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Algorithm for Hammerstein equations with monotone
mappings in certain Banach spaces

T. M. M. SOW, C. DIOP and N. DJITTE

ABSTRACT. For q > 1 and p > 1, let E be a 2-uniformly convex and q-uniformly smooth or p- uniformly
convex and 2-uniformly smooth real Banach space and F : E → E∗, K : E∗ → E be bounded and strongly
monotone maps with D(K) = R(F ) = E∗. We construct a coupled iterative process and prove its strong
convergence to a solution of the Hammerstein equation u+KFu = 0. Futhermore, our technique of proof is of
independent of interest.

1. INTRODUCTION

Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is said to be smooth if
the limit

lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S. E is said to be uniformly smooth if it is smooth and the limit is
attained uniformly for each x, y ∈ SE , and E is Fréchet differentiable if it is smooth and
the limit is attained uniformly for y ∈ SE .

A normed linear space E is said to be strictly convex if the following holds:

‖x‖ = ‖y‖ = 1, x 6= y ⇒
∥∥∥x+ y

2

∥∥∥ < 1.

The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by:

δE(ε) := inf
{

1− 1

2
‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
.

E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. Let p > 1. Then E is
said to be p-uniformly convex if there exists a constant c > 0 such that δE(ε) ≥ cεp for all
ε ∈ (0, 2]. Observe that every p-uniformly convex space is uniformly convex.

Let E be a real normed linear space of dimension ≥ 2. The modulus of smoothness of E ,
ρE , is defined by:

ρE(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

A normed linear space E is called uniformly smooth if

lim
τ→0

ρE(τ)

τ
= 0.

It is well known (see, e.g., [1] p.95 ) that ρE is nondecreasing. If there exist a constant c > 0
and a real number q > 1 such that ρE(τ) ≤ cτ q , then E is said to be q-uniformly smooth.
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Typical examples of such spaces are the Lp, `p and Wm
p spaces for 1 < p <∞where,

Lp (or lp) or W
m
p is

{
2− uniformly smooth and p− uniformly convex if 2 ≤ p <∞;
p− uniformly smooth and 2− uniformly convex if 1 < p < 2.

Let Jq denote the generalized duality mapping from E to 2E
∗

defined by

Jq(x) :=
{
f ∈ E∗ : 〈x, f〉 = ‖x‖q and ‖f‖ = ‖x‖q−1

}
where 〈., .〉 denotes the generalized duality pairing. J2 is called the normalized duality
mapping and is denoted by J .

It is well known that E is smooth if and only if J is single valued. Moreover, if E is a
reflexive smooth and strictly convex Banach space, then J−1 is single valued, one-to-one,
surjective and it is the duality mapping from E∗ into E. Finally, if E has uniform Gâteaux
differentiable norm, then J is norm-to-weak∗ uniformly continuous on bounded sets.

Remark 1.1. Note also that a duality mapping exists in each Banach space. We recall from
[4] some of the examples of this mapping in lp, Lp,Wm,p-spaces, 1 < p <∞.

(i) lp : Jx = ‖x‖2−plp
y ∈ lq, x = (x1, x2, · · · , xn, · · · ),

y = (x1|x1|p−2, x2|x2|p−2, · · · , xn|xn|p−2, · · · ),

(ii) Lp : Ju = ‖u‖2−pLp
|u|p−2u ∈ Lq ,

(iii) Wm,p : Ju = ‖u‖2−pWm,p

∑
|α≤m|(−1)|α|Dα

(
|Dαu|p−2Dαu

)
∈W−m,q ,

where 1 < q <∞ is such that 1/p+ 1/q = 1.

Let H be a real Hilbert space. A map G : D(G) ⊂ H → H ia called monotone if for all
x, y ∈ D(G), the following inequality holds:

〈Gx−Gy, x− y〉 ≥ 0.(1.1)

The notion of monotonicity has been extended to real normed spaces E in two ways.
The first involves mapping G from E to E∗. A map G : D(G) ⊂ E → E∗ is called

strongly monotone if there exists a positive constant k such that for all x, y ∈ D(G),

〈Gx−Gy, x− y〉 ≥ k‖x− y‖2,(1.2)

where 〈, 〉 denotes the duality pairing between elements of E∗ and elements of E. The
map G is said to be monotone if or all x, y ∈ D(G),

〈Gx−Gy, x− y〉 ≥ 0.(1.3)

If E is a real Hilbert space H , then H = H∗ and (1.3) coincides with (1.1).
The second extension of the notion of monotonicity to real normed spaces involves map-

ping G of E into itself . A mapping G : D(G) ⊂ E → E is called accretive if for every
x, y ∈ D(G), there exists j(x− y) ∈ J(x− y) such that the following inequality holds:

〈Gx−Gy, j(x− y)〉 ≥ 0.(1.4)

Here, if E is a real Hilbert space, J becomes the identity map and condition (1.4) reduces
to (1.1). Hence, in real Hilbert spaces, accretive operators become monotone. Consequently,
accretive operators can be regarded as extension of Hilbert space monotonicity condition
to real normed spaces.
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A mapping G : D(G) ⊂ E → E is called strongly accretive if there exists a constant
k > 0 such that for every x, y ∈ D(G), there exists j(x− y) ∈ J(x− y) such that

〈Gx−Gy, j(x− y)〉 ≥ k‖x− y‖2.

The accretive operators were introduced independently in 1967 by Browder [9] and Kato
[31]. Interest in such mappings stems mainly from their firm connection with equations
of evolution. It is known (see, e.g., Zeidler [38]) that many physically significant problems
can be modelled by initial-value problems of the form:

(1.5)
du

dt
+Au = 0, u(0) = u0,

where A is an accretive operator in an appropriate Banach space. Typical examples where
such evolution equations occur can be found in the heat, wave or Schrödinger equations.
If in (1.5), u(t) is independent of t, then (1.5) reduces to

(1.6) Au = 0,

whose solutions correspond to the equilibrium points of the system (1.5). Consequently,
considerable research efforts have been devoted, especially within the past 40 years or
so, to methods of finding approximate solutions (when they exist) of equation (1.6). An
early fundamental result in the theory of accretive operators, due to Browder [9], states
that the initial value problem (1.5) is solvable if A is locally Lipschitzian and accretive
on E. Utilizing the existence result for equation (1.5), Browder [9] proved that if A is
locally Lipschitzian and accretive on E, then A is m-accretive i.e, R(I + A) = E. Clearly,
a consequence of this is that the equation

(1.7) u+Au = 0

has a solution.
One important generalization of equation (1.7) is the so-called equation of Hammerstein

type (see, e.g., Hammerstein [29]), where a nonlinear integral equation of Hammerstein
type is one of the form:

(1.8) u(x) +

∫
Ω

κ(x, y)f(y, u(y))dy = h(x),

where dy is a σ-finite measure on the measure space Ω; the real kernel κ is defined on
Ω × Ω, f is a real-valued function defined on Ω × R and is, in general, nonlinear and h is
a given function on Ω. If we now define an operator K : F(Ω,R)→ F(Ω,R) by

Kv(x) :=

∫
Ω

κ(x, y)v(y)dy, a.e. x ∈ Ω

and the so-called superposition or Nemytskii F : F(Ω,R)→ F(Ω,R) by

Fu(y) := f(y, u(y)) a.e. y ∈ Ω,

where F(Ω,R) denotes a space of functions mapping Ω into R, then, the integral equation
(1.8) can be put in operator theoretic form as follows:

(1.9) u+KFu = 0,

where, without loss of generality, we have taken h ≡ 0.
Interest in equation (1.9) stems mainly from the fact that several problems that arise in

differential equations, for instance, elliptic boundary value problems whose linear parts
possess Green’s functions can, as a rule, be transformed into the form (1.9). Among these,
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we mention the problem of the forced oscillations of finite amplitude of a pendulum (see,
e.g.,Pascali and Sburlan [34], Chapter IV).

Equations of Hammerstein type play a crucial role in the theory of optimal control
systems and in automation and network theory (see, e.g., Dolezale [28]).

Several existence and uniqueness theorems have been proved for equations of Ham-
merstein type (see, e.g., Brézis and Browder ([8], [6], [7]), Browder [9], Browder and De
Figueiredo [10], Bowder and Gupta [11], Chepanovich [12], De Figueiredo [25]).

In general, equations of Hammerstein type (1.9) are nonlinear and there is no known
method to find closed form solutions for them. Consequently, methods of approximating
solutions of such equations are of interest.
In the special case in which the operator F is angle bounded (defined below) and weakly
compact, Brézis and Browder [8, 7] proved the strong convergence of a suitably defined
Galerkin approximation to a solution of (1.9). Before we state this theorem, we need the
following definitions.

Let H be a real Hilbert space. A nonlinear operator A : H → H is said to be angle-
bounded with angle β > 0 if

(1.10) 〈Ax−Az, z − y〉 ≤ β〈Ax−Ay, x− y〉
for any triple of elements x, y, z ∈ H . For y = z, inequality (1.10) implies the monotonicity
of A.

A monotone linear operator A : H → H is said to be angle-bounded with angle α > 0 if

(1.11) |〈Ax, y〉 − 〈Ay, x〉| ≤ 2α〈Ax, x〉 12 〈Ay, y〉 12

for all x, y ∈ H . It is known that the two definitions of angle boundedness are equivalent
(see Pascali and Sburlan, [34], Ch. IV, p.189).
We now state the theorem of Brézis and Browder referred to above.

Theorem BB (Brézis and Browder, [7]). LetH be a separable real Hilbert space andC be a closed
subspace of H . Let K : H → C be a bounded continuous monotone operator and F : C → H be
an angle-bounded and weakly compact mapping. For a given f ∈ C, consider the Hammerstein
equation

(1.12) (I +KF )u = f

and its n-th Galerkin approximation given by

(1.13) (I +KnFn)un = P ∗f,

where Kn = P ∗nKPn : H → Cn and Fn = PnFP
∗
n : Cn → H , where the symbols have their

usual meanings (see, [34]). Then, for each n ∈ N, the Galerkin approximation (1.13) admits a
unique solution un in Cn and {un} converges strongly in H to the unique solution u ∈ C of the
equation (1.12).

It is obvious that if an iterative algorithm can be developed for the approximation of
solutions of equations of Hammerstein type (1.12), this will certainly be preferred.
We first note that for the iterative approximation of solutions of equations (1.6) and (1.7)
(zeros of accretive type operators), the monotonicity/accretivity of A is crucial. The Mann
type iteration scheme (see, e.g., Mann [32]) has successfully been employed (see, e.g., the
recent monographs of Berinde [5] and Chidume [13] for results obtained within the past
40 years, or so). One drawback of the Mann iterative scheme, however, is that in general,
it only yields weak convergence (see, e.g., Matouskova and Reich [33])

All attempts to use the Mann type iteration scheme directly to approximate solutions of
equations of Hammertsein type (1.9) did not yield satisfactory results (see Chidume and
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Osilike [20]). The recurrence formulas used in early attempts involved K−1 which is also
required to be strongly monotone, and this, apart from limiting the class of mappings to
which such iterative schemes are applicable, is also not convenient in applications. Part
of the difficulty is the fact that the composition of two monotone operators need not be
monotone. It suffices to take

K : R2 −→ R2, F : R2 −→ R2

where

K =

(
1 2
−2 1

)
and F =

(
0 1
−1 2

)
.

The first satisfactory results on iterative methods for approximating solutions of Hammer-
stein equations, as far as we know, were obtained by Chidume and Zegeye [24, 23, 22].
Under the setting of a real Hilbert space H , for F,K : H → H , they defined an auxiliary
map on the Cartesian product E := H ×H , T : E → E by

T [u, v] = [Fu− v,Kv + u].

We note that
T [u, v] = 0⇔ u solves (1.9) and v = Fu.

With this, they were able to obtain strong convergence of an iterative scheme defined in the
Cartesian product space E to a solution of Hammerstein equation (1.9). Extensions to a
real Banach space setting were also obtained.

Let X be a real Banach space and K,F : X → X be accretive type mappings. Let
E := X ×X . The same authors (see, [24, 23]) defined T : E → E by

T [u, v] = [Fu− v,Kv + u]

and obtained strong convergence theorems for solutions of Hammerstein equations under
various continuity conditions in the Cartesian product space E.

The method of proof used by Chidume and Zegeye provided the clue to the establish-
ment of the following coupled explicit algorithm for computing a solution of the equation
u + KFu = 0 in the original space X. With initial vectors u0, v0 ∈ X , sequences {un} and
{vn} in X are defined iteratively as follows:

un+1 = un − αn(Fun − vn), n ≥ 0, (∗)
vn+1 = vn − αn(Kvn + un), n ≥ 0. (∗∗)

where {αn} is a sequence in (0, 1) satisfying appropriate conditions. The recursion for-
mulas (*) and (**) have been used successfully to approximate solutions of Hammerstein
equations involving nonlinear accretive-type operators. Following this, Chidume and
Djitte studied this explicit coupled iterative algorithms and proved several strong con-
vergence theorems (see, Chidume and Djitte [17], [18] ). For recent results using these
recursion formulas, the reader may consult any of the following references Chidume and
Djitte [14], [15], [16], Djitte and Sene [26], [27], Chidume and Ofeodu [19], Chidume and
Shehu [21] and also Chapter 13 of [13].

For Hammerstein equations involving monotone mappings from E to E∗, very little has
been achieved. Part of the difficulty is that inequalities involving vectors in E do not gen-
erally hold in E∗. For instance, if E = Lp (p > 2), then E∗ = Lq with (1 < q < 2) and
generally an inequality that holds in Lp (p > 2) is reversed in Lp (1 < p < 2), (see, e.g.,
Chidume [13], Chapter 5.) Interestingly enough, almost all the existence theorems proved for
Hammerstein equations involve monotone mappings (see, e.g., Brézis and Browder [8, 6, 7],
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Browder [9], Browder et al. [10], and Browder and Gupta [11]). Consequently, develop-
ing iterative methods for approximating solutions of Hammerstein equations involving
monotone mappings is of paramount importance. We note that it has been remarked that
in dealing with the Nemistkyi operator, which is intimately connected with the Ham-
mertsein integral equation, its properties are distinguished, in applications, according to
two important cases: Lp(Ω) spaces, 1 < p <∞, and L1(Ω), (see Pascali and Sburlan [34],
Chapter IV, pp. 165, 172). Thus, developing iterative methods for approximating solutions
of nonlinear Hammerstein integral equations in these cases is of paramount importance.

It is our purpose in this paper to construct a coupled iterative process and prove its
strong convergence to a solution of the Hammerstein equation u+KFu = 0 with Strongly
monotone and bounded mappings in certain Banach spaces including Lp spaces, 1 < p < ∞
and all Hilbert spaces. Futhermore, our thechnique of proof is of independent of interest.

2. PRELIMINARIES

In the sequel, we shall need the following results and definitions.

Theorem 2.1 (H. K. Xu [37]). Let p > 1 be a given real number. Then the following are equivalent
in a Banach space:

(i) E is p-uniformly convex.
(ii) There is a constant c1 > 0 such that for every x, y ∈ E and jx ∈ Jp(x), The following

inequality holds:

‖x+ y‖p ≥ ‖x‖p + p〈y, jx〉+ c1‖y‖p.
(iii) There is a constant c2 > 0 such that for every x, y ∈ E and jx ∈ Jp(x), jy ∈ Jp(y), the

following inequality holds:

〈x− y, jx − jy〉 ≥ c2‖x− y‖p.

Theorem 2.2 (H. K. Xu [37]). Let q > 1 be a given real number. Then the following are equivalent
in a Banach space:

(i) E is q-uniformly smooth.
(ii) There is a constant c > 0 such that for every x, y ∈ E and jx ∈ Jq(x), The following

inequality holds:

‖x+ y‖q ≤ ‖x‖q + q〈y, jx〉+ c‖y‖q.
(iii) There is a constant c2 > 0 such that for every x, y ∈ E and jx ∈ Jq(x), jy ∈ Jq(y), the

following inequality holds:

〈x− y, jx − jy〉 ≤ c2‖x− y‖q.

Lemma 2.1. Let E be a smooth and 2-uniformly convex real Banach space. Then J−1 is Lipschtz
from E∗ into E, i.e., there exists a constant L > 0 such that for all u, v ∈ E∗,
(2.14) ‖J−1u− J−1v‖ ≤ L‖u− v‖.

Proof. This follows from inequality (iii) of Theorem 2.1 with p = 2. �

Lemma 2.2 ([2]). Let p ≥ 2 and q > 1, and let X be a p-uniformly convex and q-uniformly
smooth real Banach space. The duality mapping J : X → X∗ is Lipschitz on bounded subsets of
X ; that is, for all R > 0, there exists a positive constant m2 such that

‖Jx− Jy‖ ≤ m2‖x− y‖,
for all x, y ∈ X with ‖x‖ ≤ R, ‖y‖ ≤ R.
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Let E be a smooth real Banach space with dual E∗. The function φ : E × E → R, defined
by

(2.15) φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, x, y ∈ E,

where J is the normalized duality mapping from E into E∗, introduced by Alber has
been studied by Alber [2], Alber and Guerre-Delabriere [3], Kamimura and Takahashi[30],
Reich[35] and a host of other authors. This functional φ will play a central role in what
follows. If E = H , a real Hilbert space, then equation (2.15) reduces to φ(x, y) = ‖x− y‖2
for x, y ∈ H. It is obvious from the definition of the function φ that

(2.16)
(
‖x‖ − ‖y‖

)2

≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 ∀x, y ∈ E.

Let V : E × E∗ → R be the functional defined by:

(2.17) V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗.

Then, it is easy to see that

(2.18) V (x, x∗) = φ(x, J−1x∗) ∀x ∈ E, x∗ ∈ E∗.

Similarly, if E is a reflexive smooth and strictly convex real Banach space, we introduce
the functional φ∗ : E∗ × E∗ → R, defined from by:

(2.19) φ∗(x
∗, y∗) = ‖x∗‖2 − 2〈x∗, J−1y∗〉+ ‖y∗‖2, x∗, y∗ ∈ E∗,

and the functional V∗ : E∗ × E → R defined from E∗ × E to R by:

(2.20) V∗(x
∗, x) = ‖x∗‖2 − 2〈x∗, x〉+ ‖x‖2, x ∈ E, x∗ ∈ E∗.

It is easy to see that

(2.21) V∗(x
∗, x) = φ∗(x

∗, Jx) ∀x ∈ E, x∗ ∈ E∗.

In what follows, the product space E × E∗ is equiped with the following norm:

‖w1 − w2‖ =
(
‖x− y‖2 + ‖x∗ − y∗‖2

) 1
2 ∀w1 = (x, x∗) ∈ E × E∗, w2 = (y, y∗) ∈ E × E∗.

Finally, we introduce on the functional ψ : (E × E∗)× (E × E∗)→ R defined by:

ψ(w1, w2) := φ(x, y) + φ∗(x
∗, y∗) ∀ w1 = (x, x∗) ∈ E × E∗, w2 = (y, y∗) ∈ E × E∗.

The following results will be useful.

Lemma 2.3 (Alber, [2]). Let E be a reflexive striclty convex and smooth real Banach space with
E∗ as its dual. Then,

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗)(2.22)

for all x ∈ X and x∗, y∗ ∈ X∗.

Lemma 2.4. Let E be a smooth and 2-uniformly convex real Banach space. Then there exists
c1 > 0 such that

‖x− y‖2 ≥ φ(x, y) + (c1 − 1)‖x‖2 ∀x, y ∈ E.

Proof. From Theorem 2.1, we have

‖x+ y‖2 ≥ ‖x‖2 + 2〈y, Jx〉+ c1‖y‖2.

Replacing y by −y, we obtain

‖x− y‖2 ≥ ‖x‖2 − 2〈y, Jx〉+ c1‖y‖2.
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Interchanging y and x, we obtain

‖x− y‖2 ≥ ‖y‖2 − 2〈x, Jy〉+ c1‖x‖2

‖x− y‖2 ≥ ‖y‖2 − 2〈x, Jy〉+ ‖x‖2 − (1− c1)‖x‖2

‖x− y‖2 ≥ φ(x, y)− (1− c1)‖x‖2

‖x− y‖2 ≥ φ(x, y) + (c1 − 1)‖x‖2

�

Lemma 2.5. Let E be a 2-uniformly smooth real Banach space. Then there exists c2 > 0 such that

‖x− y‖2 ≥ φ(x, y)− c2‖x‖2 ∀x, y ∈ E.
Proof. By Theorem 2.2, we have

‖x+ y‖2 ≤‖x‖2 + 2〈y, Jx〉+ c‖y‖2.
Interchanging x and y, we obtain

‖x+ y‖2 ≤‖y‖2 + 2〈x, Jy〉+ c‖x‖2.
Replacing y by (x+ y) and x by (−x) we get

‖y‖2 ≤‖x+ y‖2 − 2〈x, J(x+ y)〉+ c‖x‖2.
Which implies

‖x+ y‖2 ≥ ‖y‖2 + 2〈x, J(x+ y)〉 − c‖x‖2

=
(
‖x‖2 + 2〈x, J(x+ y)〉+ ‖y‖2

)
+ 2〈x, Jy〉 − 2〈x, Jy〉 − c2‖x‖2,

with c2 = c + 1. Replacing y by (−y) and using the fact that the normalized duality map
is monotone, we obtain:

‖x− y‖2 ≥ (‖x‖2 − 2〈x, Jy〉+ ‖y‖2) + 2[〈x, Jy〉 − 2〈x, J(y − x)〉]− c2‖x‖2

= φ(x, y) + 2[〈x, Jy〉 − 〈x, J(y − x)〉]− c2‖x‖2

≥ φ(x, y)− c2‖x‖2,
establishing the Lemma. �

Lemma 2.6. Let E be a smooth and 2-uniformly convex real Banach space. Then there exists
c > 0 such that, the following inequality holds:

‖w1 − w2‖2 ≥ ψ(w1, w2)− c‖w1‖2, w1 = (x, x∗) ∈ E × E∗, w2 = (y, y∗) ∈ E × E∗.
Proof. Since E is 2-uniformly convex, then E∗ is 2-uniformly smooth. Using Lemma 2.4
and Lemma 2.5, we have:

‖x− y‖2 + ‖x∗ − y∗‖2 ≥ φ(x, y) + (c1 − 1)‖x‖2 + φ∗(x
∗, y∗)− c2‖x∗‖2

‖w1 − w2‖2 ≥ ψ(w1, w2)− c‖w1‖2.
where c = max{1− c1, c2}. �

Lemma 2.7 (Kamimura and Takahashi[30]). Let E be a real smooth Banach space and uni-
formly convex space, and let {xn} and {yn} be two sequences of E. If either {xn} or {yn} is
bounded and φ(xn, yn)→ 0 as n→∞, then ‖xn − yn‖ → 0 as n→∞.
Lemma 2.8 (Tan and Xu[36]). Let {an} be a sequence of non-negative real numbers satisfying
the following relation:

an+1 ≤ an + σn ∀n ≥ 0.

Assume that
∞∑
n=0

σn <∞. Then lim
n→∞

an exists.
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3. MAIN RESULTS

We prove the following results.

Theorem 3.3. For q > 1, let E be a 2-uniformly convex and q-uniformly smooth real Banach
space with dual E∗ and let F : E → E∗, K : E∗ → E be bounded and strongly monotone
mappings with D(K) = R(F ) = E∗. For given u1 ∈ E and v1 ∈ E∗, let ({un} and {vn} be
generated iteratively by:

un+1 = J−1(Jun − αn(Fun − vn)), n ≥ 1,
vn+1 = J(J−1vn − αn(Kvn + un)), n ≥ 1,

(3.23)

where {αn} ⊂ (0, 1) satisfies the following conditions: (i)
∞∑
n=1

αn = ∞; (ii)

∞∑
n=0

α2
n < ∞.

Suppose that the equation u + KFu = 0 has a solution. Then, there exists γ0 > 0 such that if
αn < γ0 ∀n ≥ 1, the sequence {un} converges strongly to u∗, a solution of u+KFu = 0.

Proof. Let X = E × E∗ with the norm ‖z‖ = (‖u‖2 + ‖v‖2)
1
2 , where z = (u, v) ∈ E × E∗.

Define the sequence {wn} inX by: wn = (un, vn). Let u∗ ∈ E be a solution of u+KFu = 0.
Set v∗ := Fu∗ and w∗ := (u∗, v∗). We observe that u∗ = −Kv∗.

In the following, we denote by k1 the strongly monotonocity constant of F , k2 is the
strongly monotonocity constant of K and L1 the Lipschitz constant of J−1. The proof
will be in two steps.

Step 1: We first prove that {wn} is bounded. There exists r > 0 such that:

(3.24) r ≥ max
{

4c‖w∗‖2, ψ(w∗, w1)
}
.

We show that ψ(w∗, wn) ≤ r for all n ≥ 1. The proof is by induction. We have ψ(w∗, w1) ≤
r. Assume that ψ(w∗, wn) ≤ r for some n ≥ 1. We show that ψ(w∗, wn+1) ≤ r. Using
the boundedness of K, Lemmas 2.1 and 2.2, there exists a positive constant m2 such that
forall α ∈ (0, 1), (u, v) ∈ E × E∗ : ψ(w∗, (u, v)) ≤ r, the following inequality holds:

(3.25) ‖J(J−1v − α(Kv + u))− J(J−1v)‖ ≤ αm2‖Kv + u‖.

Since F and K are bounded, define

(3.26) L = max{L1,m2}, k = min{k1, k2},

(3.27) M0 = 2L sup{‖Fu− v‖2 + ‖Kv + u‖2, (u, v) ∈ E × E∗, ψ(w∗, (u, v)) ≤ r}+ 1,

(3.28) γ0 = min
{

1,
kr

2M0

}
.

Now assume that αn ≤ γ0 for all n ≥ 1. Using the definition of un+1, we compute as
follows:

φ(u∗, un+1) = φ(u∗, J−1(Jun − αn(Fun − vn))

= V (u∗, Jun − αn(Fun − vn)).
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Using Lemma 2.3 with y∗ = αn(Fun − vn), we have:

φ(u∗, un+1) = V (u∗, Jun − αn(Fun − vn))

≤ V (u∗, Jun)− 2αn〈J−1(Jun − αn(Fun − vn))− u∗, Fun − vn〉
= φ(u∗, un)− 2αn〈un − u∗, Fun − vn〉
− 2αn〈J−1(Jun − αn(Fun − vn))− un, Fun−vn〉

= φ(u∗, un)− 2αn〈un − u∗, Fun − Fu∗〉
−2αn〈J−1(Jun−αn(Fun−vn))− J−1(Jun), Fun−vn〉−2αn〈un− u∗, v∗− vn〉.

Using the strong monotonocity of F , Schwartz inequality and Lemma 2.1, we obtain

φ(u∗, un+1) ≤ φ(u∗, un)− 2αnk1‖un − u∗‖2+

2αn‖J−1(Jun−αn(Fun−vn))− J−1(Jun)‖‖Fun − vn‖+2αn〈un − u∗, vn− v∗〉
≤ φ(u∗, un)− 2αnk1‖un − u∗‖2 + 2α2

nL1‖Fun − vn‖2 + 2αn〈un − u∗, vn − v∗〉.

We have
(3.29)
φ(u∗, un+1) ≤ φ(u∗, un)− 2αnk1‖un − u∗‖2 + 2α2

nL1‖Fun − vn‖2 + 2αn〈un − u∗, vn − v∗〉.

Similarly, using the definition of vn+1, we compute as follows:

φ∗(v
∗, vn+1) = φ∗(v

∗, J(J−1vn − αn(Kvn + un))

= V∗(v
∗, J−1vn − αn(Kvn + un)).

Using Lemma 2.3, with y∗ = αn(Kvn + un), we have:

φ∗(v
∗, vn+1) = V∗(v

∗, J−1vn − αn(Kvn + vn))

≤ V∗(v∗, J−1vn)− 2αn〈J(J−1vn − αn(Kvn + un))− v∗,Kvn + un〉
= φ∗(v

∗, vn)− 2αn〈vn − v∗,Kvn + un〉
− 2αn〈J(J−1vn − αn(Kvn + un))− vn,Kvn + un〉

= φ∗(v
∗, vn)− 2αn〈vn − v∗,Kvn −Kv∗〉

− 2αn〈J(J−1vn−αn(Kvn+un))−J(J−1vn)),Kvn+un〉−2αn〈un− u∗, vn−v∗〉.

Using the strong monotonocity ofK, Schwartz inequality and inequality (3.25), we obtain

φ∗(v
∗, vn+1) ≤ φ∗(v∗, vn)− 2αnk2‖vn − v∗‖2+

2αn‖J(J−1vn−αn(Kvn+un))−J(J−1vn)‖‖Kvn+un‖−2αn〈un−u∗, vn−v∗〉
≤ φ∗(v∗, vn)− 2αnk2‖vn − v∗‖2 + 2α2

nm2‖Kvn + un‖2

− 2αn〈un − u∗, vn − v∗〉.

We have
(3.30)
φ∗(v

∗, vn+1) ≤ φ∗(v∗, vn)−2αnk2‖vn−v∗‖2 +2α2
nm2‖Kvn+un‖2−2αn〈un−u∗, vn−v∗〉.

Adding up (3.29) and (3.30), using Lemma 2.6 and the definition of M0, (3.27), we obtain:

ψ(w∗, wn+1) ≤ ψ(w∗, wn)− 2αnkψ(w∗, wn) + α2
nM0 + 2kαnc‖w∗‖2.
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Finally, using the fact that αn ≤ γ0, the definition of γ0, (3.28), inequality (3.24) and the
induction assumption, it follows that

ψ(w∗, wn+1) ≤ (1− 2kαn)r + αnk
r

2
+ αnk

r

2

≤ (1− kαn(2− 1

2
− 1

2
))r

≤ (1− kαn)r.

Therefore, ψ(w∗, wn+1) ≤ r. Thus, by induction, ψ(w∗, wn) ≤ r for all n ≥ 1. So, from
inequality (2.16), we deduce that the sequence {wn} is bounded.

Step 2: We now prove that {un} converges strongly to u∗, a solution of u + KFu =
0. Following the same arguments as in Step 1, using the fact that the sequence {wn} is
bounded and the maps F and K are bounded, there exists a positive constant M such
that

(3.31) ψ(w∗, wn+1) ≤ ψ(w∗, wn)− 2αnk(‖vn − v∗‖2+‖un − u∗‖2) + α2
nM.

Therefore,
ψ(w∗, wn+1) ≤ ψ(w∗, wn) + α2

nM.

Using the assumption
∞∑
n=0

α2
n < ∞ and Lemma 2.8, it follows that lim

n→∞
ψ(w∗, wn) exists.

From (3.31), we have
∞∑
n=1

αn‖wn − w∗‖2 <∞.

Using the fact that
∞∑
n=0

αn = ∞, we deduce that lim inf ‖w∗ − wn‖2 = 0. Therefore, there

exists a subsequence {wnk
} of {wn} such that wnk

→ w∗ as k → ∞. So, unk
→ u∗

and vnk
→ v∗ as k → ∞. Using the definitions of φ(u∗, unk

) and φ∗(v
∗, vnk

), and the
continuity of J and J−1, it follows that φ(u∗, unk

) → 0 and φ∗(v
∗, vnk

) → 0 as k → ∞.
Therefore, from the fact that ψ(w∗, wnk

) = φ(u∗, unk
)+φ∗(v

∗, vnk
), we have ψ(w∗, wnk

)→
0. Since lim

n→∞
ψ(w∗, wn) exists, then, lim

n→∞
ψ(w∗, wn) = 0. Thus, lim

n→∞
φ(u∗, un) = 0 and

lim
n→∞

φ∗(v
∗, vn) = 0. From Lemma 2.7, we have un → u∗ and vn → v∗ as k → ∞, with u∗

a solution of the Hammerstein equation. This completes the proof. �

Corollary 3.1. For q > 1, let E be a 2-uniformly convex and q-uniformly smooth real Banach
space with dual E∗ and let F : E → E∗, K : E∗ → E be Lipschitz and strongly monotone
mappings with D(K) = R(F ) = E∗. For given u1 ∈ E and v1 ∈ E∗, let ({un} and {vn} be
generated iteratively by:

un+1 = J−1(Jun − αn(Fun − vn)), n ≥ 1,
vn+1 = J(J−1vn − αn(Kvn + un)), n ≥ 1,

(3.32)

where {αn} ⊂ (0, 1) satisfies the following conditions: (i)

∞∑
n=1

αn = ∞; (ii)

∞∑
n=0

α2
n < ∞.

Suppose that the equation u + KFu = 0 has a solution. Then, there exists γ0 > 0 such that if
αn < γ0 ∀n ≥ 1, the sequence {un} converges strongly to u∗, a solution of u+KFu = 0.

Proof. Since Lipschitz maps are bounded, then the proof follows from Theorem 3.3. �
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Corollary 3.2. Let E = Lp, 1 < p ≤ 2 and F : E → E∗, K : E∗ → E be bounded and strongly
monotone maps with D(K) = R(F ) = E∗. For given u1 ∈ E and v1 ∈ E∗, let ({un} and {vn}
be generated iteratively by:

un+1 = J−1(Jun − αn(Fun − vn)), n ≥ 1,
vn+1 = J(J−1vn − αn(kvn + un)), n ≥ 1,

(3.33)

where {αn} ⊂ (0, 1) satisfies the following conditions: (i)

∞∑
n=1

αn =∞; (ii)

∞∑
n=0

α2
n <∞.

Suppose that the equation u + KFu = 0 has a solution.Then, there exists γ0 > 0 such that if
αn < γ0 ∀n ≥ 1, the sequence {un} converges to u∗, a solution of u+KFu = 0.

Proof. Since E = Lp spaces, 1 < p ≤ 2 are 2-uniformly convex and p-uniformly smooth
Banach spaces, then the proof follows from Theorem 3.3. �

Remark 3.2. Using the same method of proof as in Theorem 3.3 by interverting the prop-
erties of J and J−1, using the duality between E and E∗, we have the following result.

Theorem 3.4. For p > 1, let E be a 2-uniformly smooth and p-uniformly convex real Banach
space with dual E∗ and let F : E → E∗, K : E∗ → E be bounded and strongly monotone
mappings with D(K) = R(F ) = E∗. For given u1 ∈ E and v1 ∈ E∗, let ({un} and {vn} be
generated iteratively by:

un+1 = J−1(Jun − αn(Fun − vn)), n ≥ 1,
vn+1 = J(J−1vn − αn(Kvn + un)), n ≥ 1,

(3.34)

where {αn} ⊂ (0, 1) satisfies the following conditions: (i)

∞∑
n=1

αn = ∞; (ii)

∞∑
n=0

α2
n < ∞.

Suppose that the equation u + KFu = 0 has a solution. Then, there exists γ0 > 0 such that if
αn < γ0 ∀n ≥ 1, the sequence {un} converges strongly to u∗, a solution of u+KFu = 0.

Corollary 3.3. Let E = Lp, 2 ≤ p < ∞ and F : E → E∗, K : E∗ → E be bounded and
strongly monotone maps with D(K) = R(F ) = E∗. For given u1 ∈ E and v1 ∈ E∗, let ({un}
and {vn} be generated iteratively by:

un+1 = J−1(Jun − αn(Fun − vn)), n ≥ 1,
vn+1 = J(J−1vn − αn(kvn + un)), n ≥ 1,

(3.35)

where {αn} ⊂ (0, 1) satisfies the following conditions: (i)

∞∑
n=1

αn =∞; (ii)

∞∑
n=0

α2
n <∞.

Suppose that the equation u + KFu = 0 has a solution.Then, there exists γ0 > 0 such that if
αn < γ0 ∀n ≥ 1, the sequence {un} converges to u∗, a solution of u+KFu = 0.

Proof. Since E = Lp spaces, 2 ≤ p < ∞ are 2-uniformly smooth and p-uniformly smooth
Banach spaces, then the proof follows from Theorem 3.4. �

Remark 3.3. Real sequences that satisfy conditions (i) and (ii) are given by: αn =
1

n
.

Remark 3.4. The iteration method given by (3.23) is new and is inspired by the one used
by Chidume and Djitte [17] in the setting where F,K : E → E are accretive type operators.
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(1978)
[35] Reich, S., Constructive techniques for accretive and monotone operators, Applied non-linear analysis, Academic

Press, New York (1979), 335–345
[36] Tan, H. K. and Xu, H. K., Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process,

J. Math. Anal. Appl, 178 (1993), No. 2, 301–308
[37] Xu, H. K., Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), No. 12, 1127–1138
[38] Zeidler, E., Nonlinear functional analysis and its applications, Part II: Monotone operators, Springer-Verlag,

Berlin/New York, 1985

DEPARTMENT MATHEMATICS

GASTON BERGER UNIVERSITY

BP 234, SAINT LOUIS, SENEGAL

Email address: sowthierno89@gmail.com
Email address: diopmotors@hotmail.com
Email address: ngalla.djitte@ugb.edu.sn


