Some univalence criteria for a family of integral operators

Virgil Pescar and Laura Stanciu

ABSTRACT. The main objective of this paper is to obtain sufficient conditions for a family of integral operators to be univalent in the open unit disk \mathcal{U}, using new results on univalence of analytic functions. These integral operators were considered in a recent work, see [Stanciu, L., The univalence conditions of some integral operators, Abstr. Appl. Anal., 2012, Art. ID 924645, 9 pp.].

1. Introduction

Let \mathcal{A} denote the class of all functions of the form

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the open unit disk

$$
\mathcal{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

and satisfy the following usual normalization condition

$$
f(0)=f^{\prime}(0)-1=0
$$

\mathbb{C} being the set of complex numbers.
Also, let \mathcal{S} denote the subclass of \mathcal{A} consisting of functions f which are univalent in \mathcal{U}. In [5], Pescar gave the following univalence criteria for an integral operator.

Theorem 1.1. [5] Let α be a complex number, $\operatorname{Re} \alpha>0$ and c be a complex number, $|c| \leq 1$, $c \neq-1$ and $f \in \mathcal{A}, f(z)=z+a_{2} z^{2}+\ldots$. If

$$
|c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1
$$

for all $z \in \mathcal{U}$, then the function

$$
F_{\alpha}(z)=\left(\alpha \int_{0}^{z} t^{\alpha-1} f^{\prime}(t) d t\right)^{\frac{1}{\alpha}}=z+\ldots
$$

is regular and univalent in \mathcal{U}.
Theorem 1.2. [5] Let α be a complex number, $\operatorname{Re} \alpha>0$ and c be a complex number, $|c| \leq 1$, $c \neq-1$ and $f \in \mathcal{A}$. If

$$
|c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1
$$

Received: 25.05.2015. In revised form: 09.10.2015. Accepted: 16.10.2015
2010 Mathematics Subject Classification. 30C45, 30C75.
Key words and phrases. Analytic functions, integral operators, univalence conditions, general Schwarz Lemma.
Corresponding author: Virgil Pescar; virgilpescar@unitbv.ro
for all $z \in \mathcal{U}$, then for any complex number $\beta, \operatorname{Re} \beta \geq \operatorname{Re} \alpha$, the function

$$
F_{\beta}(z)=\left(\beta \int_{0}^{z} t^{\beta-1} f^{\prime}(t) d t\right)^{\frac{1}{\beta}}
$$

is in the class \mathcal{S}.
In [9] it is defined the class $\mathcal{S}(p)$, which, for $0<p \leq 2$, includes the functions $f \in \mathcal{A}$ which satisfy the conditions:

$$
f(z) \neq 0, \quad 0<|z|<1
$$

and

$$
\left|\left(\frac{z}{f(z)}\right)^{\prime \prime}\right| \leq p, \quad z \in \mathcal{U}
$$

Theorem 1.3. [7] If $f \in \mathcal{S}(p)$, then the following inequality is true

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{[f(z)]^{2}}-1\right| \leq p|z|^{2}, \quad z \in \mathcal{U} \tag{1.1}
\end{equation*}
$$

In this paper, we obtain new univalence conditions for the following integral operators:

$$
\begin{gather*}
F_{1}(f, g)(z)=\left(\alpha \int_{0}^{z}\left(f(t) e^{g(t)}\right)^{\alpha-1} d t\right)^{\frac{1}{\alpha}}, \quad f, g \in \mathcal{A} ; \quad \alpha \in \mathbb{C} . \tag{1.2}\\
G_{1}(f, g)(z)=\left(\alpha \int_{0}^{z}\left(t f^{\prime}(t) e^{g(t)}\right)^{\alpha-1} d t\right)^{\frac{1}{\alpha}}, \quad f, g \in \mathcal{A} ; \quad \alpha \in \mathbb{C} . \tag{1.3}\\
H_{1}(f, g)(z)=\left(\beta \int_{0}^{z} t^{\beta-1}\left(\frac{f(t)}{t} e^{g(t)}\right)^{\frac{1}{\alpha}} d t\right)^{\frac{1}{\beta}}, \quad f, g \in \mathcal{A} ; \quad \alpha, \beta \in \mathbb{C}-\{0\} . \tag{1.4}
\end{gather*}
$$

In order to derive our main results, we need the General Schwarz Lemma (see, for details [3]).

Theorem 1.4. (General Schwarz Lemma) [3] Let the function f be regular in the disk $\mathcal{U}_{R}=$ $\{z \in \mathbb{C}:|z|<R\}$, with $|f(z)|<M$ for fixed M. If f has one zero with multiplicity order bigger than m for $z=0$, then

$$
|f(z)| \leq \frac{M}{R^{m}}|z|^{m}, \quad z \in \mathcal{U}_{R}
$$

The equality can hold only if

$$
f(z)=e^{i \theta} \frac{M}{R^{m}} z^{m}
$$

where θ is constant.

2. Main results

Theorem 2.5. Let $f, g \in \mathcal{A}$, where g be in the class $\mathcal{S}(p), 0<p \leq 2, M_{1}, M_{2}$ are real positive numbers and α, c are complex numbers,

$$
\operatorname{Re} \alpha>|\alpha-1|\left(\mathrm{M}_{1}+\mathrm{M}_{2}^{2}(\mathrm{p}+1)+1\right), \quad|\mathrm{c}| \leq 1, \mathrm{c} \neq-1
$$

If

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq M_{1}, \quad z \in \mathcal{U}, \quad|g(z)|<M_{2}, \quad z \in \mathcal{U}
$$

and

$$
\begin{equation*}
|c| \leq 1-\frac{|\alpha-1|}{\operatorname{Re} \alpha}\left(M_{1}+M_{2}^{2}(p+1)+1\right), \tag{2.5}
\end{equation*}
$$

then the function $F_{1}(f, g)(z)$ defined by (1.2) is in the class \mathcal{S}.
Proof. We begin by observing that the function $F_{1}(f, g)(z)$ in (1.2) can be rewritten as follows:

$$
F_{1}(f, g)(z)=\left(\alpha \int_{0}^{z} t^{\alpha-1}\left(\frac{f(t)}{t} e^{g(t)}\right)^{\alpha-1} d t\right)^{\frac{1}{\alpha}}
$$

Let us define the function $h(z)$ by

$$
h(z)=\int_{0}^{z}\left(\frac{f(t)}{t} e^{g(t)}\right)^{\alpha-1} d t
$$

The function h is regular in \mathcal{U} and satisfies the following normalization condition $h(0)=$ $h^{\prime}(0)-1=0$. Now, calculating the derivatives of $h(z)$ of the first and second orders, we readily obtain

$$
\begin{equation*}
h^{\prime}(z)=\left(\frac{f(z)}{z} e^{g(z)}\right)^{\alpha-1} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{\prime \prime}(z)=(\alpha-1)\left(\frac{f(z)}{z} e^{g(z)}\right)^{\alpha-2}\left(\frac{z f^{\prime}(z)-f(z)}{z^{2}} e^{g(z)}+\frac{f(z)}{z} g^{\prime}(z) e^{g(z)}\right) . \tag{2.7}
\end{equation*}
$$

We easily find from (2.6) and (2.7) that

$$
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=(\alpha-1)\left[\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)+z g^{\prime}(z)\right]
$$

which readily shows that

$$
\begin{align*}
& |c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \\
& =|c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|(\alpha-1)\left(\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)+z g^{\prime}(z)\right)\right| \\
& \leq|c|+\frac{|\alpha-1|}{\operatorname{Re} \alpha}\left(\left(\left|\frac{z f^{\prime}(z)}{f(z)}\right|+1\right)+\left|\frac{z^{2} g^{\prime}(z)}{[g(z)]^{2}}\right|\left|\frac{[g(z)]^{2}}{z}\right|\right), \quad z \in \mathcal{U} . \tag{2.8}
\end{align*}
$$

From the hypothesis of Theorem 2.5, we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq M_{1}, \quad z \in \mathcal{U}, \quad|g(z)|<M_{2}, \quad z \in \mathcal{U}
$$

then by General Schwarz Lemma for the function g, we obtain

$$
|g(z)| \leq M_{2}|z|, \quad z \in \mathcal{U}
$$

Using the inequality (2.8), we have

$$
\begin{align*}
& |c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \\
& \leq|c|+\frac{|\alpha-1|}{\operatorname{Re} \alpha}\left(M_{1}+1+\left(\left|\frac{z^{2} g^{\prime}(z)}{[g(z)]^{2}}-1\right|+1\right) M_{2}^{2}\right) . \tag{2.9}
\end{align*}
$$

Since $g \in \mathcal{S}(p), 0<p \leq 2$, using (2.5), from (2.9), we obtain

$$
\begin{aligned}
|c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| & \leq|c|+\frac{|\alpha-1|}{\operatorname{Re} \alpha}\left(M_{1}+M_{2}^{2}(p+1)+1\right) \\
& \leq 1, \quad z \in \mathcal{U}
\end{aligned}
$$

Finally, by applying Theorem 1.1, we conclude that the integral operator $F_{1}(f, g)(z)$ defined by (1.2) is in the class \mathcal{S}.

Setting $M_{1}=1$ and $M_{2}=1$ in Theorem 2.5, we immediately arrive at the following application of Theorem 2.5.

Corollary 2.1. Let $f, g \in \mathcal{A}$, where g be in the class $\mathcal{S}(p), 0<p \leq 2$ and α, c are complex numbers, $\operatorname{Re} \alpha>|\alpha-1|(\mathrm{p}+3),|c|<1$.

If

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq 1, \quad z \in \mathcal{U}, \quad|g(z)|<1, \quad z \in \mathcal{U}
$$

and

$$
|c| \leq 1-\frac{|\alpha-1|}{\operatorname{Re} \alpha}(p+3),
$$

then the function $F_{1}(f, g)(z)$ defined by (1.2) is in the class \mathcal{S}.
Theorem 2.6. Let $f, g \in \mathcal{A}$, where g be in the class $\mathcal{S}(p), 0<p \leq 2, M_{1}$ is a real positive number and α, c are complex numbers,

$$
\operatorname{Re} \alpha>|\alpha-1|\left(M_{1}^{2}(p+1)+1\right), \quad|c|<1
$$

If

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1, \quad z \in \mathcal{U}, \quad|g(z)|<M 1, \quad z \in \mathcal{U} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
|c| \leq 1-\frac{|\alpha-1|}{\operatorname{Re} \alpha}\left(M_{1}^{2}(p+1)+1\right) \tag{2.11}
\end{equation*}
$$

then the integral operator $G_{1}(f, g)(z)$ defined by (1.3) is in the class \mathcal{S}.
Proof. We observe that

$$
G_{1}(f, g)(z)=\left(\alpha \int_{0}^{z} t^{\alpha-1}\left(f^{\prime}(t) e^{g(t)}\right)^{\alpha-1} d t\right)^{\frac{1}{\alpha}}
$$

Let us consider the function

$$
\begin{equation*}
h(z)=\int_{0}^{z}\left(f^{\prime}(t) e^{g(t)}\right)^{\alpha-1} d t \tag{2.12}
\end{equation*}
$$

The function h is regular in \mathcal{U}. From (2.12), we have

$$
h^{\prime}(z)=\left(f^{\prime}(z) e^{g(z)}\right)^{\alpha-1}
$$

and

$$
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=(\alpha-1)\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+z g^{\prime}(z)\right)
$$

which readily shows that

$$
\begin{aligned}
& |c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \\
& \leq|c|+\frac{|\alpha-1|}{\operatorname{Re} \alpha}\left(\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+\left|\frac{z^{2} g^{\prime}(z)}{[g(z)]^{2}}\right|\left|\frac{[g(z)]^{2}}{z}\right|\right) \\
& \leq|c|+\frac{|\alpha-1|}{\operatorname{Re} \alpha}\left(\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+\left(\left|\frac{z^{2} g^{\prime}(z)}{[g(z)]^{2}}-1\right|+1\right)\left|\frac{[g(z)]^{2}}{z}\right|\right) .
\end{aligned}
$$

From (2.10), (2.11) and applying General Schwarz Lemma for the function $g(z)$, we obtain $|g(z)| \leq M_{1}|z|, z \in \mathcal{U}$, we obtain

$$
\begin{aligned}
|c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| & \leq|c|+\frac{|\alpha-1|}{\operatorname{Re} \alpha}\left(1+M_{1}^{2}(p+1)\right) \\
& \leq 1, \quad z \in \mathcal{U}
\end{aligned}
$$

Applying Theorem 1.1, we conclude that the integral operator $G_{1}(f, g)(z)$ defined by (1.3) is in the class \mathcal{S}.

Setting $M_{1}=1$ in Theorem 2.6, we obtain the following consequence of Theorem 2.6.
Corollary 2.2. Let $f, g \in \mathcal{A}$, where g be in the class $\mathcal{S}(p), 0<p \leq 2$ and α, c are complex numbers, $\operatorname{Re} \alpha>|\alpha-1|(p+2),|c| \leq 1, c \neq-1$.

If

$$
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1, \quad z \in \mathcal{U}, \quad|g(z)|<1, \quad z \in \mathcal{U}
$$

and

$$
|c| \leq 1-\frac{|\alpha-1|}{\operatorname{Re} \alpha}(p+2)
$$

then the integral operator $G_{1}(f, g)(z)$ defined by (1.3) is in the class \mathcal{S}.
Theorem 2.7. Let $f, g \in \mathcal{A}$, where g be in the class $\mathcal{S}(p), 0<p \leq 2, M_{1}, M_{2}$ are real positive numbers, α, c are complex numbers, $|c| \leq 1, c \neq-1$ and

$$
\begin{equation*}
\operatorname{Re} \alpha>\frac{\mathrm{M}_{1}+\mathrm{M}_{2}^{2}(\mathrm{p}+1)+1}{|\alpha|} \tag{2.13}
\end{equation*}
$$

If

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq M_{1}, \quad z \in \mathcal{U}, \quad|g(z)|<M_{2}, \quad z \in \mathcal{U}
$$

and

$$
|c| \leq 1-\frac{M_{1}+M_{2}^{2}(p+1)+1}{|\alpha| \operatorname{Re} \alpha}
$$

then for any complex number $\beta, \operatorname{Re} \beta \geq \operatorname{Re} \alpha$ the integral operator $H_{1}(f, g)(z)$ defined by (1.4) is in the class \mathcal{S}.

Proof. Let us consider the function

$$
\begin{equation*}
h(z)=\int_{0}^{z}\left(\frac{f(t)}{t} e^{g(t)}\right)^{\frac{1}{\alpha}} d t \tag{2.14}
\end{equation*}
$$

The function h is regular in \mathcal{U}. From (2.14), we have

$$
h^{\prime}(z)=\left(\frac{f(z)}{z} e^{g(z)}\right)^{\frac{1}{\alpha}}
$$

and

$$
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\frac{1}{\alpha}\left(\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)+z g^{\prime}(z)\right)
$$

which readily shows that

$$
\begin{align*}
& |c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \\
& \leq|c|+\frac{1}{|\alpha| \operatorname{Re} \alpha}\left(\left|\frac{z f^{\prime}(z)}{f(z)}\right|+1+\left(\left|\frac{z^{2} g^{\prime}(z)}{[g(z)]^{2}}-1\right|+1\right)\left|\frac{[g(z)]^{2}}{z}\right|\right) \tag{2.15}
\end{align*}
$$

By the general Schwarz Lemma for the function $g(z)$, we obtain $|g(z)| \leq M_{2}|z|, z \in \mathcal{U}$, since $g \in \mathcal{S}(p), 0<p \leq 2$ and using the inequality (2.15), we have

$$
\begin{align*}
& |c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \\
& \leq|c|+\frac{1}{|\alpha| \operatorname{Re} \alpha}\left(M_{1}+1+M_{2}^{2}(p+1)\right), \quad z \in \mathcal{U} . \tag{2.16}
\end{align*}
$$

From (2.13), we have

$$
\frac{1}{|\alpha| \operatorname{Re} \alpha}\left(M_{1}+1+M_{2}^{2}(p+1)\right) \leq 1-|c|
$$

and using (2.16), we obtain

$$
|c||z|^{2 \operatorname{Re} \alpha}+\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq 1, \quad z \in \mathcal{U}
$$

Applying Theorem 1.2, we conclude that the integral operator $H_{1}(f, g)(z)$ defined by (1.4) is in the class \mathcal{S}.

Setting $M_{1}=1$ and $M_{2}=1$ in Theorem 2.7, we obtain
Corollary 2.3. Let $f, g \in \mathcal{A}$, where g be in the class $\mathcal{S}(p), 0<p \leq 2, \alpha$, c are complex numbers, $|c| \leq 1, c \neq-1$ and $\operatorname{Re} \alpha>\frac{3+\mathrm{p}}{|\alpha|}$.

If

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq 1, \quad z \in \mathcal{U}, \quad|g(z)|<1, \quad z \in \mathbb{U}
$$

and

$$
|c| \leq 1-\frac{3+p}{|\alpha| \operatorname{Re} \alpha},
$$

then for any complex number $\beta, \operatorname{Re} \beta \geq \operatorname{Re} \alpha$, the integral operator $H_{1}(f, g)(z)$ defined by (1.4) is in the class \mathcal{S}.

References

[1] Blezu, D., On univalence criteria, Gen. Math., 14 (2006), 77-84
[2] Blezu, D. and Pascu, R. N., Univalence criteria for integral operators, Glas. Mat., 36 (2001), 241-245
[3] Nehari, Z., Conformal Mapping, Dover, New York, NY, USA, 1975
[4] Pescar, V., On the univalence of some integral operators, Gen. Math., 14 (2006), No. 2, 77-84
[5] Pescar, V., New generalizations of Ahlfors's, Becker's and Pascu's univalence criterions, Acta Univ. Apul., No. 34 (2013), 173-178
[6] Pescar, V., Univalence of certain integral operators, Acta Univ. Apulensis Math. Inform., No. 12, (2006), 43-48
[7] Singh, V., On a class of univalent functions, Int. J. Math. Math. Sci., 23 (2000), 855-857
[8] Stanciu, L., The univalence conditions of some integral operators, Abstr. Appl. Anal., 2012, Art. ID 924645, 9 pp.
[9] Yang, D. and Liu, J., On a class of univalent functions, Int. J. Math. Math. Sci. 22 (1999), No. 3, 605-610
Department of Mathematics
"Transilvania" University of Braşov
Faculty of Mathematics and Computer Science
Braşov, Romania
E-mail address: virgilpescar@unitbv.ro
Department of Mathematics
University of Piteşti
Piteşti, Romania
E-mail address: laura_stanciu_30@yahoo.com

