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Applying a utility based fuzzy probabilistic α-cut method
to optimize a constrained multi objective model

MOHAMMADREZA TORKJAZI and HAMED FAZLOLLAHTABAR

ABSTRACT. This article is proposing an appropriate approach to solve a constrained multi objective model
by using the theory of utility functions in fuzzy form. One of the approaches to optimize a multi objective math-
ematical model is to employ utility functions for the objectives. Recent studies on utility based multi objective
optimization concentrate on considering just one utility function for each objective. But, in reality it is not rea-
sonable to have a unique utility function corresponding to each objective function. Here, a constrained multi
objective mathematical model is considered in which several utility functions are associated for each objective.
All of these utility functions are uncertain and in fuzzy form, so a fuzzy probabilistic approach is incorporated
to investigate the uncertainty of the utility functions for each objective and the total utility function of the prob-
lem will be a fuzzy nonlinear mathematical model. Since there are not any conventional approaches to solve
such a model, a defuzzification method to change the total utility function to a crisp nonlinear model is em-
ployed. Meanwhile, α-cut method is applied to defuzzify the conditional utility functions. This action results
in changing the total utility function to a crisp single objective nonlinear model and will simplify the optimiza-
tion process of the total utility function. The effectiveness of the proposed approach is shown by solving a test
problem.

1. INTRODUCTION

Multiple objectives often conflict with each other and require multi-objective approa-
ches rather than a single objective approach [14]. There are three approaches to solve a
multi-objective problem: A priori approaches, Interactive approaches, and a posteriori
approaches [6]. From a decision maker perspective, the choice of a solution from all pre-
sented efficient solutions is called a posteriori approach. In the a priori approach, the
decision maker expresses his preference relative to the objectives in one of two ways. The
first one consists of attaching weights to each objective and combining them in a linear
function [9, 10, 12]. In the second approach, objectives are ranked in decreasing order of
importance; the problem is solved for the first objective, and then the second problem is
solved for the second objective under the constraint that the optimal solution of the first
objective does not change. This single-objective problem process is continued until the
last objective [3, 4, 5, 11, 13]. In the interactive approach, the decision maker intervenes in
the optimization process to guide it to the most suitable solutions [1, 2].

Research that considers uncertainty can be categorized according to the four primary
approaches [8]: (1) Stochastic programming approach, (2) fuzzy programming approach,
(3) stochastic dynamic programming approach, and (4) robust optimization approach.
The second one seeks the solution considering some variables as fuzzy numbers [8].

In this paper, the Utility function method is applied to solve a multi-objective problem
which is a method in the class of a priori approaches. The main question in this study
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is how multiple objectives having several utility functions can be optimized. So, a mul-
tiple objective mathematical model having several utility functions is optimized under
uncertainty. Fuzzy probabilistic programming is developed for multiple utility functions.

The organization of this paper is as follows. In Section 2, the utility function method
accompanying with our proposed method are described. In Section 3 a numerical exam-
ple of a multi-objective problem is solved by the proposed method. Finally in Section 4
our conclusions are given.

2. PROPOSED METHOD

The Utility Function Method proposed by Keeney and Raiffa in 1976, is one of the
approaches in solving a Multi-objective problem [7]. In this method, a conditional utility
function to each objective should be assigned. For each objective, while the other objec-
tives are fixed in their levels, we can check whether the objective is utility independent
from other ones or not. Then the conditional utility functions should be combined and
form the total utility function. The last step in the method is optimizing the total utility
function which means maximizing the utility of the decision maker.

But there is a problem for using this method in real world, because this method does
not assume all of the situations in the problem’s environment. To simply explain these
situations, consider a manufacturing environment in a company. Maximizing the profit
is one of the most important goals to company managers. In this case, just one utility
function for the given objective can be used which is maximizing the profit for an 8 hour
shift. But sometimes there are also other shifts starting after the main shift for employees.
Usually because of some factors such as employees’ fatigue and environmental condi-
tions or sometimes company’s conditions, working in the main shift is more favorable
to employees than working in the overtime shifts. Thus the same utility function for the
overtime period cannot be used, while the objective function is maximizing the profit, an-
other utility function for the overtime period has to be defined. So for better modeling of
the problem in the real world and to have the nearest solutions to the ideal solution, dif-
ferent utility functions have to be defined for each objective based on different situations
and different environments.

In this paper we assume that each objective function has several utility functions, while
researchers in the past used to consider just one utility function for each objective.

Since companies plan for their future periods of time, they cannot use the crisp data
in their planning. In other words, these plans are always considered under uncertainty.
Assume that a plan is designated for a long time period of time for a company. To do this,
different utility functions can be assigned to each one of the objectives based on the differ-
ent situations in the company’s environment. Because of the uncertainty conditions in the
problem, each utility function corresponds to a fuzzy set and there is a probability for each
utility function for occurring in the assumed period of the planning time. These functions
can be called as Partial Utility Functions. So the first step in our method is calculating
the probabilities of the partial utility functions. After that these partial utility functions
should be combined to achieve the conditional utility function for each objective. So there
will be only one conditional utility function for each objective. The next Step is combining
conditional utility functions and creating the total utility function. At last by optimizing
the total utility function, the utility of the decision maker can be maximized.

In this paper, the utility functions are in fuzzy environment and each of them is depen-
dent to a fuzzy set which describes the uncertainty in the problem. So the crisp results
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cannot be achieved for their probabilities. To calculate the probability of these fuzzy func-
tions, the Yager’s method can be used [16]. The first step for calculating these probabilities
is defining the set M for each partial utility functions. To do that, for every partial util-
ity function, each variable should be selected from the crisp universe X with a degree of
membership based on the conditions of the occurrence of the function. Then these vari-
ables and their degree of membership can be used to create the set M for the function.

Probability of a Fuzzy Event as a Fuzzy set
Yager [15] suggests a definition for the probability of a fuzzy event, which is derived

as follows.
The truth of the proposition ”the probability Ã is at least w” is defined as the fuzzy set

P ∗y (Ã) with the membership function P ∗y (Ã) (w) = sup
α
{ α |P (Aα) ≥ w } w ∈ [0, 1].

The complement of Ã can be defined by CÃ = {(x, 1− µÃ(x))|x ∈ X} then P ∗y (CÃ) (w) =
sup
α
{ α|P (CAα) ≥ w } and w ∈ [0, 1] can be interpreted as the truth of the proposition

”the probability of not Ã is at least w.”
On the other hand P̄ ∗y (Ã) = 1− P ∗y (CÃ) can be interpreted as the truth of the proposi-

tion ”probability of Ã is at most w”, Hence the following definition [16]:

Definition 2.1. The possibility distribution associated with the proposition ”the probabil-
ity of Ã is exactly w” can be defined as

P̄y(Ã)(w) = min
{
P ∗y (Ã)(w), P̄ ∗y (Ã)(w)

}
(2.1)

Example 2.1. For example consider the following fuzzy set:

Ã = {(x1, 1), (x2, 0.7), (x3, 0.6), (x4, 0.2)}
Px1

= 0.1 , Px2
= 0.4 , Px3

= 0.3 , Px4
= 0.2

α Aα P(Aα) w P ∗y (Ã)(w)

[0,0.2] [x1,x2,x3,x4] 1 [0.8,1] 0.2
[0.2,0.6] [x1,x2,x3] 0.8 [0.5,0.8] 0.6
[0.6,0.7] [x1,x2] 0.5 [0.1,0.5] 0.7
[0.7,1] [x1] 0.1 [0,0.1] 1

α (CA)α P(CA)α w P ∗y (CÃ)(w) P̄ ∗y (Ã)(w)

0 [x1,x2, x3,x4] 1 [0.9, 1] 0 1
[0,0.3] [x2,x3, x4] 0.9 [0.5,0.9] 0.3 0.7
[0.3,0.4] [x3,x4] 0.5 [0.2,0.5] 0.4 0.6
[0.4,0.8] [x4] 0.2 [0, 0.2] 0.8 0.2
[0.8,1] 0 0 0 1 0

The probability P̄y(Ã) of the fuzzy event Ã is now determined by the intersection of the
fyzzy sets P ∗y (Ã) and P̄ ∗y (Ã) modeled by the min-operator as in definition 2.1:

P̄y(Ã)(w) =


0 , w = 0
0.2 , w ∈ [0, 0.2]
0.6 , w ∈ [0.2, 0.8]
0.2 , w ∈ [0.8, 1]
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For example consider a problem in which the objective function corresponds to three
partial utility functions.

f1(x) ⇒

 ũ11 = a1x̃1 + b1x̃2 + c1x̃3

ũ12 = a2x̃1 + b2x̃2 + c2x̃3

ũ13 = a3x̃1 + b3x̃2 + c3x̃3

⇒
⇒
⇒


M̃u11 = {(x1, µ1), (x2, µ2), (x3, µ3)}
M̃u12

= {(x1, µ1), (x2, µ2), (x3, µ3)}
M̃u13 = {(x1, µ1), (x2, µ2), (x3, µ3)}

(2.2)

Combining the partial utility functions The next step for solving the problem is com-
bining the partial utility functions and achieving the conditional utility function for each
objective. To do this, a coefficient for each partial utility function is needed. To achieve
the coefficients we can use the probabilities calculated earlier.

On the other hand, the probabilities of the partial utility functions are fuzzy sets and
each member of these sets is a probability period with a degree of membership, while a
crisp coefficient for each utility function is needed. So, to deal with this, some levels of
probabilities can be used by cutting these fuzzy sets of probabilities based on the decision
maker’s opinion. Since the crisp probability for each variable were available at first for
the whole planning period, so the probability of each partial utility function has been
calculated for the whole planning period. But in the proposed method, it has been decided
to divide the whole period to partial periods and then assign a partial utility function to
each one of these partial periods. So it is rational to use some cuts on the fuzzy sets of
probabilities.

For example consider a company with two shifts for its employees and the objective
is maximizing the profit. After checking the conditions existing in the company, it’s been
decided that the objective should have two partial utility functions. On the other hand,
the manager wants to achieve at least 60% of the company’s profit in the first shift and
if the profit of the first shift is less than 60% of the whole profit in the planning period,
there will be no utility or satisfaction for the manager. So the partial utility function of
the first shift should occur at least 60% of the whole planning period and in result, the
partial utility function for the second shift should also occur at most 40% of the whole
period. The manager’s request should be applied on the probability sets and therefore
those members of the probability set of the first partial utility function which are in the
interval of 60% to 100% should be selected for this function and those members of the
probability set of the second partial utility function which are in the interval 0% to 40%
should be selected for the second utility function.

Now for calculating the coefficients, we can sum the degree of the memberships of the
elements selected for each of the partial utility functions from the probability sets, call this
summation “s”. After that for each objective, we should sum all of these “s” and then it
will be called cumulative value “S”. By dividing each“s” by “S”, a coefficient“t” for each
partial utility function will be achieved.

Example 2.2. consider the probabilities for two partial utility functions ũ1 and ũ2

Pũ1
= {((0, 0.6), 0.3), ((0.6, 0.8), 0.1), ((0.8, 1), 0.3)}

Pũ2
= {((0, 0.2), 0.3), ((0.2, 0.4), 0.4), ((0.4, 1), 0.2)}

Consider that the manager requested that the function ũ1 must occur at least 60% and the
function ũ2 must occur at most 40% of the whole period.
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s1 = µ(0.6, 0.8) + µ(0.8, 1) = 0.1 + 0.3 = 0.4 s2 = µ(0, 0.2)+ µ(0.2, 0.4) =0.3+0.4=0.7
S = s1 + s2 = 0.3 + 0.7 = 1.1 t1 = s1

S = 0.36 , t2 = s2
S = 0.64 .

The coefficients of the partial utility functions are as f1(x)⇒

 ũ11

ũ12

ũ13

 ⇒
⇒
⇒

 t11

t12

t13

 .

Since the partial utility functions are not utility independent from each other, for com-
bining them and creating the conditional utility functions, we can simply add them to-
gether with their coefficients. Ũ1 is conditional utility function for f1(x).

Ũ1 = t11ũ11 + t12ũ12
+ t13ũ13 (2.3)

Combining the conditional utility functions. Based on the Keeney and Raiffa [7],
there are different forms to combine utility functions. In this paper, formation of the mul-
tiplicative utility function is used. Let us first define the mutual utility independence and
then state Theorem 2.1 [7].

Definition 2.2. AttributesX1 , X2 , . . . , Xn are mutually utility independent if every sub-
set of {X1 , X2 , . . . , Xn} is utility independent of its complement.

Theorem 2.1. If attributes X1 , X2 , . . . , Xn are mutually utility independent, then

u (x) =
∑n
i=1 kiui(x) +K

∑n

i = 1
j > i

ki. kj . ui(xi) . uj(xj) +K2
∑n

i = 1
j > i
` > j

ki. kj . k`. ui(xi).

. uj(xj) . u`(x`) + ...+Kn−1k1k2 . . . kn u1(x1)u2(x2) . . . un(xn) ,
(2.4)

where
i) u is normalized by u (x0

1, x
0
2, ... , x

0
n) = 0 and u (x∗1, x

∗
2, ... , x

∗
n) = 1 ;

ii) ui(xi) is a conditional utility function on Xi normalized by ui(x0
i ) = 0 and ui(x∗i ) = 1,

i = 1 , 2 , ... , n ;
iii) ki = u (x∗i , x̄

0
i ) ;

iv) K is a scaling constant that is a solution to: 1 +K =
∏n
i=1 (1 +K. ki)

Defuzzification of the conditional utility functions As known, the conditional utility
functions of the problem we considered are fuzzy functions. So after combining these
functions by using the multiplicative formation, the Total utility function will be a non-
linear fuzzy function that can’t be solved with the existing methods. Therefor each condi-
tional utility function should be defuzzified and be changed to a crisp function. There are
many methods for defuzzification. One of these methods is using the α-cuts.

This method is based on the fuzzy set of each conditional utility function. In this paper,
a fuzzy set to each partial utility function is considered. Then the coefficients for these
functions were calculated to combine them and achieve a conditional utility function for
each objective. For combining the partial utility functions, it has been decided to multiply
every coefficient to its related function and then add these values to each other. Here the
same can be done with the fuzzy sets of partial utility functions. In other words, the al-
gebraic sum can be used to sum the fuzzy sets of the partial utility functions and achieve
the fuzzy set of the conditional utility function.

C̃ = Ã+ B̃ = (B̃ + Ã) ⇒ µC̃(x) = µÃ+B̃(x) = µÃ(x) + µB̃(x)− µÃ(x).µB̃(x) (2.5)
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Defuzzification by using α-cuts In this method, after achieving the fuzzy set of the
conditional utility functions, the least degree of membership among the elements in this
fuzzy set, must be selected and then based on this degree an α-cut will be applied. This
action changes the fuzzy set to a crisp set. So, after that, the fuzzy conditional utility
function pertaining to that crisp set will be a crisp conditional utility function. Consider
the following fuzzy set:

M̃Ũ1
= {(x1, µ1) , (x2, µ2) , (x3, µ3)} ⇒ Mα=minµi = {x1, x2, x3} .

Calculating the scaling constants. After the defuzzification and achieving the crisp
conditional utility functions, calculating the scaling constants to combine the conditional
utility functions is needed. Based on the Eq. (4), each conditional utility function has a
scaling constant. To achieve these constants the indifference level of the decision maker
should be calculated. By asking the decision maker, his indifference level is concluded as
(f1, f2) ≈ (β, 0) ∼ (0, λ) .

Recall that u (xi) actually means u (x0
1, ... , x

0
i−1, xi, x

0
i+1, ... , x

0
n). Hence

u (xi) = ki ui(xi) (2.6)

U (f1, 0) = k1 Uf1 (f1, 0) ,
U (0, f2) = k2 Uf2 (0, f2) .

So by considering the indifference level of the decision maker
U (β, 0) = U (0, λ) ⇒ k1Uf1 (β, 0) = k2 Uf2 (0, λ)
In the above equation, the conditional utility functions can be substituted with their val-
ues. So the unknown parameters will be only k1and k2. In this way a relation between
k1and k2 can be achieved. Then, the fourth property of the Theorem 2.1 to calculate all of
the scaling constants can be used.

Total utility function. Based on Eq. (2.4), the total utility function “U(F)” is a non-fuzzy
and non-linear

U(F ) = k1U(f1) + k2U(f2) +K . k1. k2 . U(f1).U(f2), (2.7)

and the non-linear programming methods can be used to solve it

3. NUMERICAL EXAMPLE

A numerical application of the proposed method with two objectives is presented in
order to illustrate its capabilities in dealing with multi-objective optimization problems.

max f1(x) = 2x1 + 2.4x2 + 3x3

max f2(x) = 1.8x1 + 1.5x2

s. t. 3x1 + x2 + 1.5x3 ≤ 400
x1 + x2 + 2x3 ≤ 250
1.2x2 + 0.4x3 ≤ 150
x1, x2, x3 ≥ 0

 → Z

In order to use the utility function method, at first each one of these objectives should
be solved as a single-objective problem to find the optimum value of them. These opti-
mum values will be considered as the values which their utility functions equals to 1. In
other words, if these objectives reach their optimum values, the utility level of the deci-
sion maker will be maximized which equals to 1.
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{
max f1(x)
s. t. x ∈ Z ⇒


f∗1 = 520.435
x∗1 = 81.52
x∗2 = 116.3
x∗3 = 26.09

⇒


0 ≤ f∗1 ≤ 520.435
Px1 = 0.36
Px2 = 0.52
Px3

= 0.12

{
max f2(x)
s. t. x ∈ Z ⇒


f∗2 = 352.5
x∗1 = 91.67
x∗2 = 125
x∗3 = 0

⇒


0 ≤ f∗2 ≤ 352.5
Px1

= 0.42
Px2

= 0.58
Px3

= 0

Based on the questions asked from the decision maker pertaining to the objectives of
the problem, it has been decided to define three utility functions for each objective.

f1(x) ⇒

 ũ′11 = 2x̃1 + 3x̃2 + 2x̃3

ũ′12 = x̃1 + 2x̃2 + x̃3

ũ′13 = x̃1 + x̃2 + 3x̃3

⇒
⇒
⇒


M̃11 = {(x1, 0.5), (x2, 0.3), (x2, 0.4)}
M̃12 = {(x1, 0.3), (x2, 0.4), (x2, 0.2)}
M̃13 = {(x1, 0.2), (x2, 0.3), (x2, 0.4)}

f2(x) ⇒

 ũ′21 = x̃1 + 2x̃2

ũ′22 = x̃1 + x̃2

ũ′23 = 2x̃1 + x̃2

⇒
⇒
⇒


M̃21 = {(x1, 0.6), (x2, 0.3)}
M̃22 = {(x1, 0.2), (x2, 0.4)}
M̃23 = {(x1, 0.2), (x2, 0.3)}

Then we should normalize these utility functions:
¯̃u1 = ũ′11 + ũ′12 + ũ′13 = 4x̃1 + 6x̃2 + 6x̃3 , ¯̃u2 = ũ′21 + ũ′22 + ũ′23 = 4x̃1 + 4x̃2 .
ũ11 =

ũ′
11

¯̃u1
= 2x̃1+3x̃2+2x̃3

4x̃1+6x̃2+6x̃3

ũ12 =
ũ′
12

¯̃u1
= x̃1+2x̃2+x̃3

4x̃1+6x̃2+6x̃3

ũ13 =
ũ′
13

¯̃u1
= x̃1+x̃2+3x̃3

4x̃1+6x̃2+6x̃3


ũ21 =

ũ′
21

¯̃u2
= x̃1+2x̃2

4x̃1+4x̃2

ũ22 =
ũ′
22

¯̃u2
= x̃1+x̃2

4x̃1+4x̃2

ũ23 =
ũ′
23

¯̃u2
= 2x̃1+x̃2

4x̃1+4x̃2

The results presented in Table 1. are obtained by performing the Yager’s Method [15]:

Table 1. Probabilities of the partial utility functions

ũ P̄y(M̃)

ũ11 P̄y(M̃11) = {(0, 0) , ([0, 1] , 0.3)}

ũ12 P̄y(M̃12) =

{
(0, 0) , ([0, 0.12] , 0.2) ,

(
[0.12, 0.48] , 0.3

)
, ([0.48, 0.52] , 0.4),

([0.52, 0.88] , 0.3) , ([0.88, 1] , 0.2)

}
ũ13 P̄y(M̃13) =

{
(0, 0) , ([0, 0.36] , 0.2) , ([0.36, 0.64] , 0.3) , ([0.64, 1] , 0.2)

}
ũ21 P̄y(M̃21) = {(0, 0) , ([0, 1] , 0.3)}
ũ22 P̄y(M̃22) = {(0, 0) , ([0, 1] , 0.2)}
ũ23 P̄y(M̃13) =

{
(0, 0) , ([0, 0.42] , 0.2) , ([0.42, 0.58] , 0.3) , ([0.58, 1] , 0.2)

}
After that the cuts over the probability sets should be applied based on the decision

maker’s opinion to calculate the coefficients as given in Table 2.
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Table 2. Coefficients of the partial utility functions
ũ P s S1 t ũ P s S1 t
ũ11 [0.6 , 1] s11 = 0.3 0.3 t11= 0.2 ũ21 [0.7 , 1] s21 = 0.3 0.3 t21= 0.3
ũ12 [0.3 , 0.6] s12 = 1 1.3 t12= 0.67 ũ22 [0.5 , 0.7] s22 = 0.2 0.5 t22= 0.2
ũ13 [0 , 0.3] s13 = 0.2 1.5 t13= 0.13 ũ23 [0 , 0.5] s23 = 0.5 1 t23= 0.5

Ũ(f1) = t11ũ11 + t12ũ12 + t13ũ13

Ũ(f1) = 1.2x̃1+2.07x̃2+1.46x̃3

4x̃1+6x̃2+6x̃3

Ũ(f2) = t21ũ21 + t22ũ22 + t23ũ23

Ũ(f2) = 1.5x̃1+1.3x̃2

4x̃1+4x̃2

The next step is the defuzzification of the utility functions.

M̃Ũ(f1)
= M̃ũ11

+ M̃ũ12
+ M̃ũ13

M̃Ũ(f2)
= M̃ũ21

+ M̃ũ22
+ M̃ũ23

M̃Ũ(f1)
= {(x1, 0.72) , (x2, 0.71) , (x3, 0.71)}⇒ Mα=minµi=0.71 = {x1, x2, x3}

M̃Ũ(f2)
= {(x1, 0.74) , (x2, 0.71)} ⇒Mα=minµi=0.71 = {x1, x2}

Ũ(f1) = 1.2x̃1+2.07x̃2+1.46x̃3

4x̃1+6x̃2+6x̃3
⇒U(f1) = 1.2x1+2.07x2+1.46x3

4x1+6x2+6x3

Ũ(f2) = 1.5x̃1+1.3x̃2

4x̃1+4x̃2
⇒ U(f2) = 1.5x1+1.3x2

4x1+4x2

After defuzzification of the utility functions the scaling constants should be calculated:{
U(F ) (0, 0) = 0
U(F ) (520.435 , 352.5) = 1

⇒
{
U(F ) (520.435 , 0) = k1

U(F ) (0 , 352.5) = k2

and
{
U(F ) (f1, 0) = k1U(f1) (f1 , 0)
U(F ) (0, f2) = k2U(f2) (0 , f2) .

The indifference level of the decision maker has been described as
(f1, f2) ≈ (250 , 0) ∼ (0 , 352.5)
U(F ) (250 , 0) = U(F ) (0 , 352.5)
k1. U(f1) (250 , 0) = k2 . U(f2) (0 , 352.5)
k1. U(f1) (250 , 0) = k2 .

On the other hand, we know that{
U(f1) (0, 0) = 0
U(f1) (520.435 , 0) = 1

{
U(f2) (0, 0) = 0
U(f2) (0 , 352.5) = 1

and 1
520.435 =

U(f1)(250 , 0)

250 → U(f1) (250, 0) = 0.48 → K = 1−1.48k1
0.48k21

In order to calculate k1, the following procedure can be used. By asking from the deci-
sion maker we conclude that

{(520.435 , 352.5) : (0 , 0)} ∼ (320 , 160) ;

(320 , 160)
⇒ 1

2 ⇒ (520.435 , 352.5)
⇒ 1

2 ⇒ (0 , 0)

U(F )(320, 160) = 1
2U(F )(520.435, 352.5) + 1

2U(F )(0, 0) = 0.5

So by considering this value in the Eq. (2.7), we have

U(F ) = 0.5 = k1U(f1=320) + k2U(f2=160) +K . k1. k2 . U(f1=320). U(f2=160) (3.8)

On the other hand it is known that U(f1) (320 , 0) = 0.61 , U(f2) (0 , 160) = 0.45
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So by solving Eq. (3.8) k1 = 0.54 , k2 = 0.26 , K = 1.43 .
Finally, the total utility function will be expressed as

U(f1, f2) =
(

0.65x1+1.12x2+0.79x3

4x1+6x2+6x3

)
+
(

0.39x1+0.34x2

4x1+4x2

)
+
(

0.36x2
1+0.93x1x2+0.54x2

2+0.38x2x3+0.44x1x3

16x2
1+40x1x2+24x2

2+24x1x3+24x2x3

)
and the problem will be changed to the following form

max U (f1, f2)
s. t. 3x1 + x2 + 1.5x3 ≤ 400

x1 + x2 + 2x3 ≤ 250
1.2x2 + 0.4x3 ≤ 150

x1, x2, x3 ≥ 0 .

U∗ (f1, f2) = 0.294
x∗ = (0 , 125 , 0)
F ∗ = (300 , 187.5)

Note that the numerical example is based on a production system and the related data
are taken from the normal production shift. The utility functions are formed regarding
to the management policies. The example can be designed with respect to other utilities
or other objectives whether minimize or maximize, and the procedure can be repeated to
obtain the solution. For example one can substitute this problem with a more complicated
constrained multi objective problem which has so many factors to be considered in the
process of the algorithm., i.e., the complexity does not influence the solution capability.

4. MAIN RESULTS

This paper proposed a new method to solve multi objective problem using multiple
utility functions for each objective. In the classic utility method there is only one utility
function for each objective. Based on different situations in the programming environ-
ment and the uncertainty in decision making, fuzzy consideration was included. To solve
the problem, Yager’s method in the field of fuzzy probabilistic and the combination for-
mation of conditional utility functions suggested by Keeney and Raiffa [15, 16] called
multiplicative, were adapted. Since the conditional utility functions were in the fuzzy en-
vironment, the α-cut method was used to defuzzify the functions. Finally the total utility
function of the problem was optimized to achieve the best solutions for the objectives and
maximize the utility of the decision maker.

To check the capability of the proposed method, a numerical illustration extracted from
an industrial unit has been applied in the form of a constrained multi objective problem.
Based on the experimental results it can be concluded that the proposed methodology
enables the decision making process for optimizing a constrained multi-objective problem
using the utility function method under uncertainty.

As future researches the following topics could be of interest: Here we considered lin-
ear utility functions while exponential utility functions could also be worked on, using
linguistic variables as utility based on preferences of decision makers, surveying the fuzzy
transition matrix among multiple utility functions.
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