{j+1}}{n-1}=\cdots=\frac{-x_{n}}{n-1}
$$

(or any permutation).
Writing the inequality in (2.3) for $n=2 k+1$ real numbers $x_{1}, x_{2}, \ldots, x_{2 k+1}$ and setting then $x_{2 k+1}=-k$, we get the following statement.

If $x_{1}, x_{2}, \ldots, x_{2 k}(k \geq 1)$ are real numbers such that $x_{1}+x_{2}+\cdots+x_{2 k}=k$, then

$$
\begin{equation*}
\frac{x_{1}^{4}+x_{2}^{4}+\cdots+x_{2 k}^{4}+k^{4}}{\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 k}^{2}+k^{2}\right)^{2}} \geq \frac{k^{2}+k+1}{k(k+1)(2 k+1)} \tag{2.4}
\end{equation*}
$$

with equality when k of $x_{1}, x_{2}, \ldots, x_{2 k}$ are equal to $k+1$, and the other k are equal to $-k$.
Notice that for $f(t)=t^{6}$ and $f(t)=t^{8}$ (which also do not satisfy the condition in Theorem 2.3), the following proposition holds.
Proposition 2.2. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed real numbers, and let $x_{1}, x_{2}, \ldots, x_{n}$ be real variables such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}
\end{aligned}
$$

For $m \in\{6,8\}$, the power sum

$$
S_{n}=x_{1}^{m}+x_{2}^{m}+\cdots+x_{n}^{m}
$$

is maximum when at least $n-1$ of $x_{1}, x_{2}, \ldots, x_{n}$ are equal.
Conjecture 2.1. Proposition 2.2 is valid for any integer number $m \geq 3$.

3. Proof of theorem 2.3

The proof of Theorem 2.3 is based on the following lemma.
Lemma 3.1. Let a, b, c be fixed real numbers, not all equal, and let x, y, z be real numbers satisfying

$$
x \leq y \leq z, \quad x+y+z=a+b+c, \quad x^{k}+y^{k}+z^{k}=a^{k}+b^{k}+c^{k}
$$

where k is an even positive integer. Then, there exist two real numbers y_{1} and y_{2} such that $y_{1}<y_{2}$ and
(1) $y \in\left[y_{1}, y_{2}\right]$;
(2) $y=y_{1}$ if and only if $x=y$;
(3) $y=y_{2}$ if and only if $y=z$.

Proof. We show first, by contradiction method, that $x<z$. Indeed, if $x=z$, then

$$
\begin{aligned}
& x=z \Rightarrow x=y=z \Rightarrow x^{k}+y^{k}+z^{k}=3\left(\frac{x+y+z}{3}\right)^{k} \\
& \Rightarrow a^{k}+b^{k}+c^{k}=3\left(\frac{a+b+c}{3}\right)^{k} \Rightarrow a=b=c
\end{aligned}
$$

which is false. Notice that the last implication follows from Jensen's inequality

$$
a^{k}+b^{k}+c^{k} \geq 3\left(\frac{a+b+c}{3}\right)^{k}
$$

where equality holds if and only if $a=b=c$.
According to the relations

$$
x+z=a+b+c-y, \quad x^{k}+z^{k}=a^{k}+b^{k}+c^{k}-y^{k}
$$

we may consider x and z as functions of y. From

$$
x^{\prime}+z^{\prime}=-1, \quad x^{k-1} x^{\prime}+z^{k-1} z^{\prime}=-y^{k-1}
$$

we get

$$
\begin{equation*}
x^{\prime}=\frac{y^{k-1}-z^{k-1}}{z^{k-1}-x^{k-1}}, \quad z^{\prime}=\frac{y^{k-1}-x^{k-1}}{x^{k-1}-z^{k-1}} . \tag{3.5}
\end{equation*}
$$

The two-sided inequality

$$
x(y) \leq y \leq z(y)
$$

is equivalent to the inequalities $f_{1}(y) \leq 0$ and $f_{2}(y) \geq 0$, where

$$
f_{1}(y)=x(y)-y, \quad f_{2}(y)=z(y)-y .
$$

Using (3.5), we get

$$
f_{1}^{\prime}(y)=\frac{y^{k-1}-z^{k-1}}{z^{k-1}-x^{k-1}}-1
$$

and

$$
f_{2}^{\prime}(y)=\frac{y^{k-1}-x^{k-1}}{x^{k-1}-z^{k-1}}-1
$$

Since $f_{1}^{\prime}(y) \leq-1$ and $f_{2}^{\prime}(y) \leq-1, f_{1}$ and f_{2} are strictly decreasing. Thus, the inequality $f_{1}(y) \leq 0$ involves $y \geq y_{1}$, where y_{1} is the root of the equation $x(y)=y$, while the inequality $f_{2}(y) \geq 0$ involves $y \leq y_{2}$, where y_{2} is the root of the equation $z(y)=y$. Moreover, $y=y_{1}$ if and only if $x=y$, and $y=y_{2}$ if and only if $y=z$.

Using now Lemma 3.1, we can prove the following proposition.
Proposition 3.3. Let a, b, c be fixed real numbers, let x, y, z be real numbers satisfying

$$
x \leq y \leq z, \quad x+y+z=a+b+c, \quad x^{k}+y^{k}+z^{k}=a^{k}+b^{k}+c^{k}
$$

where k is an even positive integer, and let f be a differentiable function on \mathbb{R} such that the associated function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
g(x)=f^{\prime}(\sqrt[k-1]{x})
$$

is strictly convex on \mathbb{R}. Then, the sum

$$
S=f(x)+f(y)+f(z)
$$

is minimum if and only if $y=z$, and is maximum if and only if $x=y$.
Proof. If $a=b=c$, then

$$
\begin{aligned}
& a=b=c \Rightarrow a^{k}+b^{k}+c^{k}=3\left(\frac{a+b+c}{3}\right)^{k} \\
& \Rightarrow x^{k}+y^{k}+z^{k}=3\left(\frac{x+y+z}{3}\right)^{k} \Rightarrow x=y=z
\end{aligned}
$$

Consider further that a, b, c are not all equal. As it is shown in the proof of Lemma 3.1, we have $x<z$. According to the relations

$$
x+z=a+b+c-y, \quad x^{k}+z^{k}=a^{k}+b^{k}+c^{k}-y^{k},
$$

we may consider x and z as functions of y. Thus, we have

$$
S=f(x(y))+f(y)+f(z(y)):=F(y)
$$

According to Lemma 3.1, it suffices to show that F is maximum for $y=y_{1}$ and is minimum for $y=y_{2}$. Using (3.5), we have

$$
\begin{aligned}
F^{\prime}(y) & =x^{\prime} f^{\prime}(x)+f^{\prime}(y)+z^{\prime} f^{\prime}(z) \\
& =\frac{y^{k-1}-z^{k-1}}{z^{k-1}-x^{k-1}} g\left(x^{k-1}\right)+g\left(y^{k-1}\right)+\frac{y^{k-1}-x^{k-1}}{x^{k-1}-z^{k-1}} g\left(z^{k-1}\right),
\end{aligned}
$$

which, for $x<y<z$, is equivalent to

$$
\begin{aligned}
\frac{F^{\prime}(y)}{\left(y^{k-1}-x^{k-1}\right)\left(y^{k-1}-z^{k-1}\right)} & =\frac{g\left(x^{k-1}\right)}{\left(x^{k-1}-y^{k-1}\right)\left(x^{k-1}-z^{k-1}\right)} \\
& +\frac{g\left(y^{k-1}\right)}{\left(y^{k-1}-z^{k-1}\right)\left(y^{k-1}-x^{k-1}\right)}+\frac{g\left(z^{k-1}\right)}{\left(z^{k-1}-x^{k-1}\right)\left(z^{k-1}-y^{k-1}\right)} .
\end{aligned}
$$

Since g is strictly convex, the right hand side is positive. Moreover, since

$$
\left(y^{k-1}-x^{k-1}\right)\left(y^{k-1}-z^{k-1}\right)<0
$$

we have $F^{\prime}(y)<0$ for $y \in\left(y_{1}, y_{2}\right)$, hence F is strictly decreasing on $\left[y_{1}, y_{2}\right]$. Therefore, F is maximum for $y=y_{1}$ and is minimum for $y=y_{2}$.

Proof of Theorem 2.3.
For $n=3$, Theorem 2.3 follows immediately from Proposition 3.3. Consider next that $n \geq 4$. Since $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is defined in Theorem 2.3 as a compact set in \mathbb{R}^{n}, S_{n} attains its minimum and maximum values. Using this property and Proposition 3.3, we can prove Theorem 2.3 via contradiction. Thus, for the sake of contradiction, assume that
S_{n} attains its maximum at $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, where $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ and $b_{1}<b_{n-1}$. Let x_{1}, x_{n-1} and x_{n} be real numbers such that

$$
x_{1} \leq x_{n-1} \leq x_{n}, \quad x_{1}+x_{n-1}+x_{n}=b_{1}+b_{n-1}+b_{n}, \quad x_{1}^{k}+x_{n-1}^{k}+x_{n}^{k}=b_{1}^{k}+b_{n-1}^{k}+b_{n}^{k} .
$$

According to Proposition 3.3, the sum $f\left(x_{1}\right)+f\left(x_{n-1}\right)+f\left(x_{n}\right)$ is maximum for $x_{1}=x_{n-1}$, when

$$
f\left(x_{1}\right)+f\left(x_{n-1}\right)+f\left(x_{n}\right)>f\left(b_{1}\right)+f\left(b_{n-1}\right)+f\left(b_{n}\right) .
$$

This result contradicts the assumption that S_{n} attains its maximum value at $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1}<b_{n-1}$. Similarly, we can prove that S_{n} is minimum for $x_{2}=x_{3}=\cdots=x_{n}$.

4. Proof of proposition 2.1

In order to prove Proposition 2.1, we use the following lemma.
Lemma 4.2. Let a, b, c be fixed real numbers, and let x, y, z be real numbers such that

$$
x+y+z=a+b+c, \quad x^{2}+y^{2}+z^{2}=a^{2}+b^{2}+c^{2} .
$$

The power sum

$$
S=x^{4}+y^{4}+z^{4}
$$

is minimum and maximum when two of x, y, z are equal; more precisely, S is constant for $a+b+$ $c=0$, while for $a+b+c \neq 0, S$ is minimum and maximum if and only if two of x, y, z are equal.
Proof. The proof is based on Lemma 3.1. Without loss of generality, assume that $x \leq y \leq z$. For the nontrivial case when a, b, c are not all equal (which involves $x<z$), consider the function of y

$$
F(y)=x^{4}(y)+y^{4}+z^{4}(y) .
$$

According to (3.5), we have

$$
\begin{aligned}
F^{\prime}(y) & =4 x^{3} x^{\prime}+4 y^{3}+4 z^{3} z^{\prime}=4 x^{3} \frac{y-z}{z-x}+4 y^{3}+4 z^{3} \frac{y-x}{x-z} \\
& =4(x+y+z)(y-x)(y-z)=4(a+b+c)(y-x)(y-z) .
\end{aligned}
$$

There are three cases to consider.
Case 1: $a+b+c<0$. Since $F^{\prime}(y)>0$ for $x<y<z, F$ is strictly increasing on $\left[y_{1}, y_{2}\right]$.
Case 2: $a+b+c>0$. Since $F^{\prime}(y)<0$ for $x<y<z, F$ is strictly decreasing on $\left[y_{1}, y_{2}\right]$.
Case 3: $a+b+c=0$. Since $F^{\prime}(y)=0, F$ is constant on $\left[y_{1}, y_{2}\right]$.
In all cases, F is monotonic on $\left[y_{1}, y_{2}\right]$. Therefore, F is minimum and maximum for $y=y_{1}$ or $y=y_{2}$; that is, when $x=y$ or $y=z$ (see Lemma 3.1). Notice that for $a+b+c \neq 0, F$ is strictly monotonic on $\left[y_{1}, y_{2}\right]$, hence F is minimum and maximum if and only if $y=y_{1}$ or $y=y_{2}$; that is, if and only if $x=y$ or $y=z$.

Proof of Proposition 2.1.
For $n=3$, Proposition 2.1 follows from Lemma 4.2. In order to prove Proposition 2.1 for any $n \geq 4$, we will use the contradiction method. For the sake of contradiction, assume that $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is an extremal point having at least three distinct components; let us say $b_{1}<b_{2}<b_{3}$. Let x_{1}, x_{2} and x_{3} be real numbers such that

$$
x_{1} \leq x_{2} \leq x_{3}, \quad x_{1}+x_{2}+x_{3}=b_{1}+b_{2}+b_{3} \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=b_{1}^{2}+b_{2}^{2}+b_{3}^{2} .
$$

We need to consider two cases.
Case 1: $b_{1}+b_{2}+b_{3} \neq 0$. According to Lemma 4.2, the sum $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$ is extremal only when two of x_{1}, x_{2}, x_{3} are equal, which contradicts the assumption that the sum $x_{1}^{4}+x_{2}^{4}+\cdots+x_{n}^{4}$ attains its extremal at $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1}<b_{2}<b_{3}$.

Case 2: $b_{1}+b_{2}+b_{3}=0$. There exist three real numbers x_{1}, x_{2}, x_{3} such that $x_{1}=x_{2}$ and

$$
x_{1}+x_{2}+x_{3}=b_{1}+b_{2}+b_{3}=0, \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=b_{1}^{2}+b_{2}^{2}+b_{3}^{2} .
$$

Letting $x_{1}=x_{2}:=x$ and $x_{3}:=y$, we have $2 x+y=0, x \neq y$. According to Lemma 4.2, the sum $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$ is constant (equal to $b_{1}^{4}+b_{2}^{4}+b_{3}^{4}$). Thus, $\left(x, x, y, b_{4}, \ldots, b_{n}\right)$ is also an extremal point. According to our hypothesis, this extremal point has at least three distinct components. Therefore, among the numbers b_{4}, \ldots, b_{n} there is one, let us say b_{4}, such that x, y and b_{4} are distinct. Since

$$
x+y+b_{4}=-x+b_{4} \neq 0
$$

we have a case similar to Case 1, which leads to a contradiction.

5. Proof of proposition 2.2

Using Lemma 5.3 below and the contradiction method, we can prove Proposition 2.2 in a similar way as the proof of Theorem 2.3.

Lemma 5.3. Let a, b, c be fixed real numbers, let x, y, z be real numbers such that

$$
x+y+z=a+b+c, \quad x^{2}+y^{2}+z^{2}=a^{2}+b^{2}+c^{2} .
$$

For $m \in\{6,8\}$, the power sum

$$
S_{m}=x^{m}+y^{m}+z^{m}
$$

is maximum if and only if two of x, y, z are equal.
Proof. Consider the nontrivial case where a, b, c are not all equal. Let $p=a+b+c$, $q=a b+b c+c a$ and $r=x y z$. Since $x+y+z=p$ and $x y+y z+z x=q$, from

$$
(x-y)^{2}(y-z)^{2}(z-x)^{2} \geq 0
$$

which is equivalent to

$$
27 r^{2}+2\left(2 p^{3}-9 p q\right) r-p^{2} q^{2}+4 q^{3} \leq 0
$$

we get $r \in\left[r_{1}, r_{2}\right]$, where

$$
r_{1}=\frac{9 p q-2 p^{3}-2\left(p^{2}-3 q\right) \sqrt{p^{2}-3 q}}{27}, \quad r_{2}=\frac{9 p q-2 p^{3}+2\left(p^{2}-3 q\right) \sqrt{p^{2}-3 q}}{27} .
$$

Obviously, the product $r=x y z$ attains its minimum value r_{1} and its maximum value r_{2} only when two of x, y, z are equal. For fixed p and q, we have

$$
\begin{gathered}
S_{6}(x, y, z)=3 r^{2}+f_{6}(p, q) r+h_{6}(p, q):=g_{6}(r), \\
S_{8}(x, y, z)=4\left(3 p^{2}-2 q\right) r^{2}+f_{8}(p, q) r+h_{8}(p, q):=g_{8}(r) .
\end{gathered}
$$

Since

$$
3 p^{2}-2 q=\frac{7}{3} p^{2}+\frac{2}{3}\left(p^{2}-3 q\right)>0
$$

the functions g_{6} and g_{8} are strictly convex, hence are maximum only for $r=r_{1}$ or $r=r_{2}$; that is, only when two of x, y, z are equal.

6. CONClusions

This paper deals with constrained optimization for real variables in a framework initiated by author for positive variables in [2]. The main extension of EV-Theorem to real variables is given by Theorem 2.3 for a function f differentiable on \mathbb{R} such that the associated function $g: \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
g(x)=f^{\prime}(\sqrt[k-1]{x})
$$

where k is an even positive integer, is strictly convex on \mathbb{R}. An extension of the EVTheorem for real variables to other functions f than those in Theorem 2.3 is an interesting open problem. Two such extensions are given by Proposition 2.1 for $f(t)=t^{4}$, and by Proposition 2.2 for $f(t)=t^{m}$, where $m \in\{6,8\}$. We conjecture that Proposition 2.2 is valid for any integer $m \geq 3$.

References

[1] Bennett, G., A p-free l^{p}-inequality, J. Math. Inequal., 3 (2009), No. 2, 155-159
[2] Cîrtoaje, V., Algebraic inequalities - Old and new methods, GIL Publishing House, Zalau, 2006
[3] Cîrtoaje, V., The equal variables method, JIPAM. J. Inequal. Pure Appl. Math., 8 (2007), No. 1, Art. 15, 21 pp.
University of Ploiesti
Department of Control and Computers
Bdul Bucuresti 39, RO-100680 Ploiesti, Romania
E-mail address: vcirtoaje@upg-ploiesti.ro

