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A note on Baskakov operators based on a function ϑ

DIDEM AYDIN ARI, ALI ARAL and DANIEL CÁRDENAS-MORALES

ABSTRACT. In this paper, we consider a modification of the classical Baskakov operators based on a function
ϑ. Basic qualitative and quantitative Korovkin results are stated in weighted spaces. We prove a quantitative
Voronovskaya-type theorem and present some results on the monotonic convergence of the sequence. Finally,
we show a shape preserving property and further direct convergence theorems. Weighted modulus of continuity
of first order and the notion of ϑ-convexity are used throughout the paper.

1. INTRODUCTION

In the last few years, within the so-called Korovkin-type approximation theory, there
has been an increasing interest in studying modifications of some classical sequences of
linear operators, in such a way that the resulting sequences represent new approxima-
tion processes where the functions of the classical Korovkin set {e0, e1, e2} (ei(t) = ti)
are replaced by the powers of certain function ϑ, namely ϑi, i = 0, 1, 2. These modified
operators constructed with the help the function ϑ possess nice shape preserving prop-
erties and present a good behavior on approximating functions from certain weighted
spaces.

A first study in this direction was made in [6], where the authors defined the following
sequence of Bernstein type operators:

Bτnf(x) := Bn
(
f ◦ τ−1

)
(τ(x)) =

n∑
k=0

(
n

k

)
τk(x) (1− τ(x))

n−k (
f ◦ τ−1

)(k
n

)
, (1.1)

for f ∈ C [0, 1] and x ∈ [0, 1], where Bn is the classical Bernstein operator and τ is a
continuously ∞ times differentiable function on [0, 1] such that τ(0) = 0, τ(1) = 1 and
τ ′(x) > 0 for x ∈ [0, 1].

In the recent note [1], the authors proved an asymptotic formula and a quantitative type
asymptotic formula for Durrmeyer type generalization of (1.1). A similar construction of
(1.1) for the Szász-Mirakyan operators has been recently introduced in [4].

Inspired by these studies, in this paper we introduce a generalization of the classical
Baskakov operators [5], introduced in 1957 and defined, for x ∈ R+ = [0,∞) and a suit-
able function f : R+ → R, by

An (f ; x) :=

∞∑
k=0

(
n+ k − 1

k

)
f

(
k

n

)
xk (1 + x)

−n−k
. (1.2)

The proposed modification is defined by

Aϑn (f ; x) := An
(
f ◦ ϑ−1;ϑ(x)

)
,

where ϑ is a function satisfying the following properties:

Received: 10.09.2015. In revised form: 20.12.2015. Accepted: 01.02.2016
2010 Mathematics Subject Classification. 41A25, 41A36.
Key words and phrases. Baskakov operator, Voronovskaya-type theorem, weighted modulus of continuity, shape

preserving properties.
Corresponding author: Didem Aydin Ari; didemaydn@hotmail.com

15



16 D. Aydin Ari, A. Aral and D. Cárdenas-Morales

(Θ1) ϑ is continuously differentiable on R+,
(Θ2) ϑ (0) = 0, inf ϑ

x∈R+

′(x) ≥ 1.

We note that these are the same conditions given for generalized Szász-Mirakyan operators
(see [4]). We shall use the following definition of modified Baskakov operators:

Aϑn (f ; x) =

∞∑
k=0

(
n+ k − 1

k

)(
f ◦ ϑ−1

)(k
n

)
ϑk (x) (1 + ϑ (x))

−n−k

=

∞∑
k=0

f

(
ϑ−1

(
k

n

))
Pϑ,n,k (x) , (1.3)

where

Pϑ,n,k (x) =

(
n+ k − 1

k

)
ϑk (x) (1 + ϑ (x))

−n−k .

The paper is organized as follows. In Section 2, we give some lemmas which will be
necessary to prove our main results. Section 3 contains the proof of weighted uniform
convergence of the operators and also a statement concerning the degree of this weighted
uniform convergence. A quantitative Voronovskaya-type theorem and a result about the
convergence of the first derivative of Aϑn are given in Section 4. In the last Section 5, we
study some shape preserving properties, the property of monotonicity and local direct es-
timates using Lipschitz type function related to ϑ and generalized Lipschitz-type maximal
function of order α, α ∈ (0, 1] .

2. PRELIMINARY RESULTS

For the main results we shall need the following auxiliary results:

Lemma 2.1. We have

Aϑn
(
ϑ0; x

)
= Aϑn (e0; x) = 1, (2.4)

Aϑn
(
ϑ1; x

)
= ϑ (x) , (2.5)

Aϑn
(
ϑ2; x

)
=

ϑ (x) (1 + ϑ (x))

n
+ ϑ2 (x) , (2.6)

and

Aϑn
(
ϑ3; x

)
=

ϑ (x)

n2

[
1 + 3ϑ (x) + 3nϑ (x) + 2ϑ2 (x) + 3nϑ2 (x)

+n2ϑ2 (x)

]
, (2.7)

Aϑn
(
ϑ4; x

)
= ϑ4 (x) +

6

n

(
ϑ4 (x) + ϑ3 (x)

)
+

11ϑ4 (x) + 18ϑ3 (x) + 7ϑ2 (x)

n2

+
6ϑ4 (x) + 12ϑ3 (x) + 7ϑ2 (x) + ϑ (x)

n3
.

Proof. Using (1.2) and (1.3), we can write

Aϑn
(
ϑ0; x

)
= Aϑn (e0; x) = An (e0; ϑ (x)) = 1,
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Aϑn (ϑ; x) =

∞∑
k=1

k

n
Pϑ,n,k (x)

=

∞∑
k=1

(
n+ k − 1

k

)
k

n
ϑk (x) (1 + ϑ (x))

−n−k

= ϑ (x)

∞∑
k=0

(
n+ k

k

)
ϑk (x) (1 + ϑ (x))

−(n+1)−k

= ϑ (x)

∞∑
k=0

Pϑ,n+1,k (x) = ϑ (x)An+1 (e0; ϑ (x))

= ϑ (x)

and

Aϑn
(
ϑ2; x

)
=

∞∑
k=0

k2

n2
Pϑ,n,k (x)

=

∞∑
k=2

k (k − 1)

n2
Pϑ,n,k (x) +

∞∑
k=1

k

n2
Pϑ,n,k (x)

=

(
n+ 1

n

)
ϑ2 (x)

∞∑
k=0

Pϑ,n+2,k (x) +
ϑ (x)

n

∞∑
k=0

Pϑ,n+1,k (x)

=

(
n+ 1

n

)
ϑ2 (x)An+2 (e0; ϑ (x)) +

ϑ (x)

n
An+1 (e0; ϑ (x))

=
ϑ (x) (1 + ϑ (x))

n
+ ϑ2 (x) .

Since other calculations are similar, we omit the details. �

We deal with the ϑ-central moments of order k ∈ N of the operators Aϑn, defined by

Mϑ
n,k (x) := Aϑn

(
ϑkx; x

)
,

where ϑkx (t) := (ϑ(t)− ϑ(x))
k.

Using Lemma 2.1 , we can state the following

Lemma 2.2. We have
i) Mϑ

n,2 (x) = ϑ2(x)+ϑ(x)
n ,

ii) Mϑ
n,4 (x) = 3ϑ4(x)+6ϑ3(x)+3ϑ2(x)

n2 + 6ϑ4(x)+12ϑ3(x)+7ϑ2(x)+ϑ(x)
n3 ,

iii) Mϑ
n,6 (x) = ϑ(x)(1+ϑ(x))

n5

[
1 + 5(6 + 5n)ϑ(x) + 5(30 + 31n+ 3n2)ϑ2(x)

+10(24 + 26n+ 3n2)ϑ3(x) + 5(24 + 26n+ 3n2)ϑ4(x)

]
.

Remark 2.1. The moments and the central moments of new operators can be checked just
taking ϑ = e1. They were already presented for the classical Baskakov operators in some
papers (for instance [2] ).

3. ON THE CONVERGENCE OF Aϑn(f ;x) IN WEIGHTED SPACES

Korovkin-type theorems give simple and useful tools for investigating whether a given
sequence of positive linear operators is an approximation process, or equivalently, con-
verges strongly to the identity operator. These theorems exhibit a variety of subsets of test
functions which guarantee that the approximation (or the convergence) property holds
on the whole space provided it holds on them (see [3]).
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The first weighted Korovkin-type theorems were proved by Gadzhiev in [7] and [8].
Recently, in the aforesaid papers [9] and [12], some quantitative versions were stated by
introducing different weighted modulus of continuity.

Now, we present the weighted spaces of functions that appear in the paper. With this
purpose we firstly introduce the function

ϕ (x) := 1 + ϑ2 (x) ,

and define the weighted space

Bϕ
(
R+
)

:= {f : R+ → R : |f (x)| ≤Mf ϕ (x) , x ≥ 0},

where Mf is a constant depending on f . Bϕ (R+) is a normed space with the norm

‖f‖ϕ = sup
x∈R+

|f (x)|
ϕ (x)

.

Cϕ (R+) denotes the subspace of all continuous function inBϕ (R+), and Ckϕ (R+) denotes
the subspace of all functions f ∈ Cϕ (R+) with lim

x→∞
f(x)
ϕ(x) = kf , where kf is a constant

depending on f . Also let Uϕ (R+) be the space of functions f ∈ Cϕ (R+) such that f(x)
ϕ(x) is

uniformly continuous. It is obvious that

Ckϕ
(
R+
)
⊂ Uϕ

(
R+
)
⊂ Cϕ

(
R+
)
⊂ Bϕ

(
R+
)
.

Finally, we recover from [12] the weighted modulus of continuity that we shall use to
estimate the rate of convergence for functions from Cϕ(R+). It is worthy mentioning that
another modulus of this type was introduced in [9]. Obviously, it is useless to consider the
first classical modulus of continuity because we are dealing with non bounded functions.

For f ∈ Cϕ(R+) and for every δ ≥ 0,

ωϑ(f, δ) := sup

{
|f(x)− f(y)|
ϕ(x) + ϕ(y)

: x, y ≥ 0, |ϑ(x)− ϑ(y)| ≤ δ
}
.

Two important properties of this modulus read as follows (see [12]):

lim
δ→0

ωϑ(f ; δ) = 0, f ∈ Uϕ(R+),

ωϑ(f ;λδ) ≤ (2 + λ)ωϑ(f ; δ), δ, λ ≥ 0. (3.8)

The following results were applied in [4] to the generalized Szász-Mirakyan operators.
Here we follow the same pattern and state without proofs both illustrative qualitative and
quantitative results for our sequence of operators.

Theorem 3.1. For f ∈ Ckϕ(R+),

lim
n→∞

∥∥Aϑn(f)− f
∥∥
ϕ

= 0.

Theorem 3.2. For f ∈ Cϕ(R+),

∥∥Aϑn(f)− f
∥∥
ϕ

3
2
≤
(

7 +
4

n

)
ωϑ

(
f ; 2
√

2/n+ 18/n
)
.
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4. QUANTITATIVE TYPE THEOREMS

In recent years, the classical Voronovskaya formulae have been studied in quantitative
form intensively. This kind of theorems are more interesting and important because they
show the error of approximation and the rate of convergence simultaneously. For details
we refer the readers to [10], [11]. Now we state a result of this type for our sequence of
operators. Firstly, we prove a lemma that extends [12, Lemma 3]

Lemma 4.3. Let f ∈ Cϕ(R+) and x ∈ R+. Then, for δ > 0, y ∈ R+ and ξ lying between x and
y,

|f (ξ)− f (x)| ≤ 2 (ϕ (y) + ϕ (x))

(
2 +
|ϑ (y)− ϑ (x)|

δ

)
ωϑ(f ; δ). (4.9)

Proof. Assume first that x ≤ ξ ≤ y. As ϕ is increasing and |ϑ(ξ) − ϑ(x)| ≤ |ϑ(y) − ϑ(x)|,
then

|f(ξ)− f(x)|
ϕ(y) + ϕ(x)

≤ |f(ξ)− f(x)|
ϕ(ξ) + ϕ(x)

≤ sup

{
|f(s)− f(t)|
ϕ(s) + ϕ(t)

: s, t ≥ 0, |ϑ(s)− ϑ(t)| ≤ |ϑ(y)− ϑ(x)|
}

= ωϑ(f ; |ϑ(x)− ϑ(y)|) = ωϑ(f ;
|ϑ(x)− ϑ(y)|

δ
δ)

≤
(

2 +
|ϑ(x)− ϑ(y)|

δ

)
ωϑ(f ; δ),

where in the last inequality we have used (3.8).
Assume now that y ≤ ξ ≤ x. Using the triangular inequality and the monotonicity of

ϕ,

|f(ξ)− f(x)|
ϕ(y) + ϕ(x)

≤ |f(ξ)− f(y)|
ϕ(y) + ϕ(x)

+
|f(y)− f(x)|
ϕ(y) + ϕ(x)

≤ |f(ξ)− f(y)|
ϕ(ξ) + ϕ(y)

+
|f(y)− f(x)|
ϕ(y) + ϕ(x)

,

from where the proof is over proceeding twice as above. �

Theorem 4.3. Let us assume that the functions f ′′/ (ϑ′)
2 and f ′ϑ′′/ (ϑ′)

3 belong to the space
Uϕ(R+). Then, for x ∈ R+,∣∣∣∣n(Aϑn (f ;x)− f (x)

)
− ϑ (x) (1 + ϑ (x))

2

(
f ◦ ϑ−1

)′′
(ϑ (x))

∣∣∣∣
≤ O (1)

(
1 + ϑ2 (x)

){
ωϑ

(
f ′′

(ϑ′)
2 ;n−1/2

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ;n−1/2

)}
.

Proof. By using the Taylor expansion of f ◦ ϑ−1 at the point x ∈ R+ we can write, for
u ∈ R+,

f(u) =
(
f ◦ ϑ−1

)
(ϑ (u)) =

(
f ◦ ϑ−1

)
(ϑ (x)) +

(
f ◦ ϑ−1

)′
(ϑ (x)) (ϑ (u)− ϑ (x))

+

(
f ◦ ϑ−1

)′′
(ϑ (x)) (ϑ (u)− ϑ (x))

2

2
+ hx (u) (ϑ (u)− ϑ (x))

2
,

where

hx (u) =

(
f ◦ ϑ−1

)′′
(ϑ (ξ))−

(
f ◦ ϑ−1

)′′
(ϑ (x))

2
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and ξ is a number between x and u. Equivalently, we can write the functional identity

f = f(x)e0 +
(
f ◦ ϑ−1

)′
(ϑ(x))ϑ1x +

(
f ◦ ϑ−1

)′′
(ϑ(x))

2
ϑ2x + hxϑ

2
x.

If we apply the operator to both sides of this last equality and evaluate at the point x, we
immediately have∣∣∣∣∣Aϑn (f ;x)− f (x)−

(
f ◦ ϑ−1

)′′
(ϑ (x))

2
Mϑ
n,2 (x)

∣∣∣∣∣ ≤ Aϑn (|hx|ϑ2x;x
)
,

and using Lemma 2.2 we can write∣∣∣∣Aϑn (f ;x)− f (x)− ϑ (x) (1 + ϑ (x))

2n

(
f ◦ ϑ−1

)′′
(ϑ (x))

∣∣∣∣ ≤ Aϑn (|hx|ϑ2x;x
)
.

In order to complete the proof, we estimate Aϑn
(
|hx|ϑ2x;x

)
. Using Lemma 4.3, we can

write, for any δ > 0,

hx (u) =

(
f ◦ ϑ−1

)′′
(ϑ (ξ))−

(
f ◦ ϑ−1

)′′
(ϑ (x))

2

=
1

2

{
f ′′ (ξ)

(ϑ′ (ξ))
2 −

f ′′ (x)

(ϑ′ (x))
2 + f ′ (x)

ϑ′′ (x)

(ϑ′ (x))
3 − f

′ (ξ)
ϑ′′ (ξ)

(ϑ′ (ξ))
3

}

≤ (ϕ (u) + ϕ (x))

(
2 +
|ϑ (u)− ϑ (x)|

δ

){
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}

≤ 2 (ϕ (u) + ϕ (x))

(
1 +
|ϑ (u)− ϑ (x)|

δ

){
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′.ϑ

′′

(ϑ′)
3 ; δ

)}
,

where in the last inequality we have used that for all α, β ≥ 0, α(2 + β) ≤ 2α(1 + β). By
using Cauchy-Schwarz inequality, we have

Aϑn
(
|hx|ϑ2x;x

)
≤ 2

{
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}
Aϑn

(
(ϕ+ ϕ(x)e0)

(
e0 +

|ϑ1x|
δ

)
ϑ2x;x

)

= 2

{
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}
Aϑn
(
(ϕ+ ϕ(x)e0)ϑ2x;x

)
+2

{
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}
Aϑn

(
(ϕ+ ϕ(x)e0)

|ϑ1x|
δ
ϑ2x;x

)

≤ 2

{
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}(
Aϑn
(
ϕ2;x

))1/2 (
Mϑ
n,4 (x)

)1/2
+2ϕ(x)

{
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}
Mϑ
n,2 (x)

+2

{
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}
1

δ

(
Aϑn
(
ϕ2;x

))1/2 (
Mϑ
n,6 (x)

)1/2
+2ϕ(x)

{
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}
1

δ

(
Mϑ
n,6 (x)

)1/2
,
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that is,

Aϑn
(
|hx|ϑ2x;x

)
≤ 2

{
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}((
Aϑn
(
ϕ2;x

))1/2 (
Mϑ
n,4 (x)

)1/2
+ ϕ (x)Mϑ

n,2 (x)
)

+ 2

{
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}(
Mϑ
n,6 (x)

)1/2 1

δ

((
Aϑn
(
ϕ2;x

))1/2
+ ϕ (x)

)
.

Since
(
Aϑn
(
ϕ2;x

))1/2
=O (1),

(
Mϑ
n,4(x)

)1/2
=O

(
n−1

)
, Mϑ

n,2(x)=O
(
n−1

)
,
(
Mϑ
n,6 (x)

)1/2
=

O
(
n−3/2

)
, we can write

Aϑn
(
|hx|ϑ2x;x

)
≤ 2

(
1 + ϑ2 (x)

){
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}
O
(
n−1

)
+2

{
ωϑ

(
f ′′

(ϑ′)
2 ; δ

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ; δ

)}
O
(
n−3/2

) 1

δ
.

Choosing δ = n−1/2, we get

nAϑn
(
|hx|ϑ2x;x

)
≤ O (1)

(
1 + ϑ2 (x)

){
ωϑ

(
f ′′

(ϑ′)
2 ;n−1/2

)
+ ωϑ

(
f ′ϑ′′

(ϑ′)
3 ;n−1/2

)}
,

which completes the proof. �

Next corollary shows the classical Voronovskaya’s formula:

Corollary 4.1. Let f ∈ Uϕ(R+), x ∈ R+ and suppose that the first and second derivatives of
f ◦ ϑ−1 exist at ϑ(x). If the second derivative of f ◦ ϑ−1 is bounded on R+, then

lim
n→∞

n
(
Aϑn(f ;x)− f(x)

)
=
ϑ2(x) + ϑ(x)

2

(
f ◦ ϑ−1

)′′
(ϑ(x)).

Next result deals with the approximation of the first derivative of a function by using
the first derivatives of our operator Aϑn.

Theorem 4.4. Assume that f ′/ϑ′ ∈ Uϕ(R+), then

sup
x∈R+

∣∣∣Aϑn (f ;x)
′ − f ′

(x)
∣∣∣

ϑ′ (x) (1 + ϑ2 (x))
≤
{

3 +
4

n
+

(n+ 1) (2n+ 6)

n2

}
ωϑ

(
f ′

ϑ′
;

1

n

)
.

Proof. It is easily seen that

Aϑn (f ;x)
′

= nϑ′ (x)

∞∑
k=0

(
n+ k

k

)
ϑk(x)

(1 + ϑ (x))
n+k+1

[
(f ◦ ϑ−1)

(
k + 1

n

)
− (f ◦ ϑ−1)

(
k

n

)]

= nϑ
′
(x)

∞∑
k=0

(
n+ k

k

)
ϑk(x)

(1 + ϑ (x))
n+k+1

∆(f ◦ ϑ−1)

(
k

n

)
(4.10)
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and

Aϑn (f ;x)
′ − f ′ (x)

= ϑ′ (x)

∞∑
k=0

(
n+ k

k

)
ϑk(x)

(1 + ϑ (x))
n+k+1

[
n∆(f ◦ ϑ−1)

(
k

n

)
− f ′ (x)

ϑ′ (x)

]

= ϑ′ (x)

∞∑
k=0

(
n+ k

k

)
ϑk(x)

(1 + ϑ (x))
n+k+1

[
n∆(f ◦ ϑ−1)

(
k

n

)
− (f ◦ ϑ−1)′ (ϑ (x))

]
.

Using the relation between the forward difference and the derivative of the corresponding
function (See, [16, p.34, eq.(1.80)]), we obtain

n∆(f ◦ ϑ−1)

(
k

n

)
= (f ◦ ϑ−1)

′
(ϑ (ξt))

for t ∈ N0 and ξt ∈
[
t, t+ 1

n

)
. Furthermore we get∣∣∣∣n∆(f ◦ ϑ−1)

(
k

n

)
− (f ◦ ϑ−1)′ (ϑ (x))

∣∣∣∣ =
∣∣(f ◦ ϑ−1)′ (ϑ (ξt))− (f ◦ ϑ−1)′ (ϑ (x))

∣∣
=

∣∣∣∣f ′ (ξt)ϑ′ (ξt)
− f ′ (x)

ϑ′ (x)

∣∣∣∣ .
Using Lemma 4.3, we can write∣∣(f ◦ ϑ−1)′ (ϑ (ξt))− (f ◦ ϑ−1)′ (ϑ (x))

∣∣
≤

(
ϕ

(
k + 1

n

)
+ ϕ (x)

)(
2 +

1

δ

∣∣∣∣ϑ(k + 1

n

)
− ϑ (x)

∣∣∣∣)ωϑ(f ′ϑ′ ; δ
)
.

For the convenient notation let us consider the operators

Aϑn,1 (f ;x) :=

∞∑
k=0

(
n+ k

k

)
ϑk(x)

(1 + ϑ (x))
n+k+1

f

(
k

n

)
which are linear and positive. So we can write∣∣Aϑn (f ;x)

′ − f ′ (x)
∣∣

≤
(

2ϑ′ (x)Aϑn,1

((
ϕ

(
k + 1

n

)
+ ϕ (x)

)
;x

)

+
ϑ′ (x)

δ

{
Aϑn,1

(
ϕ2

(
k + 1

n

)
;x

)}1/2
{
Aϑn,1

((
ϑ

(
k + 1

n

)
− ϑ (x)

)2

;x

)}1/2

+
ϑ′ (x)

δ
ϕ (x)

{
Aϑn,1

((
ϑ

(
k + 1

n

)
− ϑ (x)

)2

;x

)}1/2
ωϑ

(
f ′

ϑ′
; δ

)
.

Since

Aϑn,1

(
ϕ

(
k + 1

n

)
;x

)
=

(
1 +

1

n

)
ϑ (x) +

1

n

and

Aϑn,1

(
ϕ2

(
k + 1

n

)
;x

)
=

(n+ 1) (n+ 2)

n2
ϑ2 (x) +

3 (n+ 1)

n2
ϑ (x) +

1

n2
,

if we choose
δ =

1

n
we have the desired result. �
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5. SOME FURTHER PROPERTIES OF Aϑn(f ;x)

In this section we firstly show that if we assume the ϑ-convexity of the function f ,
then the convergence of Aϑn(f ;x) to its limit is monotone. The first result is a very direct
consequence of Corollary 4.1, whose proof follows from the convexity of f ◦ ϑ−1, while
the second one requires certain calculations.

Corollary 5.2. If f is ϑ-convex on R+, then

Aϑn(f, x) ≥ f(x).

Theorem 5.5. If f is ϑ-convex on R+, then

Aϑn (f ; x) ≥ Aϑn+1 (f ; x)

for all n ≥ 0 and x ∈ R+ such that ϑ(x) 6= k
n , (k = 0, 1, 2, . . . ). If f ◦ ϑ−1 is linear then

Aϑn (f ; x) = Aϑn+1 (f ; x).

Proof. Firstly, we arrange the operators Aϑn (f ; x) and Aϑn+1 (f ; x). We can write

Aϑn (f ; x) =

(
f ◦ ϑ−1

)
(0)

(1 + ϑ(x))
n +

∞∑
k=1

(
n+ k − 1

k

)(
f ◦ ϑ−1

)(k
n

)
ϑk(x)

(1 + ϑ(x))
n+k

=

(
f ◦ ϑ−1

)
(0)

(1 + ϑ(x))
n +

∞∑
k=0

(
n+ k

k + 1

)(
f ◦ ϑ−1

)(k + 1

n

)
ϑk+1(x)

(1 + ϑ(x))
n+k+1

and

Aϑn+1 (f ; x)

=

∞∑
k=0

(
n+ k

k

)(
f ◦ ϑ−1

)( k

n+ 1

)
ϑk(x)

(1 + ϑ(x))
n+k

−
∞∑
k=0

(
n+ k

k

)(
f ◦ ϑ−1

)( k

n+ 1

)
ϑk+1(x)

(1 + ϑ(x))
n+k+1

=

(
f ◦ ϑ−1

)
(0)

(1 + ϑ(x))
n +

∞∑
k=1

(
n+ k

k

)(
f ◦ ϑ−1

)( k

n+ 1

)
ϑk(x)

(1 + ϑ(x))
n+k

−
∞∑
k=0

(
n+ k

k

)(
f ◦ ϑ−1

)( k

n+ 1

)
ϑk+1(x)

(1 + ϑ(x))
n+k+1

.

Now using the equations above, we can write the difference of the operators Aϑn+1 (f ; x)

and Aϑn (f ; x):

Aϑn+1 (f ; x)−Aϑn (f ; x)

=

∞∑
k=0

ϑk+1(x)

(1 + ϑ(x))
n+k+1

[(
f ◦ ϑ−1

)(k + 1

n+ 1

)(
n+ k + 1

k + 1

)
−
(
f ◦ ϑ−1

)( k

n+ 1

)(
n+ k

k

)
−
(
f ◦ ϑ−1

)(k + 1

n

)(
n+ k

k + 1

)]
.

Then using the following equalities(
n+ k + 1

k + 1

)
=

(
n+ k

k

)
n+ k + 1

k + 1
,

(
n+ k

k + 1

)
=

(
n+ k

k

)
n

k + 1
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we have

Aϑn+1 (f ; x)−Aϑn (f ; x)

= −
∞∑
k=0

ϑk+1(x)

(1 + ϑ(x))
n+k+1

(
n+ k

k

)
[(
f ◦ ϑ−1

)( k

n+ 1

)
− n+ k + 1

k + 1

(
f ◦ ϑ−1

)(k + 1

n+ 1

)
+

n

k + 1

(
f ◦ ϑ−1

)(k + 1

n

)]
.

From the divided differences of
(
f ◦ ϑ−1

)
on the knots k

n+1 , k+1
n+1 and k+1

n , we get

(
f ◦ ϑ−1

) [ k

n+ 1
,
k + 1

n+ 1
,
k + 1

n

]

=

(
f ◦ ϑ−1

) [
k+1
n+1 ,

k+1
n

]
−
(
f ◦ ϑ−1

) [
k

n+1 ,
k+1
n+1

]
k+1
n −

k
n+1

=
n(n+ 1)2

n+ k + 1

[(
f ◦ ϑ−1

)( k

n+ 1

)
−n+ k + 1

k + 1

(
f ◦ ϑ−1

)(k + 1

n+ 1

)
+

n

k + 1

(
f ◦ ϑ−1

)(k + 1

n

)]
.

This completes the proof. �

Now we show a shape preserving property of Aϑn.

Theorem 5.6. Assume that f (x) ≥ 0 for x > 0. If
(
f ◦ ϑ−1

)
(x) /x is decreasing for x > 0,

then Aϑ
n(f ; x)
ϑ(x) is also decreasing for x > 0.

Proof. From the definition of the operator Aϑn (f ; x) , we can write

Aϑn (f ; x)

ϑ (x)
=

f (0)

ϑ (x) (1 + ϑ (x))
n +

∞∑
k=1

(
n+ k − 1

k

)(
f ◦ ϑ−1

)(k
n

)
ϑ (x)

k−1
(1 + ϑ (x))

−n−k
.

Thus we have(
Aϑn (f ;x)

ϑ (x)

)′
= − ϑ′ (x) f (0)

ϑ2 (x) (1 + ϑ (x))
n − n

ϑ′ (x) f (0)

ϑ (x) (1 + ϑ (x))
n+1

+ϑ′ (x)

∞∑
k=1

(
f ◦ ϑ−1

)(k + 1

n

)(
n+ k

k + 1

)
kϑ (x)

k−1
(1 + ϑ (x))

−n−1−k

−ϑ′(x)

∞∑
k=1

(
f ◦ ϑ−1

)(k
n

)(
n+ k − 1

k

)
(n+k)ϑ (x)

k−1
(1 +ϑ (x))

−n−1−k
.

Using the inequalities(
n+ k

k + 1

)
=

(
n+ k

k

)
n

k + 1
,

(
n+ k − 1

k

)
(n+ k) =

(
n+ k

k

)
n
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we obtain(
Aϑn (f ;x)

ϑ (x)

)′
= − ϑ′ (x) f (0)

ϑ2 (x) (1 + ϑ (x))
n − n

ϑ′ (x) f (0)

ϑ (x) (1 + ϑ (x))
n+1

+ϑ′ (x)

∞∑
k=1

(
f ◦ ϑ−1

)(k + 1

n

)(
n+ k

k + 1

)
kϑ (x)

k−1
(1 + ϑ (x))

−n−1−k

−ϑ′ (x)

∞∑
k=1

(
f ◦ ϑ−1

)(k
n

)(
n+ k − 1

k

)
(n+)ϑ (x)

k−1
(1+ϑ (x))

−n−1−k
.

and

(
Aϑn (f ;x)

ϑ (x)

)′
= − ϑ′ (x) f (0)

ϑ2 (x) (1 + ϑ (x))
n − n

ϑ′ (x) f (0)

ϑ (x) (1 + ϑ (x))
n+1 (5.11)

+ϑ′(x)

∞∑
k=1

(
n+ k

k

)
ϑ(x)

k−1
(1+ϑ (x))

−n−1−k
k

((
f ◦ ϑ−1

)(k + 1

n

)
n

k + 1
−
(
f ◦ ϑ−1

)(k
n

)
n

k

)
.

Since
(
f ◦ ϑ−1

)
(x) /x is decreasing for x ∈ (0,∞) , (5.11) completes the proof. �

Now, we introduce a Lipschitz space related to ϑ, analogous to the classical space
LipMα. Then we prove a direct result for functions from this space.

Definition 5.1. Let 0 < α ≤ 1 andM > 0. We denote by LipM (ϑ;α) the set of all functions
f satisfying the inequality

|f(t)− f(x)| ≤M |ϑ(t)− ϑ(x)|α, x, t ≥ 0.

It is obvious that for f ∈ LipM (ϑ;α)

ωϑ (f, δ) ≤Mδα.

Theorem 5.7. For any f ∈ LipM (ϑ;α) , α ∈ (0, 1] and for every x > 0, we have

∣∣Aϑn (f ;x)− f (x)
∣∣ ≤M (

ϑ2(x) + ϑ(x)

n

)α/2
.

Proof. Here we extend the notation of ϑkx and consider ϑαx(t) = (ϑ(t) − ϑ(x))α for any
α > 0.

First assume α = 1. Then we have∣∣Aϑn (f ;x)− f (x)
∣∣ ≤ Aϑn (|f − f(x)e0|;x) (5.12)

≤ MAϑn
(
|ϑ1x|;x

)
for f ∈ LipM (ϑ; 1) and x > 0. Applying Cauchy-Schwarz inequality in (5.12), we get∣∣Aϑn (f ;x)− f (x)

∣∣ ≤ M
[
Aϑn
(
ϑ2x;x

)]1/2
= M

√
ϑ2(x) + ϑ(x)

n
.

Now assume that α ∈ (0, 1). Then we have∣∣Aϑn (f ;x)− f (x)
∣∣ ≤ Aϑn (|f − f(x)e0|;x) (5.13)

≤ MAϑn (|ϑαx |;x)
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for f ∈ LipM (ϑ;α) and x > 0. Taking p = 1/α and q = 1/ (1− α) , for any f ∈ LipM (ϑ;α)
and applying the Hölder inequality in (5.13), we obtain∣∣Aϑn (f ;x)− f (x)

∣∣ ≤M [
Aϑn
(
|ϑ1x|;x

)]α
. (5.14)

Using (5.14) and Cauchy-Schwarz inequality, we get

Aϑn (f ;x)− f (x) ≤M
(
ϑ2 (x) + ϑ (x)

n

)α/2
.

This completes the proof. �

Finally, we define the following kind of generalized Lipschitz-type maximal function
of order α

ω̃αϑ (f, x) = sup
x6=t

t∈[0,∞)

|f (t)− f (x)|
|ϑ (t)− ϑ (x)|α

, (5.15)

for f ∈ CB [0,∞) , α ∈ (0, 1].

Theorem 5.8. Assume f ∈ CB [0,∞) and 0 < α ≤ 1. Then∣∣Aϑn (f ;x)− f (x)
∣∣ ≤ ω̃αϑ (f, x)

(
ϑ (x) + ϑ2 (x)

n

)α/2
, x > 0.

Proof. By using (5.15), we have∣∣Aϑn (f ;x)− f (x)
∣∣ ≤ ω̃αϑ (f, x)Aϑn

(∣∣ϑ1x∣∣α ;x
)
. (5.16)

If we use the Hölder inequality for p = 2/α and 1/q = 1− 1/p in (5.16), we can write∣∣Aϑn (f ;x)− f (x)
∣∣ ≤ ω̃αϑ (f, x)

[
Aϑn
(
ϑ2x;x

)]α/2
≤ ω̃αϑ (f, x)

(
ϑ2 (x) + ϑ(x)

n

)α/2
.

�
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Email address: cardenas@ujaen.es


