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The <a operator in ideal topological spaces

WADEI FARIS AL-OMERI, MOHD. SALMI MD. NOORANI, T. NOIRI and A. AL-OMARI

ABSTRACT. Given a topological space (X, τ) an ideal I on X and A ⊆ X , the concept of a-local function is
defined as followsAa∗

(I, τ) = {x∈X : U∩A /∈ I, for every U ∈ τa(x)}. In this paper a new type of space has
been introduced with the help of a-open sets and the ideal topological space called a-ideal space. We introduce
an operator <a : ℘(X) → τ , for every A ∈ ℘(X), and we use it to define some interesting generalized a-open
sets and study their properties.

1. INTRODUCTION

Ideals in topological spaces have been considered since 1930. This topic has won its
importance by Vaidaynathaswamy [20, 11]. In [10], Jankovic and Hamlett investigated
further properties of ideal topological spaces. Applications to various fields were further
investigated by Hamlett and Jankovic [9]; Dontchev et al. [5]; Mukherjee et al. [14]; Arenas
et al. [4]; Navaneethakrishnan et al. [16]; Nasef and Mahmoud [17] etc.

In an ideal topological space Kuratowski [11] has defined the concept of local func-
tion. T. Natkaniec [15] in 1986 introduced another operator ψ in ideal topological spaces.
Hamlett and Jankovic in [9] and Modak and Bandyopadhyay in [13] have considered the
operator ψ and discussed its properties in detail. They also have shown that the opera-
tor ψ gives an interior operator which is the interior operator of the topology defined by
Jankovic and Hamlett in [10].

In this paper we consider a new type of space, called a-ideal space, by replacing τ of
the ideal topological space (X, τ, I) by the set of all a-open sets of (X, τ). With the help
of a-local functions [1] we shall also define and study an operator <a : ℘(X) → τ which
is defined as <a(A) = {x ∈ X : there exists Ux ∈ τa containing x such that Ux −A ∈ I},
for every A ∈ ℘(X). Its equivalent definition is <a(A) = X − (X −A)a

∗
. Further, we also

discuss the properties of this operator.

2. PRELIMINARIES

Throughout this paper, (X, τ) and (Y, σ) always mean topological spaces on which no
separation axiom is assumed. A subsetA of a space (X, τ) is said to be regular open (resp.
regular closed) [19] if A = Int(Cl(A)) (A = Cl(Int(A)), respectively).
A is called δ-open [21] if, for each x ∈ A, there exists a regular open set G such that

x ∈ G ⊂ A. The complement of δ-open set is called δ-closed. A point x ∈ X is called a
δ-cluster point of A if Int(Cl(U)) ∩ A 6= Ø, for each open set V containing x. The set of
all δ-cluster points of A is called the δ-closure of A and is denoted by Clδ(A) [21]. The set
δ-interior of A is the union of all regular open sets of X contained in A and its denoted by
Intδ(A) [21]. A is δ-open if Intδ(A) = A. δ-open sets form a topology τ δ . The collection
of all δ-open sets in X is denoted by δO(X). For more details see [2, 3].
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A subset A of a space (X, τ) is said to be a-open (resp. a-closed) [6] if A ⊂ Int(Cl(δ −
Int(A))) (Cl(Int(δ−Cl(A))) ⊂ A, respectively), orA ⊂ Int(Cl(δInt(A))) (Cl(Int(δCl(A)))
⊂ A, respectively). The family of a-open sets of X forms a topology on X , denoted by τa

[7]. The family of all a-open (respectively a-closed) sets containing x is denoted by τa(x)
(aC(X,x), respectively).

If A is a subset of a space X , then the intersection of all a-closed sets containing A
is called the a-closure of A and is denoted by aCl(H). The a-interior of A, denoted by
aInt(A), is defined by the union of all a-open sets contained in A [6].

An ideal I on a topological space (X, I) is a nonempty collection of subsets ofX which
satisfies the following conditions:
A ∈ I and B ⊂ A implies B ∈ I; A ∈ I and B ⊂ A implies A ∪B ∈ I.
Applications of these concepts to various fields were further investigated by Jankovic

and Hamlett [10] Dontchev et al. [5]; Mukherjee et al. [14]; Arenas et al. [4]; Nava-
neethakrishnan et al. [16]; Nasef and Mahmoud [17] etc.

Given a topological space (X, I) with an ideal I on X and if ℘(X) denotes the set of all
subsets of X , a set operator (.)

∗
: ℘(X) → ℘(X), called a local function [22, 10] of A with

respect to τ and I, is defined as follows: for A ⊆ X ,

A∗(I, τ) = {x ∈ τ | U ∩A /∈ for every U ∈ τ(x)} ,

where τ(x) = {U ∈ τ | x ∈ U}.
A Kuratowski closure operator is Cl∗(x) = A ∪ A∗(I, τ). When there is no chance for

confusion, we will simply write A∗ for A∗(I, τ). X∗ is often a proper subset of X . The
hypothesis X = X∗ is equivalent to the hypothesis τ ∩ I = Ø and τ∗ for τ∗(I, τ). If I is
an ideal on X , then (X, τ, I) is called an ideal space. N is the ideal of all nowhere dense
subsets in (X, τ). A subset A of an ideal space (X, τ, I) is ?-dense in itself [8], if A ⊆ A∗.

For every ideal topological space, there exists a topology τ∗(I) finer than τ generated
by β(I, τ) = {U −A | U ∈ τ and A ∈ I}, but in general β(I, τ) is not always a topology
[10].

Let (X, τ, I) be an ideal topological space and A be a subset of of X . Then A∗(I, τ) =
{x ∈ X : U ∩A /∈ I for every U ∈ SO(X,x)} is called a semi local function of A with re-
spect to I and τ [12]. Let (X, I, τ) be an ideal topological space. We say that the topology
τ is compatible with the I, denoted τ ∼ I, if the following hold for every A ⊂ X : if for
every x ∈ A there exists a U ∈ τ such that U ∩A ∈ I, then A ∈ I.

3. a-LOCAL FUNCTION

Quite recently, W. Al-Omeri, Mohd. Salmi Md. Noorani and A. Al-Omari [1] defined
the a-local function and obtained some interesting results. Let (X, τ, I) be an ideal topo-
logical space andA be a subset ofX . ThenAa

∗
(I, τ) = {x ∈ X : U ∩A /∈ I, for every U ∈ τa(x)}

is called a-local function [1] of A with respect to I and τ , where τa(x) = {U ∈ τa : x ∈ U}.
We denote simply Aa

∗
for Aa

∗
(I, τ).

Remark 3.1. [1]
i) The minimal ideals are {Ø} in any topological space (X, τ) and the maximal ideal is
℘(X). It can be deduced that Aa

∗
({Ø}) = Cla(A) 6= Cl(A) and Aa

∗
(℘(X)) = Ø, for

every A ⊂ X .
ii) If A ∈ I, then Aa

∗
= Ø.

iii) A * Aa
∗

and Aa
∗ * A, in general.

Theorem 3.1. [1] Let (X, τ, I) be an ideal in topological space and A, B be subsets of X . Then
for a-local functions the following properties hold:
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i) τa ∩ I = Ø;
ii) If I ∈ I then aInt(I) = Ø;

iii) For every G ∈ τa then G ⊆ Ga∗ ;
iv) X = Xa∗ .

Theorem 3.2. [1] Let (X, τ, I) be an ideal in topological space and A, B subsets of X . Then for
a-local functions the following properties hold:

i) If A ⊂ B, then Aa
∗ ⊂ Ba∗ ;

ii) For another ideal J ⊃ I on X, Aa
∗
(J) ⊂ Aa∗(I);

iii) Aa
∗ ⊂ aCl(A);

iv) Aa
∗
(I) = aCl(Aa

∗
) ⊂ aCl(A) (i.e Aa

∗
is a a-closed subset of aCl(A));

v) (Aa
∗
)a

∗ ⊂ Aa∗ ;
vi) (A ∪B)a

∗
= Aa

∗ ∪Ba∗ ;
vii) Aa

∗ −Ba∗ = (A−B)a
∗ −Ba∗ ⊂ (A−B)a

∗
;

viii) If U ∈ τa, then U ∩Aa∗ = U ∩ (U ∩A)a
∗ ⊂ (U ∩A)a

∗
;

ix) If U ∈ τa, then (A− U)a
∗

= Aa
∗

= (A ∪ U)a
∗
;

x) If A ⊆ Aa∗ , then Aa
∗
(I) = aCl(Aa

∗
) = aCl(A).

Theorem 3.3. [1] Let (X, τ, I) be an ideal topological space and A a subset of X . Then the
following are equivalent:

i) I ∼a τ ;
ii) If a subset A of X has a cover a-open sets of whose intersection with A is in I, then A is in I,

in other words Aa
∗

= Ø, then A ∈ I;
iii) For every A ⊂ X , if A ∩Aa∗ = Ø, A ∈ I;
iv) For every A ⊂ X , A−Aa∗ ∈ I;
v) For every A ⊂ X , if A contains no nonempty subset B with B ⊂ Ba∗ , then A ∈ I.

Theorem 3.4. [1] Let (X, I, τ) be an ideal topological space. Then β(I, τ) is a basis for τa
∗
.

β(I, τ) = {V − Ii : V ∈ τa(x), Ii ∈ I} and β is not, in general, a topology.

Theorem 3.5. [1] Let (X, τ, I) be an ideal topological space and A a subset of X . If τ is a-
compatible with I, then the following are equivalent:

i) For every A ⊂ X , if A ∩Aa∗ = Ø implies Aa
∗

= Ø;
ii) For every A ⊂ X , (A−Aa∗)a

∗
= Ø;

iii) For every A ⊂ X ,(A ∩Aa∗)a
∗

= Aa
∗
.

Remark 3.2. [1] The notion of local function and semi local function are independent of
that of a-local function, as illustrated by the following example.

Example 3.1. [1] LetX = {x, y, w, z}with a topology τ = {Ø, X, {x, y}} and I = {Ø, {x} , {y} ,
{x, y}}. Take A = {x, z}. Then A∗ = {Ø}, A∗ = {z}, Aa∗ = X .

4. ON <a-OPERATOR IN IDEAL TOPOLOGICAL SPACES

In this section we shall introduce the operator <a in (X, τ, I). In [11], Kuratowski has
shown that Cl(A) = X − Int(X − A). This relation is the motivation of defining the
operator <a. We shall also discuss the behaviour of this operator.

Definition 4.1. Let (X, τ, I) be an a–ideal space. An operator <a : ℘(X)→ τ is defined as
follows: for every A ∈ ℘(X),

<a(A) = {x ∈ X : there existsUx ∈ τa such that Ux −A ∈ I}.

Let us observes that <a(A) = X − (X −A)a∗.
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Theorem 4.6. Let (X, τ, I) be an a-ideal space. Then for A ∈ ℘(X), <a(A) = X − (X −A)a∗.

Proof. Let x ∈ <a(A). Then there exists an a-open setUx containing x such thatUx−A ∈ I.
Then X ∩ (Ux − A) ∈ I implies that Ux ∩ (X − A) ∈ I. So x /∈ (X − A)a

∗
and hence

x ∈ X − (X −A)a
∗
. Therefore

<a(A) ⊂ X − (X −A)a∗. (4.1)

For the reverse inclusion, consider x ∈ X − (X − A)a∗. Then x /∈ (X − A)a
∗
. Therefore

there exists an a-open set Ux containing x such that Ux ∩ (X − A) ∈ I. This implies that
Ux −A ∈ I. Hence x ∈ <a(A). So

X − (X −A)a∗ ⊂ <a(A). (4.2)

From (4.1) and (4.2), we get <a(A) = X − (X −A)a∗.
Actually the relation <a(A) = X − (X − A)a∗ is equivalent to the definition of the

operator <a. �

Theorem 4.7. Let (X, τ, I) be an a–ideal space. Then the following properties hold:
i) If A ⊂ X , then <a(A) is a-open.

ii) If A ⊂ B, then <a(A) ⊆ <a(B).
iii) If A, B ∈ ℘(X), then <a(A ∩B) = <a(A) ∩ <a(B).
iv) If U ∈ τa∗ , then U ⊆ <a(U).
v) If A ⊂ X , then <a(A) ⊆ <a(<a(A)).

vi) If A ⊂ X , then <a(A) = <a(<a(A)) if and only if
(X −A)a

∗
= ((X −A)a

∗
)a

∗
.

vii) If A ∈ I, then <a(A) = X −Xa∗ .
viii) If A ⊂ X , then A ∩ <a(A) = Inta

∗
(A),

where Inta
∗

is the interior of τa
∗
(Theorem 3.4).

ix) If A ⊂ X , I ∈ I, then <a(A− I) = <a(A).
x) If A ⊂ X , I ∈ I, then <a(A ∪ I) = <a(A).

xi) If (A−B) ∪ (B −A) ∈ I, then <a(A) = <a(B).
xii) If A, B ∈ ℘(X), then <a(A ∩B) ⊂ <a(A) ∩ <a(B).

Proof. (1) This follows by Theorem 4 (2).
(2) Given A ⊆ B, then (X − A) ⊇ (X − B). Then, from Theorem 4 (1), (X − A)a

∗ ⊇
(X −B)a

∗
and hence <a(A) ⊆ <a(B).

(3) <a(A ∩ B) = X − (X − A ∩ B)a
∗

= X − ((X − A) ∪ (X − B))a
∗
. This implies that

<a(A ∩ B) = X − (X − A)a
∗ ∪ (X − B)a

∗
, from Theorem 4 (7). Therefore <a(A ∩ B) =

(X − (X −A)a
∗
) ∩ (X − (X −B)a

∗
), and hence <a(A ∩B) = <a(A) ∩ <a(B).

(4) If U ∈ τa∗ , then X −U is τa
∗
-closed which implies (X −U)a

∗ ⊆ (X −U) and hence
U ⊆ X − (X − U)a

∗
= <a(U).

(5) From (1) <a(A) is a-open, and from (4) <a(A) ⊆ <a(<a(A)).
(6) This follows from the facts:

i) <a(A) = X − (X −A)a
∗
.

ii) <a(<a(A)) = X − [X −X − (X −A)a
∗
)]a

∗
= X − ((X −A)a

∗
)a

∗
.

(7) By Theorem 4 (10), we obtain that (X −A)a
∗

= Xa∗ if A ∈ I. Then <a(A) = X − (X −
A)a

∗
= X −Xa∗ .

(8) If x ∈ A ∩ <a(A), then x ∈ A and there exist a Ux ∈ τa(x) such that Ux − A ∈ I. Then
by Theorem 3.4, Ux − (Ux − A) is an τa

∗
-open neighbourhood of x and x ∈ Inta∗(A). On

the other hand, if x ∈ Inta∗(A), there exists a basic τa
∗
-open neighbourhood Vx − I of x,

where Vx ∈ τa and I ∈ I, such that x ∈ Vx − I ⊆ A which implies x ∈ Vx − A ⊆ I and
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hence Vx −A ∈ I. Hence x ∈ A ∩ <a(A).
(9) We know that X − [X − (A − I)]a

∗
= X − [(X − A) ∪ I]a

∗
= X − (X − A)a

∗
(from

Theorem 4(10)). So <a(A− I) = <a(A) by (9) and (10).
(10) This follows from Theorem (9) and X − [X − (A ∪ I)]a

∗
= X − [(X − A) − I]a

∗
=

X − (X −A)a
∗

= <a(A).
(11) Given that (A−B)∪ (B−A) ∈ I , and let A−B = I1, B−A = I2. We observe that I1
and I2 ∈ I by heredity. Also observe that B = (A− I1) ∪ I2. Thus <a(A) = <a(A− I1) =
<a[(A− I1) ∪ I2] = <a(B).
(12) Proof is obvious from (2). �

Corollary 4.1. Let (X, τ, I) be an a–ideal space. Then U ⊆ <a(U) for every a-open set U .

Proof. We know that<a(A) = X−(X−A)a
∗
. Now by Theorem 4(4) (X−U)a

∗ ⊆ aCl(X−
U) = X − U , since X − U is a-closed. Therefore, U = X − (X − U) ⊆ X − (X − U)a

∗
=

<a(U) �

Theorem 4.8. Let (X, τ, I) be an a-ideal space and A ⊆ X . Then the following properties hold:
i) <a(A) = {x ∈ X : there exists Ux ∈ τa(x): Ux −A ∈ I}.

ii) <a(A) = ∪{U ∈ τa : U −A ∈ I}.

Proof. (1) x ∈ <a(A) ⇔ x /∈ (X − A)a
∗ ⇔ there exists Ux ∈ τa(x) such that Ux − A =

Ux ∩ (X −A) ∈ I ⇔ {x ∈ X : there existUx ∈ τa(x) : Ux −A ∈ I}.
(2) Let H = ∪{U ∈ τa : U − A ∈ I}. Now x ∈ H implies that there exist U ∈ τa with
x ∈ U such that U −A ∈ I. Thus by (1), x ∈ <a(A). From the expression of <a(A) in (1) it
is clear that <a(A) ⊆ H �

Remark 4.3. Let I = Ø, then by Theorem 4.8(2) <a(A) = ∪{U ∈ τa : U − A = Ø} =
∪{U ∈ τa : U ⊆ A} = aInt(A), for any space (X, τ).

Theorem 4.9. Let (X, τ, I) be an a–ideal space. If Ψ = {A ⊆ X : A ⊆ <a(A)}, then Ψ is a
topology for X and Ψ = τa

∗
.

Proof. Let Ψ = {A ⊆ X : A ⊆ <a(A)}. First, we show that Ψ is a topology. Observe
that Ø ⊆ <a(Ø) and X ⊆ <a(X) = X , and thus Ø and X ∈ Ψ. Now if A,B ∈ Ψ, then
A∩B ⊆ <a(A)∩<a(B) = <a(A∩B), which implies thatA∩B ∈ Ψ. If {Aα : α ∈ <a} ⊆ Ψ,
then Aα ⊆ <a(Aα) ⊆ <a(∪Aα) for every α and hence ∪Aα ⊆ <a(∪Aα). This shows that
Ψ is a topology. Now if U ∈ τa∗ and x ∈ U , then by Theorem 3.4 there exist V ∈ τa(x)
and I ∈ I such that x ∈ V − I ⊆ U . Clearly V − U ⊆ I so that V − U ∈ I by heredity and
hence x ∈ <a(U). Thus U ⊆ <a(U) and we have shown τa

∗ ⊆ Ψ. Now let A ∈ Ψ, then we
have A ⊆ <a(A), that is, A ⊆ X − (X − A)a

∗
and (X − A)a

∗ ⊆ X − A. This shows that
X −A is τa

∗
-closed and hence A ∈ τa∗ . Thus Ψ ⊆ τa∗ and hence Ψ = τa

∗
. �

Theorem 4.10. Let (X, τ, I) be an a–ideal space and A ⊆ X . Then for any a-open set A of X ,
<a(A) = ∪{U ∈ τa : (U −A) ∪ (A− U) ∈ I}.

Proof. Let H = ∪{U ∈ τa : (U − A) ∪ (A − U) ∈ I}. Since I is heredity, it is obvious
that H = ∪{U ∈ τa : (U − A) ∪ (A − U) ∈ I} ⊆ ∪{U ∈ τa : (U − A) ∈ I} = <a(A) for
every A ⊆ X . Now, let x ∈ <a(A), then there exist U ∈ τa(x) such that U − A ∈ I. Let
V = U ∪A ∈ τa, then (V −A) ∪ (A− V ) = U −A ∈ I and x ∈ V ∈ τa. Thus x ∈ H . �

Definition 4.2. [1] Let (X, τ, I) be an ideal topological space. Then τ is said to be a-
compatible with respect to I, denoted by τ ∼a I, if and only if, for every x ∈ A there exist
U ∈ τa(x) such that U ∩A ∈ I, then A ∈ I.
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Theorem 4.11. Let (X, τ, I) be an a-ideal space. Then τ ∼a I if and only if <a(A)−A ∈ I, for
every A ⊆ X .

Proof. (Necessity). Assume τ ∼a I and let A ⊆ X . Observe that x ∈ <a(A)− A ∈ I if and
only if x /∈ A and x /∈ (X −A)a

∗
if and only if x /∈ A and there exists Ux ∈ τa(x) such that

Ux − A = Ux ∩ (X − A) ∈ I if and only if there exists Ux ∈ τa(x) such that x ∈ Ux − A.
Now, for each x ∈ <a(A) − A and Ux ∈ τa(x), Ux ∩ (<a(A) − A) ∈ I by heredity so that
<a(A)−A ∈ I by assumption that τ ∼a I.
(sufficiency). Let A ⊆ X and assume for each x ∈ A there exists Ux ∈ τa(x) such that
Ux ∩ A ∈ I. Observe that <a(X − A) − (X − A) = {x ∈ X : there existUx ∈ τa(x) :
Ux − A ∈ I}. Thus we have A ⊆ <a(X − A)− (X − A) ∈ I and hence A ∈ I by heredity
of I. �

Proposition 4.1. Let (X, τ, I) be an a–ideal space. Then τ ∼a I, A ⊆ X . If N is a nonempty
a-open subset of A∗ ∩ <a(A), then N −A ∈ I and N ∩A /∈ I.

Proof. If N ⊆ Aa
∗ ∩ <a(A), then N − A ⊆ <a(A) − A ∈ I by Theorem 4.11 and hence

N − A ∈ I by heredity. Since N ∈ τa − {Ø} and N ⊆ Aa
∗
, we have N ∩ A /∈ I by the

definition of Aa
∗
. �

As a consequence of Theorem 4.11, we have the following.

Corollary 4.2. Let (X, τ, I) be an a-ideal space with τ ∼a I. Then <a(<a(A)) = <a(A), for
every A ⊆ X .

Proof. <a(A) ⊆ <a(<a(A)) follows from Theorem 4.7(5). Since τ ∼a I, <a(A) = A ∪ I for
some I ∈ I (Theorem 4.11) and hence <a(<a(A)) = <a(A) by Theorem 4.7(10). �

To see that the converse of Corollary 4 does not hold, let X be an infinite discrete space
with I the ideal of finite subsets. For each A ⊆ X , (<a(A)) = X , and hence <a(<a(A)) =
<a(A) = X , but I is not a-compatible with τ .

Theorem 4.12. Let (X, τ, I) be an a-ideal space with τ ∼a I. Then <a(A) = ∪{<a(U) : U ∈
τa,<a(U)−A ∈ I}.

Proof. Let H(A) = ∪{<a(U) : U ∈ τa,<a(U) − A ∈ I}. clearly, H(A) ⊆ <a(A). Now
let x ∈ <a(A). Then there exists U ∈ τa(x) such that U − A ∈ I. By corollary 4.1,
U ⊆ <a(U and <a(U) − A ⊆ [<a(U) − U ] ∪ [U − A]. By Theorem 4.11, <a(U) − U ∈ I
and hence <a(U) − A ∈ I hence x ∈ H(A) and H(A) ⊇ <a(A). Consequently, we obtain
H(A) = <a(A). �

Newcomb defined In [18], A = B[mod I] if (A − B) ∪ (B − A) ∈ I and observed that
= [mod I] is an equivalence relation. By Theorem 4.7(11), we have that if A = B[mod I],
then <a(A) = <a(B).

Definition 4.3. Let (X, τ, I) be an a–ideal space and with setA ⊆ X . A is said to be a Baire
set with respect to τa and I, denoted A ∈ Br(X, τ, I), if there exist a a-open set U ∈ τa
such that A = U [mod I].

Lemma 4.1. Let (X, τ, I) be an a-ideal space with τ ∼a I. If U, V ∈ τa and <a(U) = <a(V ),
then U = V [mod I].

Proof. Since U ∈ τa, by Theorem 4.7(4) U ⊆ <a(U) and hence U − V ⊆ <a(U) − V =
<a(V ) − V ∈ I by Theorem 4.11. Similarly V − U ∈ I. Now (U − V ) ∪ (V − U) ∈ I by
additivity. Hence U = V [mod I]. �
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Theorem 4.13. Let (X, τ, I) be an a-ideal space with τ ∼a I. If A,B ∈ Br(X, τ, I), and
<a(A) = <a(B), then A = B[mod I].

Proof. U, V ∈ τa such that A = U [mod I] and B = V [mod I]. Now <a(A) = <a(U) and
<a(B) = <a(V ) by Theorem 4.7(11). <a(U) = <a(V ) and henceU = V [mod I] by Lemma
4.1 then A = B[mod I] by transitivity. �

Proposition 4.2. Let (X, τ, I) be an a-ideal space with τa ∩ I = Ø. If B ∈ Br(X, τ, I) − I,
then <a(B) ∩ aInt(Ba∗) 6= Ø.

Proof. Assume B ∈ Br(X, τ, I) − I, then by Proposition 4.3(1) there exists A ∈ τa − {Ø}
such that B = A[mod I]. This implies Ø 6= A ⊂ Aa

∗
= ((B − J) ∪ I)a

∗
= Ba

∗
, where J =

B − A, I = A− B ∈ I by Theorem 3.1 and Theorem 4(9). Also Ø 6= A ⊂ <a(A) = <a(B)

by Theorem 4.7(11), so that A ⊆ <a(B) ∩ aInt(Ba∗). �

Proposition 4.3. Let (X, τ, I) be an a-ideal space
i) If B ∈ Br(X, τ, I)− I, then there exists A ∈ τa − {Ø} such that B = A[mod I]

ii) If τa ∩ I = Ø, then B ∈ Br(X, τ, I)− I if and only if there exists A ∈ τa − {Ø} such that
B = A[mod I].

Proof. (1) Assume B ∈ Br(X, τ, I) − I, then B ∈ Br(X, τ, I). Now, if there does not exist
A ∈ τa − {Ø} such that B = A[mod I], this implies that B ∈ I, which is a contradiction.

(2) Assume that there existsA ∈ τa−{Ø} such thatB = A[mod I]. ThenA = (B−J)∪I ,
where J = B − A, I = A− B ∈ I. If B ∈ I then A ∈ I by heredity and additivity, which
is contrast to τa ∩ I = Ø. �

Theorem 4.14. Let (X, τ, I) be an a–ideal space with τa ∩ I = Ø. Then, for A ⊆ X , <a(A) ⊆
Aa

∗
.

Proof. Suppose x ∈ <a(A) and x /∈ Aa
∗
. Then there exists U containing x such that

Ux ∈ aO(x) and Ux ∩ A ∈ I. Since x ∈ τa, then by Theorem 4.8(2) <a(A) = ∪{U ∈ τa :
U − A ∈ I} and there exist V ∈ τa such that x ∈ V and V − A ∈ I. Then we have
Ux ∩ V ∈ aO(x), (Ux ∩ V ) − A ∈ I and Ux ∩ V ∩ A ∈ I by heredity. Hence by finite
additivity we have (Ux ∩ V ∩A)∪ ((Ux ∩ V )−A) = Ux ∩ V ) ∈ I. Since (Ux ∩ V ) ∈ aO(x),
this is contrary with τa ∩ I = Ø. So x ∈ Aa∗ . This implies <a(A) ⊆ Aa∗ . �

Given an ideal topology space (X,τ, I), let U(X,τ, I) denoted by {A⊂X: there existsB∈
Br(X,τ,I)− I such thatB⊆ A}.

Proposition 4.4. Let (X, τ, I) be an a-ideal space with τa ∩ I = Ø. Then the following are
equivalent:

i) A ∈ U(X, τ, I);
ii) <a(A) ∩ aInt(Aa∗) 6= Ø;

iii) <a(A) ∩Aa∗ 6= Ø;
iv) <a(A) 6= Ø;
v) Inta

∗
(A) 6= Ø;

vi) There exists N ∈ τa − {Ø} such that N −A ∈ I and N ∩A /∈ I.

Proof. (1)⇒(2): LetB ∈ Br(X, τ, I)−I such thatB ⊂ A. Then aInt(Ba
∗
) ⊂ aInt(Aa∗) and

<a(B) ⊂ <a(A) and hence <a(B) ∩ aInt(Ba∗) ⊂ <a(A) ∩ aInt(Aa∗). By the proposition
4.3, we have <a(A) ∩ aInt(Aa∗) 6= Ø.

(2)⇒(3): The proof is obvious.
(3)⇒(4): The proof is obvious.
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(4)⇒(5): If <a(A) 6= Ø, then there exists U ∈ τa − Ø such that U − A ∈ I. Since U /∈ I
and U = (U−A)∪(U∩A), we have U∩A /∈ I. By Theorem 4.7 Ø 6= (U∩A) ⊂ <a(U)∩A =

<a((U −A) ∪ (U ∩A)) ∩A = <a((U ∩A) ∩A = Inta
∗
(A). Hence Inta

∗
(A) 6= Ø.

(5)⇒(6): If Inta
∗
(A) 6= Ø, then there existsN ∈ τa−Ø and I ∈ I such that Ø 6= N−A ⊂

A. We have N −A ∈ I, N = (N −A) ∪ (N ∩A) andN /∈ I. This implies that N ∩A /∈ I.
(6)⇒(1): LetB = N∩A /∈ I withN ∈ τa−Ø and (N−A) ∈ I. ThenB ∈ Br(X, τ, I)−I

since B /∈ I and (B −N) ∪ (N −B) = N −A ∈ I. �

Corollary 4.3. Let (X, τ, I) be an a–ideal space with τa ∩ I = Ø. Then for A ⊆ X , <a(A) ⊆
aCl(Aa

∗
).

Theorem 4.15. Let (X, τ, I) be an a–ideal space. Then the following properties are equivalent:
i) τa ∩ I = Ø;

ii) <a(Ø) = Ø;
iii) If A ⊆ X is a-closed, then , <a(A)−A = Ø;
iv) If I ∈ I. then <a(I) = Ø.

Proof. (1)⇒(2): Since τa ∩ I = Ø, then by Theorem 4.8(2) <a(A) = ∪{U ∈ τa : U − A ∈
I} = Ø.

(2)⇒(3): Suppose <a(A) − A, then there exist a Ux ∈ τa(x) such that x ∈ Ux − A ∈ I
and Ux − A ∈ τa. But then Ux − A ∈ {Ux ∈ τa : U ∈ I} which implies that <a(Ø) 6= Ø.
Hence <a(A)−A = Ø.

(3)⇒(4): Let I ∈ I and since Ø is a-closed, then <a(I) = <a(I ∪Ø) = <a(I) = Ø.
(4)⇒(1): Suppose A ∈ τa ∩ I, then A ∈ I and by (4) <a(A) = Ø. Since A ∈ τa, by

Corollary 4.1 we have A ⊆ <a(A) = Ø. Hence τa ∩ I = Ø. �

Definition 4.4. A subset in an a-ideal space (X, τ, I) is said to be Ia-dense if Aa
∗

= X .

The set of all Ia-dense in (X, τ, I) is denoted by IaD(X, τ). The collection of all dense
sets in (X, τ) is denoted by D(X, τ). Now we show that the collection of dense sets in a
topological space (X, τa

∗
) which is denoted by D(X, τa

∗
) and the collection of Ia-dense

ideal in a topological space (X, τ, I) are equal if τa ∩ I = Ø.

Theorem 4.16. Let (X, τ, I) be an a–ideal space. Then for x ∈ X , X − {x} is I-dense if and
only if <a({x}) = Ø.

Proof. The proof follows from the definition 4.4, since <a({x}) = (X − {x})a∗ = Ø. if and
only if X = (X − {x})a∗ . �

Theorem 4.17. Let (X, τ, I) be an a-ideal space. If τa ∩ I = Ø, then IaD(X, τ) = D(X, τa
∗
).

Proof. Let D ∈ IaD(X, τ). Then aCl∗(D) = D ∪Da∗ = X , i.e. D ∈ D(X, τa
∗
). Therefore

IaD(X, τ) ⊆ D(X, τa
∗
).

Conversely, letD ∈ D(X, τ)a
∗
. Then aCl∗(D) = D∪Da∗ = X . We prove thatDa∗ = X .

Let x ∈ X such that x /∈ Da∗ . Therefore there exists Ø 6= U ∈ τa such that U ∩ D ∈ I.
Since U /∈ I, U ∩ (X − D) /∈ I and hence U ∩ (X − D) 6= Ø. Let x0 ∈ U ∩ (X − D).
Then x0 /∈ D and also x0 ∈ Da∗ . Because x0 ∈ Da∗ implies that U ∩ D /∈ I which is
contrary to U ∩ D ∈ I. Thus x0 ∈ D ∪ Da∗ = aCl∗(D) = X . This is a contradiction.
Therefore, we obtain D ∈ IaD(X, τ). Therefore, D ∈ D(X, τa

∗
) ⊆ D ∈ IaD(X, τ). Hence

IaD(X, τ) = D(X, τa
∗
). �

Proposition 4.5. Let (X, τ, I) be an a–ideal space. If τa ∩ I = Ø, then <a(A) 6= Ø if and only
if A contains a nonempty τa

∗
-interior.
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Proof. Let <a(A) 6= Ø By Theorem 4.8(2), <a(A) = ∪{U ∈ τa : U − A ∈ I} and there
exist a nonempty set U ∈ τa such that U − A ∈ I. Let U − A = P , where P ∈ I. Now
U − P ⊆ A. By Theorem 3.4 U − P ∈ τa∗ and A contains a nonempty τa

∗
-interior.

Conversely, suppose that A contains a nonempty τa
∗
-interior. Hence there exist a

nonempty set U ∈ τa and P ∈ I such that U −P ⊆ A. So U −A ⊆ P . LetM = U −A ⊆ P ,
then M ∈ I. Hence ∪{U ∈ τa : U −A ∈ I} = <a(A) 6= Ø. �
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