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On the equal variables method applied to real variables

VASILE C ÎRTOAJE

ABSTRACT. As it is known, the equal variables method can be used to create and solve difficult symmetric
inequalities in nonnegative variables involving the expressions x1 + x2 + · · · + xn, xk

1 + xk
2 + · · · + xk

n and
f(x1) + f(x2) + · · · + f(xn), where k is a real constant, and f is a differentiable function on (0,∞) such that

g(x) = f ′(x
1

k−1 ) is strictly convex. In this paper, we extend the equal variables method to real variables.

1. INTRODUCTION

The Equal Variables Theorem (EV-Theorem) for nonnegative real variables has the
following statement (see [2], [3]).

Theorem 1.1. Let a1, a2, . . . , an (n ≥ 3) be fixed nonnegative real numbers, and let

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn

such that
x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an

and
xk
1 + xk

2 + · · ·+ xk
n = ak1 + ak2 + · · ·+ akn,

where k is a real number; for k = 0, assume that

x1x2 · · ·xn = a1a2 · · · an > 0.

Let f : I → R, where I = [0,∞) when f is continuous at x = 0, and I = (0,∞) when f(0+) =
±∞. In addition, f is differentiable on (0,∞) and the associated function g : (0,∞)→ R defined
by

g(x) = f ′
(
x

1
k−1

)
is strictly convex on (0,∞). Let

Sn = f(x1) + f(x2) + · · ·+ f(xn).

(1) If k ≤ 0, then Sn is maximum for

x1 = x2 = · · · = xn−1 ≤ xn,

and is minimum for
x1 ≤ x2 = x3 = · · · = xn;

(2) If k > 0 and either f is continuous at x = 0 or f(0+) = −∞, then Sn is maximum for

x1 = x2 = · · · = xn−1 ≤ xn;

(3) If k > 0 and either f is continuous at x = 0 or f(0+) =∞, then Sn is minimum for

x1 = · · · = xj−1 = 0, xj+1 = · · · = xn, j ∈ {1, 2, . . . , n}.
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From EV-Theorem, we can obtain some interesting particular results, which are useful
in many applications.

Corollary 1.1. Let a1, a2, . . . , an (n ≥ 3) be fixed nonnegative real numbers, and let

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn

such that
x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x2
1 + x2

2 + · · ·+ x2
n = a21 + a22 + · · ·+ a2n.

Let f : I → R, where I = [0,∞) when f is continuous at x = 0, and I = (0,∞) when
f(0+) = ±∞. In addition, f is differentiable on (0,∞) and the derivative f ′ is strictly convex on
(0,∞). Let

Sn = f(x1) + f(x2) + · · ·+ f(xn).

If either f is continuous at x = 0 or f(0+) = −∞, then Sn is maximum for

x1 = x2 = · · · = xn−1 ≤ xn.

If either f is continuous at x = 0 or f(0+) =∞, then Sn is minimum for

x1 = · · · = xj−1 = 0, xj+1 = · · · = xn, j ∈ {1, 2, . . . , n}.

Corollary 1.2. Let a1, a2, . . . , an (n ≥ 3) be fixed positive real numbers, and let

0 < x1 ≤ x2 ≤ · · · ≤ xn

such that
x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x1x2 · · ·xn = a1a2 · · · an.
Let f : (0,∞)→ R be a differentiable function such that g : (0,∞)→ R defined by

g(x) = f ′(1/x)

is strictly convex on (0,∞). Then, the sum Sn = f(x1) + f(x2) + · · ·+ f(xn) is maximum for

x1 = x2 = · · · = xn−1 ≤ xn,

and is minimum for
x1 ≤ x2 = x3 = · · · = xn.

Corollary 1.3. Let a1, a2, . . . , an (n ≥ 3) be fixed positive real numbers, and let

0 < x1 ≤ x2 ≤ · · · ≤ xn

such that
x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

1

x1
+

1

x2
+ · · ·+ 1

xn
=

1

a1
+

1

a2
+ · · ·+ 1

an
.

Let f : (0,∞)→ R be a differentiable function such that g : (0,∞)→ R defined by

g(x) = f ′(1/
√
x)

is strictly convex on (0,∞); in addition, assume that either f is continuous at x = 0 or f(0+) =
±∞. Then, the sum Sn = f(x1) + f(x2) + · · ·+ f(xn) is maximum for

x1 = x2 = · · · = xn−1 ≤ xn,

and is minimum for
x1 ≤ x2 = x3 = · · · = xn.
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Notice that this paper deals with constrained optimization for real variables in a frame-
work initiated by author in [2] for positive variables. A closely related framework of con-
strained optimization for positive variables can be found in [1], where Grahame Bennett
gave the following result.

Theorem 1.2. Suppose that a, b, c, d and w, x, y, z are positive numbers. Then the inequality

ap + bp + cp + dp ≤ wp + xp + yp + zp

is valid whenever |p| ≥ 1, and it reverses direction whenever |p| ≤ 1, if and only if the following
five conditions are satisfied:

a+ b+ c+ d = w + x+ y + z,

1

a
+

1

b
+

1

c
+

1

d
=

1

w
+

1

x
+

1

y
+

1

z
,

abcd = wxyz,

max{a, b, c, d} ≤ max{w, x, y, z}, min{a, b, c, d} ≥ min{w, x, y, z}.

In the following section, we will extend the EV-Theorem (Theorem 1.1) to the case
where x1, x2, . . . , xn are real numbers.

2. MAIN RESULTS

The main results of this paper are given by Theorem 2.3, Proposition 2.1 and Proposi-
tion 2.2.

Theorem 2.3. Let a1, a2, . . . , an (n ≥ 3) be fixed real numbers, let x1, x2, . . . , xn be real variables
such that

x1 ≤ x2 ≤ · · · ≤ xn,

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

xk
1 + xk

2 + · · ·+ xk
n = ak1 + ak2 + · · ·+ akn,

where k is an even positive integer, and let f be a differentiable function on R such that the associ-
ated function g : R→ R defined by

g(x) = f ′
(

k−1
√
x
)

is strictly convex on R. Then, the sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

is minimum for x2 = x3 = · · · = xn, and is maximum for x1 = x2 = · · · = xn−1.

Taking k = 2 in Theorem 2.3, we obtain the following corollary.

Corollary 2.4. Let a1, a2, . . . , an (n ≥ 3) be fixed real numbers, and let x1, x2, . . . , xn be real
variables such that

x1 ≤ x2 ≤ · · · ≤ xn,

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x2
1 + x2

2 + · · ·+ x2
n = a21 + a22 + · · ·+ a2n.

If f is a differentiable function on R such that the derivative f ′ is strictly convex on R, then the
sum

Sn = f(x1) + f(x2) + · · ·+ f(xn)

is minimum for x2 = x3 = · · · = xn, and is maximum for x1 = x2 = · · · = xn−1.
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For f : R→ R defined by
f(t) = tm,

where m is a positive odd number such that m > k, the associated function

g(x) = m
k−1
√
xm−1

is strictly convex on R because its derivative

g′(x) =
m(m− 1)

k − 1

k−1
√
xm−k

is strictly increasing on R. Thus, the following corollary holds.

Corollary 2.5. Let a1, a2, . . . , an (n ≥ 3) be fixed real numbers, and let x1, x2, . . . , xn be real
variables such that

x1 ≤ x2 ≤ · · · ≤ xn,

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

xk
1 + xk

2 + · · ·+ xk
n = ak1 + ak2 + · · ·+ akn,

where k is an even positive integer. For any positive odd number m, m > k, the power sum

Sn = xm
1 + xm

2 + · · ·+ xm
n

is minimum for x2 = x3 = · · · = xn, and is maximum for x1 = x2 = · · · = xn−1.

In order to show the effectiveness of Theorem 2.3 and its corollaries, we will prove the
inequality

(xm
1 + xm

2 + · · ·+ xm
n )2

(x2
1 + x2

2 + · · ·+ x2
n)

m
≤ [(n− 1)m−1 − 1]2

nm(n− 1)m−2
, (2.1)

where x1, x2, . . . , xn (n ≥ 3) are real numbers such that

x1 + x2 + · · ·+ xn = 0

and m ≥ 3 is an odd number. Due to homogeneity, we may set

x2
1 + x2

2 + · · ·+ x2
n = n(n− 1),

when the inequality becomes

|xm
1 + xm

2 + · · ·+ xm
n | ≤ (n− 1)m − n+ 1.

Assume that x1 ≤ x2 ≤ · · · ≤ xn. According to Corollary 2.5, it suffices to consider the
case when n−1 of x1, x2, . . . , xn are equal; that is, either x1 = −n+1 and x2 = · · · = xn = 1,
or x1 = · · · = xn−1 = −1 and xn = n−1. For each of these two cases, the desired inequality
becomes an equality. Thus, the proof is completed. The equality holds for

−x1

n− 1
= x2 = · · · = xn

(or any cyclic permutation).
Writing the inequality (2.1) for n + 1 real numbers x1, x2, . . . , xn+1 and setting then

xn+1 = −1, we get the following result.

Let x1, x2, . . . , xn (n ≥ 2) be real numbers such that x1 + x2 + · · ·+ xn = 1. If m ≥ 3 is an
odd number, then

(xm
1 + xm

2 + · · ·+ xm
n − 1)2

(x2
1 + x2

2 + · · ·+ x2
n + 1)m

≤ (nm−1 − 1)2

nm−2(n+ 1)m
, (2.2)

with equality for x1 = x2 = · · · = xn = 1/n, and also for x1 = n and x2 = · · · = xn = −1 (or
any cyclic permutation).

In our opinion, an extension of the EV-Theorem for real variables to other functions
f than those in Theorem 2.3 is an interesting open problem. For instance, the function
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f(t) = t4 does not satisfy the condition in Theorem 2.3 because the associated function
g(x) = 4

k−1
√
x3 is not convex on R when k is an even positive number. However, the

following proposition holds.

Proposition 2.1. Let a1, a2, . . . , an (n ≥ 3) be fixed real numbers, and let x1, x2, . . . , xn be real
variables such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x2
1 + x2

2 + · · ·+ x2
n = a21 + a22 + · · ·+ a2n.

The power sum
Sn = x4

1 + x4
2 + · · ·+ x4

n

is minimum and maximum when at least n− 1 of x1, x2, . . . , xn are equal.

To give an application of Proposition 2.1, we will prove the inequality

x4
1 + x4

2 + · · ·+ x4
n

(x2
1 + x2

2 + · · ·+ x2
n)

2
≥ n2 + 3

n(n2 − 1)
, (2.3)

where n ≥ 3 is an odd number, and x1, x2, . . . , xn are real numbers such that

x1 + x2 + · · ·+ xn = 0.

According to Proposition 2.1, it suffices to consider that

x1 = · · · = xj := x, xj+1 = · · · = xn := y, j ∈ {1, 2, . . . , n}.
Therefore, we need to show that jx+ (n− j)y = 0 implies

jx4 + (n− j)y4 ≥ n2 + 3

n(n2 − 1)
[jx2 + (n− j)y2]2.

This inequality is equivalent to

(n− j)[(n− 2j)2 − 1]y4 ≥ 0,

which is true for any odd n, n ≥ 3. Thus, the proof is completed. The equality holds for
j = (n− 1)/2 and

x1

n+ 1
= · · · = xj

n+ 1
=
−xj+1

n− 1
= · · · = −xn

n− 1

(or any permutation).
Writing the inequality in (2.3) for n = 2k+ 1 real numbers x1, x2, . . . , x2k+1 and setting

then x2k+1 = −k, we get the following statement.

If x1, x2, . . . , x2k (k ≥ 1) are real numbers such that x1 + x2 + · · ·+ x2k = k, then

x4
1 + x4

2 + · · ·+ x4
2k + k4

(x2
1 + x2

2 + · · ·+ x2
2k + k2)2

≥ k2 + k + 1

k(k + 1)(2k + 1)
, (2.4)

with equality when k of x1, x2, . . . , x2k are equal to k + 1, and the other k are equal to −k.

Notice that for f(t) = t6 and f(t) = t8 (which also do not satisfy the condition in
Theorem 2.3), the following proposition holds.

Proposition 2.2. Let a1, a2, . . . , an (n ≥ 3) be fixed real numbers, and let x1, x2, . . . , xn be real
variables such that

x1 + x2 + · · ·+ xn = a1 + a2 + · · ·+ an,

x2
1 + x2

2 + · · ·+ x2
n = a21 + a22 + · · ·+ a2n.

For m ∈ {6, 8}, the power sum

Sn = xm
1 + xm

2 + · · ·+ xm
n
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is maximum when at least n− 1 of x1, x2, . . . , xn are equal.

Conjecture 2.1. Proposition 2.2 is valid for any integer number m ≥ 3.

3. PROOF OF THEOREM 2.3

The proof of Theorem 2.3 is based on the following lemma.

Lemma 3.1. Let a, b, c be fixed real numbers, not all equal, and let x, y, z be real numbers satisfy-
ing

x ≤ y ≤ z, x+ y + z = a+ b+ c, xk + yk + zk = ak + bk + ck,

where k is an even positive integer. Then, there exist two real numbers y1 and y2 such that y1 < y2
and

(1) y ∈ [y1, y2];
(2) y = y1 if and only if x = y;
(3) y = y2 if and only if y = z.

Proof. We show first, by contradiction method, that x < z. Indeed, if x = z, then

x = z ⇒ x = y = z ⇒ xk + yk + zk = 3

(
x+ y + z

3

)k

⇒ ak + bk + ck = 3

(
a+ b+ c

3

)k

⇒ a = b = c,

which is false. Notice that the last implication follows from Jensen’s inequality

ak + bk + ck ≥ 3

(
a+ b+ c

3

)k

,

where equality holds if and only if a = b = c.
According to the relations

x+ z = a+ b+ c− y, xk + zk = ak + bk + ck − yk,

we may consider x and z as functions of y. From

x′ + z′ = −1, xk−1x′ + zk−1z′ = −yk−1,
we get

x′ =
yk−1 − zk−1

zk−1 − xk−1 , z′ =
yk−1 − xk−1

xk−1 − zk−1
. (3.5)

The two-sided inequality
x(y) ≤ y ≤ z(y)

is equivalent to the inequalities f1(y) ≤ 0 and f2(y) ≥ 0, where

f1(y) = x(y)− y, f2(y) = z(y)− y.

Using (3.5), we get

f ′1(y) =
yk−1 − zk−1

zk−1 − xk−1 − 1

and

f ′2(y) =
yk−1 − xk−1

xk−1 − zk−1
− 1.

Since f ′1(y) ≤ −1 and f ′2(y) ≤ −1, f1 and f2 are strictly decreasing. Thus, the inequality
f1(y) ≤ 0 involves y ≥ y1, where y1 is the root of the equation x(y) = y, while the
inequality f2(y) ≥ 0 involves y ≤ y2, where y2 is the root of the equation z(y) = y.
Moreover, y = y1 if and only if x = y, and y = y2 if and only if y = z.
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Using now Lemma 3.1, we can prove the following proposition.

Proposition 3.3. Let a, b, c be fixed real numbers, let x, y, z be real numbers satisfying

x ≤ y ≤ z, x+ y + z = a+ b+ c, xk + yk + zk = ak + bk + ck,

where k is an even positive integer, and let f be a differentiable function on R such that the associ-
ated function g : R→ R defined by

g(x) = f ′
(

k−1
√
x
)

is strictly convex on R. Then, the sum

S = f(x) + f(y) + f(z)

is minimum if and only if y = z, and is maximum if and only if x = y.

Proof. If a = b = c, then

a = b = c ⇒ ak + bk + ck = 3

(
a+ b+ c

3

)k

⇒ xk + yk + zk = 3

(
x+ y + z

3

)k

⇒ x = y = z.

Consider further that a, b, c are not all equal. As it is shown in the proof of Lemma 3.1, we
have x < z. According to the relations

x+ z = a+ b+ c− y, xk + zk = ak + bk + ck − yk,

we may consider x and z as functions of y. Thus, we have

S = f(x(y)) + f(y) + f(z(y)) := F (y).

According to Lemma 3.1, it suffices to show that F is maximum for y = y1 and is minimum
for y = y2. Using (3.5), we have

F ′(y) = x′f ′(x) + f ′(y) + z′f ′(z)

=
yk−1 − zk−1

zk−1 − xk−1 g(x
k−1) + g(yk−1) +

yk−1 − xk−1

xk−1 − zk−1
g(zk−1),

which, for x < y < z, is equivalent to

F ′(y)

(yk−1 − xk−1)(yk−1 − zk−1)
=

g(xk−1)

(xk−1 − yk−1)(xk−1 − zk−1)

+
g(yk−1)

(yk−1 − zk−1)(yk−1 − xk−1)
+

g(zk−1)

(zk−1 − xk−1)(zk−1 − yk−1)
.

Since g is strictly convex, the right hand side is positive. Moreover, since

(yk−1 − xk−1)(yk−1 − zk−1) < 0,

we have F ′(y) < 0 for y ∈ (y1, y2), hence F is strictly decreasing on [y1, y2]. Therefore, F
is maximum for y = y1 and is minimum for y = y2.

Proof of Theorem 2.3.
For n = 3, Theorem 2.3 follows immediately from Proposition 3.3. Consider next that

n ≥ 4. Since X = (x1, x2, . . . , xn) is defined in Theorem 2.3 as a compact set in Rn, Sn

attains its minimum and maximum values. Using this property and Proposition 3.3, we
can prove Theorem 2.3 via contradiction. Thus, for the sake of contradiction, assume that
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Sn attains its maximum at (b1, b2, . . . , bn), where b1 ≤ b2 ≤ · · · ≤ bn and b1 < bn−1. Let x1,
xn−1 and xn be real numbers such that

x1 ≤ xn−1 ≤ xn, x1 + xn−1 + xn = b1 + bn−1 + bn, xk
1 + xk

n−1 + xk
n = bk1 + bkn−1 + bkn.

According to Proposition 3.3, the sum f(x1)+f(xn−1)+f(xn) is maximum for x1 = xn−1,
when

f(x1) + f(xn−1) + f(xn) > f(b1) + f(bn−1) + f(bn).

This result contradicts the assumption that Sn attains its maximum value at (b1, b2, . . . , bn)
with b1 < bn−1. Similarly, we can prove that Sn is minimum for x2 = x3 = · · · = xn.

4. PROOF OF PROPOSITION 2.1

In order to prove Proposition 2.1, we use the following lemma.

Lemma 4.2. Let a, b, c be fixed real numbers, and let x, y, z be real numbers such that

x+ y + z = a+ b+ c, x2 + y2 + z2 = a2 + b2 + c2.

The power sum
S = x4 + y4 + z4

is minimum and maximum when two of x, y, z are equal; more precisely, S is constant for a+ b+
c = 0, while for a+ b+ c 6= 0, S is minimum and maximum if and only if two of x, y, z are equal.

Proof. The proof is based on Lemma 3.1. Without loss of generality, assume that x ≤ y ≤ z.
For the nontrivial case when a, b, c are not all equal (which involves x < z), consider the
function of y

F (y) = x4(y) + y4 + z4(y).

According to (3.5), we have

F ′(y) = 4x3x′ + 4y3 + 4z3z′ = 4x3 y − z

z − x
+ 4y3 + 4z3

y − x

x− z
= 4(x+ y + z)(y − x)(y − z) = 4(a+ b+ c)(y − x)(y − z).

There are three cases to consider.
Case 1: a+ b+ c < 0. Since F ′(y) > 0 for x < y < z, F is strictly increasing on [y1, y2].
Case 2: a+ b+ c > 0. Since F ′(y) < 0 for x < y < z, F is strictly decreasing on [y1, y2].

Case 3: a+ b+ c = 0. Since F ′(y) = 0, F is constant on [y1, y2].

In all cases, F is monotonic on [y1, y2]. Therefore, F is minimum and maximum for y = y1
or y = y2; that is, when x = y or y = z (see Lemma 3.1). Notice that for a+ b+ c 6= 0, F is
strictly monotonic on [y1, y2], hence F is minimum and maximum if and only if y = y1 or
y = y2; that is, if and only if x = y or y = z.

Proof of Proposition 2.1.
For n = 3, Proposition 2.1 follows from Lemma 4.2. In order to prove Proposition 2.1

for any n ≥ 4, we will use the contradiction method. For the sake of contradiction, assume
that (b1, b2, . . . , bn) is an extremal point having at least three distinct components; let us
say b1 < b2 < b3. Let x1, x2 and x3 be real numbers such that

x1 ≤ x2 ≤ x3, x1 + x2 + x3 = b1 + b2 + b3 x2
1 + x2

2 + x2
3 = b21 + b22 + b23.

We need to consider two cases.

Case 1: b1 + b2 + b3 6= 0. According to Lemma 4.2, the sum x4
1 + x4

2 + x4
3 is extremal

only when two of x1, x2, x3 are equal, which contradicts the assumption that the sum
x4
1 + x4

2 + · · ·+ x4
n attains its extremal at (b1, b2, . . . , bn) with b1 < b2 < b3.
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Case 2: b1 + b2 + b3 = 0. There exist three real numbers x1, x2, x3 such that x1 = x2 and

x1 + x2 + x3 = b1 + b2 + b3 = 0, x2
1 + x2

2 + x2
3 = b21 + b22 + b23.

Letting x1 = x2 := x and x3 := y, we have 2x + y = 0, x 6= y. According to Lemma 4.2,
the sum x4

1 + x4
2 + x4

3 is constant (equal to b41 + b42 + b43). Thus, (x, x, y, b4, . . . , bn) is also an
extremal point. According to our hypothesis, this extremal point has at least three distinct
components. Therefore, among the numbers b4, . . . , bn there is one, let us say b4, such that
x, y and b4 are distinct. Since

x+ y + b4 = −x+ b4 6= 0,

we have a case similar to Case 1, which leads to a contradiction.

5. PROOF OF PROPOSITION 2.2

Using Lemma 5.3 below and the contradiction method, we can prove Proposition 2.2
in a similar way as the proof of Theorem 2.3.

Lemma 5.3. Let a, b, c be fixed real numbers, let x, y, z be real numbers such that

x+ y + z = a+ b+ c, x2 + y2 + z2 = a2 + b2 + c2.

For m ∈ {6, 8}, the power sum

Sm = xm + ym + zm

is maximum if and only if two of x, y, z are equal.

Proof. Consider the nontrivial case where a, b, c are not all equal. Let p = a + b + c,
q = ab+ bc+ ca and r = xyz. Since x+ y + z = p and xy + yz + zx = q, from

(x− y)2(y − z)2(z − x)2 ≥ 0,

which is equivalent to

27r2 + 2(2p3 − 9pq)r − p2q2 + 4q3 ≤ 0,

we get r ∈ [r1, r2], where

r1 =
9pq − 2p3 − 2(p2 − 3q)

√
p2 − 3q

27
, r2 =

9pq − 2p3 + 2(p2 − 3q)
√
p2 − 3q

27
.

Obviously, the product r = xyz attains its minimum value r1 and its maximum value r2
only when two of x, y, z are equal. For fixed p and q, we have

S6(x, y, z) = 3r2 + f6(p, q)r + h6(p, q) := g6(r),

S8(x, y, z) = 4(3p2 − 2q)r2 + f8(p, q)r + h8(p, q) := g8(r).

Since

3p2 − 2q =
7

3
p2 +

2

3
(p2 − 3q) > 0,

the functions g6 and g8 are strictly convex, hence are maximum only for r = r1 or r = r2;
that is, only when two of x, y, z are equal.
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6. CONCLUSIONS

This paper deals with constrained optimization for real variables in a framework ini-
tiated by author for positive variables in [2]. The main extension of EV-Theorem to real
variables is given by Theorem 2.3 for a function f differentiable on R such that the associ-
ated function g : R→ R, defined by

g(x) = f ′
(

k−1
√
x
)
,

where k is an even positive integer, is strictly convex on R. An extension of the EV-
Theorem for real variables to other functions f than those in Theorem 2.3 is an interesting
open problem. Two such extensions are given by Proposition 2.1 for f(t) = t4, and by
Proposition 2.2 for f(t) = tm, where m ∈ {6, 8}. We conjecture that Proposition 2.2 is
valid for any integer m ≥ 3.
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