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Remark on the Laplacian-energy-like and Laplacian
incidence energy invariants of graphs

I. Ž. MILOVANOVIĆ, E. I. MILOVANOVIĆ, M. R. POPOVIĆ and R. M. STANKOVIĆ

ABSTRACT. Let G be an undirected connected graph with n vertices and m edges, n ≥ 3, and let µ1 ≥
µ2 ≥ · · · ≥ µn−1 > µn = 0 and ρ1 ≥ ρ2 ≥ · · · ≥ ρn−1 > ρn = 0 be Laplacian and normalized Laplacian
eigenvalues of G, respectively. The Laplacian-energy-like (LEL) invariant of graph G is defined as LEL(G) =∑n−1

i=1

√
µi. The Laplacian incidence energy of graph is defined as LIE(G) =

∑n−1
i=1

√
ρi. In this paper, we

consider lower bounds of graph invariants LEL(G) and LIE(G) in terms of some graph parameters, that refine
some known results.

1. INTRODUCTION AND PRELIMINARIES

Let G = (V,E), V = {1, 2, . . . , n}, be an undirected connected graph with n vertices
and m edges, n ≥ 3. Denote by deg(G) = {d1, d2, . . . , dn}, di = d(i), a sequence of
vertex degrees in G. If i-th and j-th vertices of graph G are adjacent, we denote it as
i ∼ j. The Laplacian matrix of G is defined as L = D − A, where A is the adjacency
matrix of G and D the diagonal matrix of its vertex degrees. Eigenvalues of L, denoted
as µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0, are called Laplacian eigenvalues of G. Because
the graph G is assumed to be connected, the normalized Laplacian matrix is defined as
L∗ = D−1/2LD−1/2. Its eigenvalues ρ1 ≥ ρ2 · · · ≥ ρn−1 > ρn = 0 are called normalized
Laplacian eigenvalues of G.

The following results are well known for the Laplacian and normalized Laplacian
eigenvalues (see [2, 5])

n−1∑
i=1

µi =

n∑
i=1

di = 2m,

n−1∑
i=1

µ2
i =

n∑
i=1

d2
i +

n∑
i=1

di = M1 + 2m

and
n−1∑
i=1

ρi = n,

n−1∑
i=1

ρ2
i = n+ 2R−1,

where M1 =
∑n

i=1 d
2
i is the first Zagreb index (see [1, 4, 13]) and R−1 =

∑
i∼j

1
didj

is
general Randić index (see [3]).

Liu and Liu [9] defined the quantity, named Laplacian-energy-like invariant of a graph G,
as

LEL(G) =

n−1∑
i=1

√
µi. (1.1)
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The authors established the following simple upper bound for the invariant LEL(G) in
terms of parameters n and m

LEL(G) ≤
√

2m(n− 1). (1.2)

More on this invariant and its bounds one can found in [6] and the references cited therein.
In [11] Shi and Wang introduced graph invariant

LIE(G) =
n−1∑
i=1

√
ρi (1.3)

named Laplacian incidence energy. The authors of [11] determine upper bound for LIE(G)
in term of parameter n

LIE(G) ≤
√

n(n− 1). (1.4)

These graph invariants, as well as the others, find their applications not only in spectral
graph theory, but also in many other areas, including biology, physics, computer science,
and particulary in molecular chemistry (see for example [6, 8, 11]). However, in a small
number of cases these invariants can be determined in a closed form. Therefore finding
the inequalities that determine upper/lower bounds in terms of some graph parameters
are of interest. In this paper we determined upper bound for LEL(G) in terms of n and m
that is stronger than the one given by (1.2). Also, we determine upper bound for LIE(G)
in terms of n and R−1 and prove that it is stronger than the one given by (1.4).

2. MAIN RESULTS

Throughout the paper we will use standard notations for the special types of graphs
(see [2, 5]). Thus, with Kn we denote a complete graph, i.e. a graph with sequence of
vertex degrees deg(Kn) = {n− 1, n− 1, . . . , n− 1︸ ︷︷ ︸

n−times

}. By Cn we denote a ring, i.e. 2-regular

graph with sequence of vertex degrees of the form deg(Cn) = {2, 2, . . . , 2︸ ︷︷ ︸
n−times

}. Finally, with

K1,n−1 we denote a star graph, i.e. n-vertex tree in which one vertex has degree n−1, that
is deg(K1,n−1) = {n− 1, 1, 1, . . . , 1︸ ︷︷ ︸

(n−1)−times

}.

In the following theorem we prove the inequality that establishes upper bound for
LEL(G) in terms of n, m and M1.

Theorem 2.1. Let G = (V,E) be an undirected connected graph with n, n ≥ 3, vertices and m
edges. Then

LEL(G) ≤
√

2m(n− 1)− (n− 1)(M1 + 2m)− 4m2

4m
. (2.5)

Equality holds if and only if G ∼= Kn.
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Proof. Let µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 be Laplacian eigenvalues of G. Then

2m(n− 1)− LEL(G)2 = (n− 1)

n−1∑
i=1

µi −

(
n−1∑
i=1

√
µi

)2

=
∑

1≤i<j≤n−1

(√
µi −

√
µj

)2
≥

n−2∑
i=2

(
(
√
µ1 −

√
µi)

2
+
(√
µi −

√
µn−1

)2)
+
(√
µ1 −

√
µn−1

)2
≥ n− 3

2

(√
µ1 −

√
µn−1

)2
+
(√
µ1 −

√
µn−1

)2
=

n− 1

2

(√
µ1 −

√
µn−1

)2
,

i.e.,

2(2m(n− 1)− LEL(G)2) ≥ (n− 1)
(√
µ1 −

√
µn−1

)2
. (2.6)

On the other hand, based on Shisha–Mond inequality [12],

n∑
i=1

a2
i

n∑
i=1

b2i −

(
n∑

i=1

aibi

)2

≤

(√
R1

r2
−
√
r1

R2

)2 n∑
i=1

b2i

n∑
i=1

aibi,

where 0 < r1 ≤ ai ≤ R1 < +∞, 0 < r2 ≤ bi ≤ R2 < +∞, for i = 1, 2, . . . , n, setting
n := n− 1, bi := 1, ai := µi, i = 1, 2, . . . , n− 1, r1 = µn−1, R1 = µ1, r2 = R2 = 1, we get

(n− 1)

n−1∑
i=1

µ2
i −

(
n−1∑
i=1

µi

)2

≤
(√
µ1 −

√
µn−1

)2
(n− 1)

n−1∑
i=1

µi

i.e.

(n− 1)
(√
µ1 −

√
µn−1

)2 ≥ (n− 1)(M1 + 2m)− 4m2

2m
. (2.7)

Using inequalities (2.6) and (2.7) we obtain the desired result.
Equalities in (2.6) and (2.7) hold if and only if µ1 = µ2 = · · · = µn−1, so the equality

(2.5) holds if and only if G ∼= Kn. �

Bearing in mind the inequality M1 ≥ 4m2

n for the first Zagreb index [7], Theorem 2.1
yields the following corollary.

Corollary 2.1. Let G = (V,E) be an undirected connected graph with n, n ≥ 3, vertices and m
edges. Then

LEL(G) ≤
√

2m(n− 1)− n(n− 1)− 2m

2n
. (2.8)

Equality holds if and only if G ∼= Kn.

Remark 2.1. Since for each n ≥ 3 we have that

0 ≤ 2m(n− 1)− n(n− 1)− 2m

2n
≤ 2m(n− 1)

the inequality (2.8) is stronger than (1.2).
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TABLE 1

n Exact value Ineq. (1.2) Ineq.(2.5) Ineq.(2.8)
3 2.732050808 2.828427125 2.828427125 2.768874621
4 4 4.242640687 4.153311931 4.153311931
5 5.236067977 5.656854249 5.477225575 5.54977477
10 11.16227766 12.72792206 12.09338662 12.58570618
50 55.07106781 69.29646456 65.00961467 69.12655062
100 108 140.0071427 131.153536 139.8337942
1000 1029.622777 1412.799349 1321.741749 1412.622915

Table 1 shows the exact values of LEL(G) invariant for the graph G = K1,n−1, and
upper bounds obtained according to inequalities (1.2), (2.5) and (2.8), for various n.

By using similar arguments as in the proof of Theorem 2.1, we obtain our second main
result:

Theorem 2.2. LetG be an undirected connected graph with n, n ≥ 3, vertices andm edges. Then

LIE(G) ≤
√

n(n− 1)− 2(n− 1)R−1 − n

2n
. (2.9)

Equality in (2.9) holds if and only if G ∼= Kn.

Denote by ∆ maximal vertex degree in G. It was proved in [10] that R−1 ≥ n
2∆ . Ac-

cording to this and inequality (2.9), it is possible to determine upper bound for invariant
LIE(G) in terms of n and ∆.

Corollary 2.2. Let G be an undirected connected graph with n, n ≥ 3, vertices and m edges.
Then

LIE(G) ≤
√

n(n− 1)− n− 1−∆

2∆
. (2.10)

Equality holds if and only if G ∼= Kn.

Remark 2.2. Since

0 ≤ n(n− 1)− 2(n− 1)R−1 − n
2n

≤ n(n− 1),

and

0 ≤ n(n− 1)− (n− 1)−∆

2∆
≤ n(n− 1)

the inequalities (2.9) and (2.10) are stronger than (1.4). Also, since R−1 ≥ n
2(n−1) [8] and

∆ ≤ n − 1, from inequalities (2.9) and (2.10), respectively the inequality (1.4) follows.
However, the upper bound for graph invariant LIE(G) that depends only on n, obtained
in (1.4) is the best possible.

Table 2 shows upper bounds of invariant LIE(G) obtained according to inequalities (1.4)
and (2.9) for the graph G = Cn for various n.

According to (2.7) the following results are also valid.

Theorem 2.3. Let G = (V,E) be an undirected connected graph with n, n ≥ 3, vertices and m
edges. Then

√
µ1 −

√
µn−1 ≥

√
(n− 1)(M1 + 2m)− 4m2

2m(n− 1)
≥

√
1− 2m

n(n− 1)
.
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TABLE 2

n Ineq. (1.4) Ineq. (2.9)
3 2.44948 2.41522
4 3.46410 3.42782
5 4.47213 4.43846
10 9.48683 9.46572
50 49.49747 49.49262
100 99.49874 99.49628
1000 999.49987 999.49962

Equality holds if and only if G ∼= Kn.

Theorem 2.4. Let G = (V,E) be an undirected connected graph with n, n ≥ 3, vertices and m
edges. Then

√
ρ1 −

√
ρn−1 ≥

√
2(n− 1)(R−1 − n

n(n− 1)
≥
√

1

∆
− 1

n− 1
.

Equality holds if and only if G ∼= Kn.
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