
CREAT. MATH. INFORM.
24 (2015), No. 2, 165 - 172

Online version at http://creative-mathematics.ubm.ro/

Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

A hybrid iterative method without extrapolating step for
solving mixed equilibrium problem

K. R. KAZMI, S. H. RIZVI and REHAN ALI

ABSTRACT. In this paper, we introduce a hybrid iterative method without extrapolating step to approximate
a solution of mixed equilibrium problem in real Hilbert space. We prove a strong convergence theorem for the
sequences generated by the proposed iterative algorithm. The result presented in this paper is the extension and
generalization of the previously known results in this area.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be
a nonempty, closed and convex subset of H ; let F : C ×C → R, where R is a set of all real
numbers, be a bifunction and let A : C → H be a nonlinear mapping. Then, we consider
the following mixed equilibrium problem (in short, MEP): Find x ∈ C such that

F (x, y) + 〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

MEP (1.1) introduced and studied by Moudafi and Théra [12]. The solution set of MEP
(1.1) is denoted by Sol (MEP(1.1)). If we set A = 0, MEP (1.1) reduces to the equilibrium

problem (in short, EP): Find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C, (1.2)

which is introduced and studied by Blum and Oettli [1]. The set of solutions of EP (1.2) is
denoted by Sol (EP(1.2)).

It is known that the equilibrium problem has a great impact and influence in the de-
velopment of several topics of science and engineering. It turned out that the theories
of many well known problems could be fitted into the theory of equilibrium problems. It
has been shown that the theory of equilibrium problem provides a natural, novel and uni-
fied framework for several problems arising in nonlinear analysis, optimization, econom-
ics, finance, game theory, physics and engineering. The equilibrium problem includes
many mathematical problems as particular cases, for example, mathematical program-
ming problem, variational inclusion problem, variational inequality problem, comple-
mentary problem, saddle point problem, Nash equilibrium problem in noncooperative
games, minimax inequality problem, minimization problem and fixed point problem, see
[1, 13, 7].

For example, if we set F (x, y) = sup
ζ∈Mx

〈ζ, y−x〉with M : C → 2C a set-valued maximal

monotone operator. Then MEP (1.1) reduces to the following basic class of variational
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inclusion peroblem: Find x ∈ C such that

0 ∈ A(x) +M(x), ∀ y ∈ C. (1.3)

Set F (x, y) = ψ(y) − ψ(x), where ψ : C → R is a nonlinear function, then MEP (1.1)
reduces to the following mixed variational inequality problem: Find x ∈ C such that

〈A(x), y − x〉+ ψ(y)− ψ(x) ≥ 0, ∀ y ∈ C, (1.4)

If we set F = 0, MEP (1.1) reduces to the classical variational inequality problem (in short,
VIP): Find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C, (1.5)
which is introduced by Hartmann and Stampacchia [9]. The set of solutions of VIP (1.5)
is denoted by Sol (VIP(1.5)).

In 1976, Korpelevich [10] introduced the following iterative method which is known as
extragradient iterative method: x0 = x ∈ C,

un = PC(xn − λAxn),
xn+1 = PC(xn − λAun),

(1.6)

where λ > 0, A is a monotone and Lipschitz continuous mapping and PC is the metric
projection of H onto C. He prove that that if Sol (VIP(1.5)) is nonempty then, under some
suitable conditions, the sequence generated by (1.6) converges to a solution of VIP(1.5).

In 2006, Nadezkhina and Takahashi [14] introduced a hybrid extragradient method to
approximate a common solution of VIP(1.5) and a fixed point problem for a nonexpansive
mapping in real Hilbert space. A lot of efficient generalizations and modifications of
iterative method given by [14] exist at this moment, for instance, see [3, 4, 5, 15, 2] and
references therein. Very recently, Malitsky and Semenov [11] introduced a new hybrid
iterative method without extrapolating step for solving VIP(1.5), which generalizes the
methods given by [10, 14]. They proved that a strong convergence theorem in Hilbert
space.

In this paper, we suggest and analyze an iterative method based on hybrid iterative
method without extrapolating step for solving MEP (1.1). Further, we obtain a strong
convergence theorem for the sequences generated by the proposed iterative algorithm.
The result and method presented in this paper extend and generalize some known results
and iterative methods, see for instance [11].

2. PRELIMINARIES

We recall some concepts and results needed in the sequel. Let symbols→ and⇀ denote
strong and weak convergence, respectively.

In a real Hilbert space H , it is well known that

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2, (2.7)

for all x, y ∈ H and λ ∈ [0, 1].

Furthe, any Hilbert space H has the Kadec-Klee property [8], that is, if {xn} be a sequence
in H which satisfies xn ⇀ x and ‖xn‖ → ‖x‖ as n→∞, then ‖xn − x‖ → 0 as n→∞.
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It is well known that PC is nonexpansive and satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x ∈ H. (2.8)

Moreover, PCx is characterized by the fact PCx ∈ C and

〈x− PCx, y − PCx〉 ≤ 0, (2.9)

and
‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H, y ∈ C. (2.10)

Definition 2.1. A mapping T : H → H is said to be
(i) monotone, if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H;

(ii) α-inverse strongly monotone, if there exists a constant α > 0 such that

〈Tx− Ty, x− y〉 ≥ α‖Tx− Ty‖2, ∀x, y ∈ H;

(iii) β-Lipschitz continuous, if there exists a constant β > 0 such that

‖Tx− Ty‖ ≤ β‖x− y‖, ∀x, y ∈ H.

We note that if T is α-inverse strongly monotone mapping, then T is monotone and
1
α -Lipschitz continuous.

Assumption 1. The bifunction F : C × C −→ R satisfies the following assumptions:
(i) F (x, x) = 0, ∀x ∈ C;

(ii) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x ∈ C;
(iii) For each x, y, z ∈ C, lim sup

t→0
F (tz + (1− t)x, y) ≤ F (x, y);

(iv) For each x ∈ C, y → F (x, y) is convex and lower semicontinuous.

Assumption 2. The bifunction F : C × C → R holds the following relation:

F (x, y) + F (y, z) + F (z, x) ≤ 0, ∀x, y, z ∈ C. (2.11)

We easily observe that, for y = z, Assumption 1(i) and Assumption 2 implies Assumption
1 (ii).

Now, we have the following lemma.

Lemma 2.1. [6] Let C be a nonempty closed convex subset of H . Assume that F : C × C −→ R
satisfying Assumption 1. For r > 0 and for all x ∈ H , define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}. (2.12)

Then the following results hold:
(i) For each x ∈ H , Tr(x) 6= ∅;

(ii) Tr is single-valued;
(iii) Tr is firmly nonexpansive, i.e.,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉, ∀x, y ∈ H; (2.13)

(iv) Fix(Tr) = Sol(EP(1.2));
(v) Sol(EP(1.2)) is closed and convex, where Fix(Tr) denotes the set of fixed points of Tr.
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Remark 2.1. It follows from Lemma 2.1 (i)-(ii) that

rF (Trx, y) + 〈Trx− x, y − Trx〉 ≥ 0, ∀y ∈ C, x ∈ H. (2.14)

Further Lemma 2.1 (iii) implies the nonexpansivity of Tr, i.e.,

‖Trx− Try ≤ ‖x− y‖, ∀x, y ∈ H. (2.15)

Furthermore (2.14) implies the following inequality

‖Trx− y‖2 ≤ ‖x− y‖2 − ‖Trx− x‖2 + 2rF (Trx, y), ∀y ∈ C, x ∈ H. (2.16)

Lemma 2.2. [11] Let {an}, {bn} and {cn} are nonnegative real sequences, α, β ∈ R and for all
n ∈ N the following inequality holds

an ≤ bn − αcn+1 + βcn.

If
∞∑
n=1

bn < +∞ and α > β ≥ 0 then lim
n→∞

an = 0

3. HYBRID ITERATIVE METHOD

Theorem 3.1. Let H be a real Hilbert space and C ⊆ H be a nonempty, closed and convex subset.
Let F : C × C → R be a bifunction satisfying Assumption 1 ((i),(iii) and (iv)), and Assumption
2, and let A : C → H be a σ-inverse strongly monotone such that Sol(MEP(1.1)) 6= ∅. Let the
iterative sequences {xn} and {zn} be generated by the following iterative algorithm:

x0, z0 ∈ C,
zn+1 = Trn(xn − rnAzn),
Cn =

{
z ∈ C : ‖zn+1 − z‖2 ≤ ‖xn − z‖2 + k‖xn − xn−1‖2

−
(
1− 1

k
− rn

σ

)
‖zn+1 − zn‖2 +

rn
σ
‖zn − zn−1‖2

}
,

Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qn

x,

(3.17)

for n = 1, 2, ..., where {rn} ⊂ [a, b] for some a, b ∈ (0, σ2 ) and k > σ
σ−2rn . Then the sequences

{xn} and {zn} converge strongly to z = PSol(MEP(1.1))x.

Proof. Let x̄ ∈ Sol(MEP(1.1)). From iterative algorithm (3.17), we have

zn+1 = Trn(xn − rnAzn), ∀n. (3.18)

Now, applying (2.16) with xn − rnAzn and x̄, we have

‖zn+1 − x̄‖2 ≤ ‖xn − rnAzn − x̄‖2 − ‖zn+1 − (xn − rnAzn)‖2 + 2rnF (zn+1, x̄)

= ‖xn − x̄‖2 − ‖zn+1 − xn‖2 + 2rn〈Azn, x̄− zn+1〉+ 2rnF (zn+1, x̄)

= ‖xn − x̄‖2 − ‖zn+1 − xn‖2 + 2rn
[
〈Azn −Ax̄, x̄− zn〉

+〈Ax̄, x̄− zn〉 − 〈Azn, zn+1 − zn〉
]

+ 2rnF (zn+1, x̄). (3.19)

Since A is σ-inverse strongly monotone, then A is monotone and
1

σ
-Lipschitz continuous.

Further since x̄ ∈ Sol(MEP(1.1)) and zn ∈ C, then

F (x̄, zn) + 〈Ax̄, zn − x̄〉 ≥ 0, ∀zn ∈ C. (3.20)
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Using (3.20) and monotonicity of A in (3.19), we have

‖zn+1 − x̄‖2 ≤ ‖xn − x̄‖2 − ‖zn+1 − xn‖2 + 2rn〈Azn, zn − zn+1〉
+ 2rn

[
F (x̄, zn) + F (zn+1, x̄)

]
= ‖xn − x̄‖2 − ‖xn − xn−1‖2 − ‖xn−1 − zn+1‖2 − 2〈xn − xn−1, xn−1 − zn+1〉

+ 2rn〈Azn, zn − zn+1〉+ 2rn
[
F (x̄, zn) + F (zn+1, x̄)

]
= ‖xn − x̄‖2 − ‖xn − xn−1‖2 − 2〈xn − xn−1, xn−1 − zn+1〉 − ‖xn−1 − zn‖2

− ‖zn − zn+1‖2 − 2〈xn−1 − zn, zn − zn+1〉 − 2rn〈Azn −Azn−1, zn+1 − zn〉
− 2rn〈Azn−1, zn+1 − zn〉+ 2rn

[
F (x̄, zn) + F (zn+1, x̄)

]
= ‖xn − x̄‖2 − ‖xn − xn−1‖2 − 2〈xn − xn−1, xn−1 − zn+1〉 − ‖xn−1 − zn‖2

− ‖zn − zn+1‖2 − 2rn〈Azn −Azn−1, zn+1 − zn〉
+ 2〈xn−1 − rnAzn−1 − zn, zn+1 − zn〉+ 2rn

[
F (x̄, zn) + F (zn+1, x̄)

]
.

(3.21)

As zn = Trn(xn−1 − rnAzn−1) and zn+1 ∈ C, we have from (2.14)

〈xn−1 − rnAzn−1 − zn, zn+1 − zn〉 ≤ rnF (zn, zn+1)

This implies that

‖zn+1 − x̄‖2 = ‖xn − x̄‖2 − ‖xn − xn−1‖2 − 2〈xn − xn−1, xn−1 − zn+1〉 − ‖xn−1 − zn‖2

−‖zn − zn+1‖2 − 2rn〈Azn −Azn−1, zn+1 − zn〉
+2rn

[
F (x̄, zn) + F (zn, zn+1) + F (zn+1, x̄)

]
. (3.22)

Now, using the triangle, the Cauchy-Schwarz, and the Cauchy inequalities, we get

−2〈xn − xn−1, xn−1 − zn+1〉 ≤ 2‖xn − xn−1‖‖xn−1 − zn‖+ 2‖xn − xn−1‖‖zn − zn+1‖
≤ ‖xn − xn−1‖2 + ‖xn−1 − zn‖2 + k‖xn − xn−1‖2

+
1

k
‖zn+1 − zn‖2. (3.23)

Since A is σ-inverse strongly monotone, we get

−2rn〈Azn −Azn−1, zn+1 − zn〉 ≤ 2rn
1

σ
‖zn − zn−1‖‖zn+1 − zn‖

≤ rn
σ

(‖zn+1 − zn‖2 + ‖zn − zn−1‖2). (3.24)

Combining inequalities (3.22)-(3.24) and using Assumption 2, we get

‖zn+1 − x̄‖2 ≤ ‖xn − x̄‖2 + k‖xn − xn−1‖2 −
(
1− 1

k
− rn

σ

)
‖zn+1 − zn‖2

+
rn
σ
‖zn − zn−1‖2, (3.25)

which implies that x̄ ∈ Cn and hence Sol(MEP(1.1)) ⊆ Cn, ∀n. Further, it is easily ob-
served that the setsCn andQn is closed and convex for each n = 0, 1, 2, ... . Next, by math-
ematical induction method, we show that Sol(MEP(1.1)) ⊆ Qn, ∀n. For n = 0, evidently
Sol(MEP(1.1)) ⊆ C0 and Sol(MEP(1.1)) ⊆ Q0 = H , it follows that Sol(MEP(1.1)) ⊆
C0 ∩Q0 and hence C0 ∩Q0 is nonempty, closed and convex set. Therefore x1 = PC0∩Q0

x
is well defined. Now, we suppose that Sol(MEP(1.1)) ⊆ Cn−1∩Qn−1, for some n > 1. Let
xn = PCn∩Qnx. Since Sol(MEP(1.1)) ⊆ Cn and for any x̄ ∈ Sol(MEP(1.1)), it follows from
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(2.9) that 〈x− xn, xn − x̄〉 = 〈x− PCn−1∩Qn−1
x, PCn−1∩Qn−1

x− x̄〉 ≥ 0, and hence x̄ ∈ Qn.
Therefore Sol(MEP(1.1)) ⊆ Cn ∩ Qn for every n = 0, 1, 2, ... and hence xn+1 = PCn∩Qnx
is well defined for every n = 0, 1, 2, ... . Thus the sequence {xn} is well defined.

Since A is σ-inverse strongly monotone and Sol(MEP(1.1)) 6= ∅ then Trn(I − rnA) is
nonexpansive and hence Sol(MEP(1.1)) = Fix(Trn(I − rnA)) is closed and convex where
I denotes the identity operator on H .

Let w = PSol(MEP(1.1))x. From xn+1 = PCn∩Qnx and w ∈ Sol(MEP(1.1)) ⊂ Cn ∩ Qn, we
have

‖xn+1 − x‖ ≤ ‖w − x‖, (3.26)
for every n = 0, 1, 2, ... . Therefore {xn} is bounded. From (3.17), we have respectively
xn+1 ∈ Cn ∩Qn and xn = PQn

x, and hence, we have

‖xn − x‖ ≤ ‖xn+1 − x‖, (3.27)

for every n = 0, 1, 2, ... . It follows from (3.26) and (3.27) that the sequence {‖xn − x‖} is
monotonically increasing and bounded, and hence convergent. Therefore lim

n→∞
‖xn − x‖

exists.

Since xn = PQnx and xn+1 ∈ Qn, using (2.10), we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2, (3.28)

for every n = 0, 1, 2, ... . Hence, it follows from (3.28) that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.29)

Since xn+1 ∈ Cn, we obtain

‖zn+1 − xn+1‖2 ≤ ‖xn+1 − xn‖2 + k‖xn − xn−1‖2 −
(
1− 1

k
− rn

σ

)
‖zn+1 − zn‖2

+
rn
σ
‖zn − zn−1‖2. (3.30)

Set an = ‖zn+1 − xn+1‖2, bn = ‖xn+1 − xn‖2 + k‖xn − xn−1‖2, cn = ‖zn − zn−1‖2,

α =
(
1− 1

k
− rn

σ

)
, β =

rn
σ

.

Since
∞∑
n=1

bn < +∞ and α > β, it follows from Lemma 2.2 that

lim
n→∞

‖zn − xn‖ = 0. (3.31)

Since {xn} is bounded sequence in C, there exists a subsequence {xnk
} of {xn} such that

xnk
⇀ x̂, say, and x̂ ∈ C. Further, it follows from (3.31) that the sequences {xn} and {zn}

both have the same asymptotic behavior. Therefore, there exists a subsequence {znk
} of

{zn} such that znk
⇀ x̂. Next, we show that x̂ ∈ Sol(MEP(1.1)). It follows from (2.14) and

(3.17) that

F (znk+1, y) +
1

rnk

〈znk+1 − (xnk
− rnk

Aznk
), y − znk+1〉 ≥ 0, ∀y ∈ C,

which implies〈
znk+1 − xnk

rnk

, y − znk+1

〉
≥ F (y, znk+1)− 〈Aznk

, y − znk+1〉, ∀y ∈ C, (3.32)



Mixed equilibrium problem 171

using monotonicity of F .
For t with 0 < t ≤ 1, let yt = ty + (1− t)x̂ ∈ C. So, from (3.32), we have

〈Ayt, yt − znk+1〉 ≥ 〈Ayt, yt − znk+1〉 − 〈Aznk
, yt − znk+1〉

−
〈
znk+1 − xnk

rnk

, yt − znk+1

〉
+ F (yt, znk+1)

= 〈Ayt −Aznk+1, yt − znk+1〉+ 〈Aznk+1 −Aznk
, yt − znk+1〉

−
〈
znk+1 − xnk

rnk

, yt − znk+1

〉
+ F (yt, znk+1).

Since A is Lipschitz continuous, we have lim
k→∞

‖Aznk+1 − Aznk
‖ = 0. Further, from the

monotonicity of A and the convexity and lower semicontinuity of F ,
znk+1 − xnk

rnk

→ 0

and znk+1 ⇀ x̂, we have
〈Ayt, yt − x̂〉 ≥ F (yt, x̂), (3.33)

as k →∞. Further, we have

0 ≤ F (yt, yt)

≤ tF (yt, y) + (1− t)F (yt, x̂)

≤ tF (yt, y) + (1− t)〈Ayt, yt − x̂〉
= tF (yt, y) + (1− t)t〈Ayt, y − x̂〉

and hence
0 ≤ F (yt, y) + (1− t)〈Ayt, y − x̂〉.

Letting t→ 0+, we have, for each y ∈ C,

F (x̂, y) + 〈Ax̂, y − x̂〉 ≥ 0.

This implies that x̂ ∈ Sol(MEP(1.1)). From w = PSol(MEP(1.1))x and (3.26), we have

‖w − x‖ ≤ ‖x̂− x‖ ≤ lim inf
k→∞

‖xnk
− x‖ ≤ lim sup

k→∞
‖xnk

− x‖ ≤ ‖w − x‖.

Thus, we have
lim
k→∞

‖xnk
− x‖ = ‖x̂− x‖.

Since xnk
− x ⇀ x̂ − x and from Kadec-Klee property of Hilbert space, we have xnk

−
x → x̂ − x and hence xnk

→ x̂. Since by definition of Qn, we obtain xn = PQn
x and

w ∈ Sol(MEP(1.1)) ⊂ Cn ∩Qn, we have

−‖w − xnk
‖2 = 〈w − xnk

, xnk
− x〉+ 〈w − xnk

, x− w〉 ≥ 〈w − xnk
, x− w〉.

As k → ∞, we obtain −‖w − x̂‖2 ≥ 〈w − x̂, x − w〉 ≥ 0 by w = PSol(MEP(1.1))x and
x̂ ∈ Sol(MEP(1.1)). Hence we have x̂ = w. This implies that xn → w. It is easy to see that
zn → w. This completes the proof. �

Remark 3.2. If we set F = 0 then Trn = PC and thus Theorem 3.1 is reduced to Theorem
1 given by Malitsky and Semenov [11]. Further, the method presented in this paper can
be extended to the Mixed equilibrium problem for set-valued mappings.
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