Solutions of a system of integral equations with deviating argument

Monica Lauran

ABSTRACT. In this paper we establish two existence and uniqueness results for the solutions of a system of integral equations with deviating argument of the form

$$
y_{1}(x)=f_{1}(x)+\int_{a}^{b} K_{1}\left(x, y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{1}(s)\right)\right) d s
$$

The solutions are searched in the set $C_{L}\left([a, b] ;[a, b]^{2}\right)$ and the main tool used in our study is the Perov's fixed point theorem.

1. Introduction

The study of integral equations with deviating arguments as well as of systems of integral equations with deviating arguments constitutes the subject for a large number of a physical, biological and economical mathematical models. A class of integral equations with modified argument are the iterative functional-integral equations, such as the equation

$$
\begin{equation*}
x(t)=\int_{a}^{b} K(t ; s ; x(s) ; x(g(s))) d s+f(t) \tag{1.1}
\end{equation*}
$$

This kind of integral equations has been studied by several authors but we refer in the following to the ones considered by Dobriţoiu (see [9]), where the author uses the technique of Picard operators, see [2], [9], [19].
Here we consider $t \in[a, b], K \in C\left([a, b] \times[a ; b] \times \mathbb{R}^{m} \times \mathbb{R}^{m} ; \mathbb{R}^{m}\right), f \in C\left([a, b] ; \mathbb{R}^{m}\right)$, $g \in C([a, b] ;[a, b])$. Before we present our main results, we will give some useful definitions and theorems.
Definition 1.1. ([3]) Let (X, d) be a generalized metric space $\left(d(x, y) \in \mathbb{R}_{+}^{n}\right)$. The operator $H: X \rightarrow X$ is Q-Lipschitz, if there exists a matrix $Q \in M_{m m}\left(\mathbb{R}_{+}\right)$such that

$$
d(H x, H y) \leq Q \cdot d(x, y), \quad \forall x, y \in X
$$

Definition 1.2. ([3]) A matrix $Q \in M_{m m}\left(\mathbb{R}_{+}\right)$is called convergent to zero if Q^{k} converges to the zero matrix as $k \rightarrow \infty$.

Theorem 1.1. ([25]) Let $Q \in M_{m m}\left(\mathbb{R}_{+}\right)$. The following statements are equivalent:
i) $Q^{k} \rightarrow 0$, when $k \rightarrow \infty$;
ii) the eigenvalues of the matrix Q lie in the open unit disc of the complex plane;
iii) the matrix $I-Q$ is nonsingular and

$$
(I-Q)^{-1}=I+Q+\ldots+Q^{k}+\ldots
$$

where $I \in M_{m m}(\mathbb{R})$ denotes the identity matrix.
Received: 15.03.2015. In revised form: 28.09.2015. Accepted: 01.02.2016
2010 Mathematics Subject Classification. 45B05, 45D05, 47H10.
Key words and phrases. System of integral equations, existence of solutions, Perov's theorem.

The following theorem is a generalization of the Banach's fixed point theorem, in the case of the generalized metric spaces, with the metric taking values in \mathbb{R}^{n}.

Theorem 1.2. (Perov [2]) Let (X, d) be a complete generalized metric space and let $H: X \rightarrow X$ be an operator which is Q-Lipschitz with Q a matrix convergent to zero. Then
i) $F_{H}=x^{*}$;
ii) the sequence of successive approximations $x_{k}=H^{k}\left(x_{0}\right)$ converges to $x^{*} \in X$, for any $x_{0} \in X$;
iii) the estimation $d\left(x_{k}, x^{*}\right) \leq Q^{k}(I-Q)^{-1} \cdot d\left(x_{0}, x_{1}\right)$ holds, for each $k \in \mathbb{N}^{*}$;
iv) if $T: X \rightarrow X$ satisfies the condition $d(H x, T x) \leq \eta, \forall x \in X, \eta \in \mathbb{R}^{n}$ and we consider the sequence $y_{k}=T^{k}\left(x_{0}\right)$, then $d\left(y_{k}, x^{*}\right) \leq(I-Q)^{-1} \eta+Q^{k}(I-Q)^{-1} d\left(x_{0}, x_{1}\right)$.

For some applications of Perov's fixed point theorem to the study of integral equations we refer to [10], [11], [12], [16], [21], [20], [25]. An existence result in $C_{L}\left([a, b],[a, b]^{2}\right)$ appeared in [17].

The aim of this paper is to study a system of two integral equations of Fredholm type with modified argument by using Perov's fixed point theorem.

A system of two iterative integral equations of Fredholm type is also studied by the same technique.

2. Main results

We consider a system of integral equations of Fredholm type of the form:

$$
\left\{\begin{array}{l}
y_{1}(x)=f_{1}(x)+\int_{a}^{b} K_{1}\left(x, y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{1}(s)\right)\right) d s \tag{2.2}\\
y_{2}(x)=f_{2}(x)+\int_{a}^{b} K_{2}\left(x, y_{1}\left(y_{2}(s)\right), y_{2}\left(y_{2}(s)\right)\right) d s
\end{array}\right.
$$

where $x \in[a, b], y_{i}:[a, b] \rightarrow[a, b], f_{i} \in C\left([a, b],[a, b]^{2}\right), i=\overline{1,2}, K_{i} \in C\left([a, b]^{3} ;[a, b]^{2}\right)$.
We try to fit in the conditions of Perov's fixed point theorem, in order to prove that the system (2.2) has in $C\left([a, b],[a, b]^{2}\right)$ a unique solution.

Let $L>0$ be given and consider the set

$$
\begin{gathered}
C_{L}\left([a, b],[a, b]^{2}\right)=\left\{\left(y_{1}, y_{2}\right) \in C([a, b],[a, b]):\left|y_{i}\left(t_{1}\right)-y_{i}\left(t_{2}\right)\right| \leq\right. \\
\left.\leq L \cdot\left|t_{1}-t_{2}\right|, \forall t_{1}, t_{2} \in[a, b], i=1,2\right\} .
\end{gathered}
$$

The space $\left(C_{L}\left([a, b],[a, b]^{2}\right), d_{C}\right)$ is a complete metric space, where $d_{C}: C_{L}\left([a, b],[a, b]^{2}\right) \times C_{L}\left([a, b],[a, b]^{2}\right) \rightarrow \mathbb{R}^{2}$ is defined by

$$
d_{C}\left(\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right)=\binom{\left\|y_{1}-z_{1}\right\|_{C}}{\left\|y_{2}-z_{2}\right\|_{C}}=\binom{\max _{t \in[a, b]}\left|y_{1}(t)-z_{1}(t)\right|}{\max _{t \in[a, b]}\left|y_{2}(t)-z_{2}(t)\right|}
$$

for $\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right) \in C_{L}\left([a, b],[a, b]^{2}\right)$.
Denote $C_{x}=\max \{x-a, b-x\}, \forall x \in[a, b]$.
Theorem 2.3. Assume that
i) $f \in C\left([a, b],[a, b]^{2}\right), K \in C\left([a, b]^{3},[a, b]^{2}\right)$,
ii) $\exists L_{1 j}, L_{2 j}>0, j=1,2$ such that

$$
\left|K_{1}\left(t, u_{1}, u_{2}\right)-K_{1}\left(t, v_{1}, v_{2}\right)\right| \leq \sum_{j=1}^{2} L_{1 j}\left|u_{j}-v_{j}\right|
$$

$$
\left|K_{2}\left(t, u_{1}, u_{2}\right)-K_{2}\left(t, v_{1}, v_{2}\right)\right| \leq \sum_{j=1}^{2} L_{2 j}\left|u_{j}-v_{j}\right|
$$

for all and
$\exists L_{K}>0$ such that $\left|K_{i}\left(t_{1}, u, v\right)-K_{i}(t, u, v)\right| \leq L_{K} \cdot\left|t_{1}-t_{2}\right|, \forall t_{1}, t_{2} \in[a, b], i=1,2$
iii) $\exists L_{f}>0$ such that $\left|f_{i}\left(t_{1}\right)-f_{i}\left(t_{2}\right)\right| \leq L_{f} \cdot\left|t_{1}-t_{2}\right|, \forall t_{1}, t_{2} \in[a, b], i=1,2$,
iv) $L_{f}+L_{K} \cdot(b-a) \leq L$;
v) For $x_{0} \in[a, b]$ with $\left|f_{i}(x)\right| \leq\left|f_{i}\left(x_{0}\right)\right|, \forall x \in[a, b], i=1,2$, one of the following conditions holds:
a) $M \cdot C_{x_{0}} \leq C_{y_{0}}, y_{0}=\max \left(\left|f_{1}\left(x_{0}\right)\right|,\left|f_{2}\left(x_{0}\right)\right|\right)$ and $M=\max \left\{\left|K_{i}(t, u, v)\right|: t, u, v \in\right.$ [a, b]\};
b) $x_{0}=a, M(b-a) \leq b-C_{y_{0}}, K\left(t, u_{i}, v_{i}\right) \geq 0, \forall s, u_{i}, v_{i} \in[a, b], i=1,2 ;$
c) $x_{0}=b, M(b-a) \leq C_{y_{0}}-a, K\left(s, u_{i}, v_{i}\right) \geq 0, \forall s, u_{i}, v_{i} \in[a, b], i=1,2$;
vi) the eigenvalues of the matrix

$$
Q=\left(\begin{array}{cc}
(b-a)\left(L_{11}+L_{12} \cdot L\right) & (b-a) L_{12} \\
(b-a) L_{21} & (b-a)\left(L_{21} \cdot L+L_{22}\right)
\end{array}\right)
$$

lie in the open unit disc of the complex plane.
Then the system (2.2) has in $C\left([a, b],[a, b]^{2}\right)$ a unique solution.
Proof. Consider the operator $H: C_{L}\left([a, b],[a, b]^{2}\right) \rightarrow C\left([a, b],[a, b]^{2}\right)$ defined by

$$
(H y)(t)=\binom{\left(H_{1} y\right)(t)}{\left(H_{2} y\right)(t)}=\binom{f_{1}(t)+\int_{a}^{b} K_{1}\left(t, y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{1}(s)\right)\right) d s}{f_{2}(t)+\int_{a}^{b} K_{2}\left(t, y_{1}\left(y_{2}(s)\right), y_{2}\left(y_{2}(s)\right)\right) d s}, t \in[a, b]
$$

First, we prove the invariance property, i.e., the fact that

$$
H\left(C\left([a, b],[a, b]^{2}\right)\right) \subset C\left([a, b],[a, b]^{2}\right)
$$

which means that for any $y \in C\left([a, b],[a, b]^{2}\right)$ we have

$$
H y \in C\left([a, b],[a, b]^{2}\right),\left(H_{i} y\right)(t) \in C\left([a, b],[a, b]^{2}\right), \forall t \in[a, b], i=1,2 .
$$

For $t \in[a, b]$, we have

$$
\left|\left(H_{1} y\right)(t)\right| \leq\left|f_{1}(t)\right|+\int_{a}^{b}\left|K_{1}\left(t, y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{1}(s)\right)\right)\right| d s \leq\left|f_{1}\left(x_{0}\right)\right|+M(b-a) \leq b
$$

and

$$
\left|\left(H_{1} y\right)(t)\right| \geq\left|f_{1}(t)\right|-\int_{a}^{b}\left|K_{1}\left(t, y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{1}(s)\right)\right)\right| d s \geq\left|f_{1}\left(x_{0}\right)\right|-C_{y_{0}} \geq a
$$

So, $\left(H_{1} y\right)(t) \in[a, b]$ and in a similar manner we prove that $\left(H_{2} y\right)(t) \in[a, b]$ and by hypothesis (i) we have $H y \in C\left([a, b],[a, b]^{2}\right)$.

Moreover, for $t_{1}, t_{2} \in[a, b], t_{1} \leq t_{2}$ we will prove that

$$
H\left(C_{L}\left([a, b],[a, b]^{2}\right)\right) \subset C_{L}\left([a, b],[a, b]^{2}\right) .
$$

This follows in the following way

$$
\left\|(H y)\left(t_{1}\right)-(H y)\left(t_{2}\right)\right\|_{\mathbb{R}^{2}}=\left\|\left(\left(H_{1} y\right)\left(t_{1}\right)-\left(H_{1} y\right)\left(t_{2}\right),\left(H_{2} y\right)\left(t_{1}\right)-\left(H_{2} y\right)\left(t_{2}\right)\right)\right\|_{\mathbb{R}^{2}}
$$

$$
\begin{gathered}
\left|\left(H_{1} y\right)\left(t_{1}\right)-\left(H_{1} y\right)\left(t_{2}\right)\right| \leq\left|f_{1}\left(t_{1}\right)-f_{1}\left(t_{2}\right)\right|+ \\
+\int_{a}^{b}\left|K_{1}\left(t_{1}, y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{1}(s)\right)\right)-K_{1}\left(t_{2}, y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{1}(s)\right)\right)\right| d s \leq \\
\leq\left[L_{f}+L_{K}(b-a)\right]\left|t_{1}-t_{2}\right| \leq L \cdot\left|t_{1}-t_{2}\right| .
\end{gathered}
$$

Similarly,

$$
\left|\left(H_{2} y\right)\left(t_{1}\right)-\left(H_{2} y\right)\left(t_{2}\right)\right| \leq L \cdot\left|t_{1}-t_{2}\right|
$$

We thus obtain that

$$
\left\|(H y)\left(t_{1}\right)-(H y)\left(t_{2}\right)\right\|_{\mathbb{R}^{2}} \leq\left\|\left(L \cdot\left|t_{1}-t_{2}\right|, L \cdot\left|t_{1}-t_{2}\right|\right)\right\|_{\mathbb{R}^{2}}=L \cdot\left|t_{1}-t_{2}\right| .
$$

Therefore, the operator H is L-Lipschitz, which means that indeed $H y \in C_{L}\left([a, b],[a, b]^{2}\right)$.
We will demonstrate that the operator H is Q-Lipschitz.
Accordingly, for $t \in[a, b]$ and $y, z \in C_{L}\left([a, b],[a, b]^{2}\right)$ we have:

$$
d_{C}(H y, H z)=\binom{\left\|H_{1} y-H_{1} z\right\|_{C}}{\left\|H_{2} y-H_{2} z\right\|_{C}}
$$

and

$$
\begin{gathered}
\left|\left(H_{1} y\right)(t)-\left(H_{1} z\right)(t)\right| \leq \int_{a}^{b}\left|K_{1}\left(t, y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{1}(s)\right)\right)-K_{1}\left(t, z_{1}\left(z_{1}(s)\right), z_{2}\left(z_{1}(s)\right)\right)\right| d s \leq \\
\leq \int_{a}^{b}\left[L_{11}\left|y_{1}\left(y_{1}(s)\right)-z_{1}\left(z_{1}(s)\right)\right|+L_{12}\left|y_{2}\left(y_{1}(s)\right)-z_{2}\left(z_{1}(s)\right)\right|\right] d s \leq \\
\leq \int_{a}^{b}\left[L_{11}\left|y_{1}\left(y_{1}(s)\right)-z_{1}\left(z_{1}(s)\right)\right|+L_{12}\left|y_{2}\left(y_{1}(s)\right)-y_{2}\left(z_{1}(s)\right)\right|+L_{12}\left|y_{2}\left(z_{1}(s)\right)-z_{2}\left(z_{1}(s)\right)\right|\right] d s \\
\leq \int_{a}^{b}\left[L_{11}\left\|y_{1}-z_{1}\right\|+L_{12} \cdot L\left|y_{1}(s)-z_{1}(s)\right|+L_{12}\left|y_{2}\left(z_{1}(s)\right)-z_{2}\left(z_{1}(s)\right)\right|\right] d s \\
\leq(b-a)\left(L_{11}+L_{12} L\right) \cdot\left\|y_{1}-z_{1}\right\|_{C}+(b-a) L_{12} \cdot\left\|y_{2}-z_{2}\right\|_{C} .
\end{gathered}
$$

In a similar manner, we obtain:

$$
\left|\left(H_{2} y\right)(t)-\left(H_{2} z\right)(t)\right| \leq(b-a) L_{21} \cdot\left\|y_{1}-z_{1}\right\|_{C}+(b-a)\left(L_{21} L+L_{22}\right) \cdot\left\|y_{2}-z_{2}\right\|_{C}
$$

and hence have

$$
d_{C}(H y, H z) \leq Q d_{C}(y, z), \forall y, z \in C_{L}\left([a, b],[a, b]^{2}\right)
$$

where

$$
Q=\left(\begin{array}{cc}
(b-a)\left(L_{11}+L_{12} \cdot L\right) & (b-a) L_{12} \\
(b-a) L_{21} & (b-a)\left(L_{21} \cdot L+L_{22}\right) .
\end{array}\right)
$$

In accordance with condition (vi), the eigenvalues of the matrix Q lie in the open unit disc of the complex plane and hence $Q^{k} \rightarrow 0$, as $k \rightarrow \infty$.

By Perov's fixed point theorem, the operator $H: C_{L}\left([a, b],[a, b]^{2}\right) \rightarrow C_{L}\left([a, b],[a, b]^{2}\right)$ has a unique fixed point which is the solution of the system (2.2) in $C_{L}\left([a, b],[a, b]^{2}\right)$.

Let us consider the following system of iterative integral equations

$$
\left\{\begin{array}{l}
y_{1}(x)=f_{1}(x)+\int_{a}^{b} K_{1}\left(x, y_{1}(s), y_{2}(s), y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{2}(s)\right)\right) d s \tag{2.3}\\
y_{2}(x)=f_{2}(x)+\int_{a}^{b} K_{2}\left(x, y_{1}(s), y_{2}(s), y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{2}(s)\right)\right) d s
\end{array}\right.
$$

$x \in[a, b], f \in C\left([a, b],[a, b]^{2}\right), y_{1}, y_{2} \in C([a, b],[a, b])$,

Theorem 2.4. Assume that
i) $f \in C\left([a, b],[a, b]^{2}\right) ; K \in C\left([a, b]^{5},[a, b]^{2}\right)$;
ii) $\exists L_{1 j}, L_{2 j}>0, j=1,2$ such that

$$
\begin{aligned}
& \left|K_{1}\left(t, u_{1}, u_{2}, u_{3}, u_{4}\right)-K_{1}\left(t, v_{1}, v_{2}, v_{3}, v_{4}\right)\right| \leq \sum_{j=1}^{4} L_{1 j}\left|u_{j}-v_{j}\right|, \\
& \left|K_{2}\left(t, u_{1}, u_{2}, u_{3}, u_{4}\right)-K_{2}\left(t, v_{1}, v_{2}, v_{3}, v_{4}\right)\right| \leq \sum_{j=1}^{4} L_{2 j}\left|u_{j}-v_{j}\right|
\end{aligned}
$$

for all $t, u_{i}, v_{i} \in[a, b], i=\overline{1,4}$;
and
$\exists L_{K}>0$ such that $\left|K_{i}\left(t_{1}, u_{1}, u_{2}, u_{3}, u_{4}\right)-K_{i}\left(t_{2}, u_{1}, u_{2}, u_{3}, u_{4}\right)\right| \leq L_{K} \cdot\left|t_{1}-t_{2}\right|, \forall t_{1}, t_{2} \in$ $[a, b], i=1,2$
iii) $\exists L_{f}>0$ such that $\left|f_{i}\left(t_{1}\right)-f_{i}\left(t_{2}\right)\right| \leq L_{f} \cdot\left|t_{1}-t_{2}\right|, \forall t_{1}, t_{2} \in[a, b], i=1,2$,
iv) $L_{f}+L_{K} \cdot(b-a) \leq L$;
v) For $x_{0} \in[a, b]$ with $\left|f_{i}(x)\right| \leq\left|f_{i}\left(x_{0}\right)\right|, \forall x \in[a, b], i=1,2$, one of the following conditions holds:
a) $M \cdot C_{x_{0}} \leq C_{y_{0}}, y_{0}=\max \left(\left|f_{1}\left(x_{0}\right)\right|,\left|f_{2}\left(x_{0}\right)\right|\right)$ and $M=\max \left\{\left|K_{i}\left(t, u_{1}, u_{2}, u_{3}, u_{4}\right)\right|:\right.$ $\left.t, u_{j} \in[a, b], j=\overline{1,4}\right\} ;$
b) $x_{0}=a, M(b-a) \leq b-C_{y_{0}}, K\left(t, u_{1}, u_{2}, u_{3}, u_{4}\right) \geq 0, \forall s, u_{j} \in[a, b], j=\overline{1,4} ;$
c) $x_{0}=b, M(b-a) \leq C_{y_{0}}-a, K\left(t, u_{1}, u_{2}, u_{3}, u_{4}\right) \geq 0, \forall s, u_{j} \in[a, b], j=\overline{1,4}$;
vi) the eigenvalues of the matrix

$$
Q=\left(\begin{array}{ll}
(b-a)\left(L_{11}+L_{13}(L+1)\right) & (b-a)\left(L_{12}+L_{14}(L+1)\right) \\
(b-a)\left(L_{21}+L_{23}(L+1)\right) & (b-a)\left(L_{22}+L_{24}(L+1)\right)
\end{array}\right)
$$

lie in the open unit disc of the complex plane.
Then the system (2.3) has in $C_{L}\left([a, b],[a, b]^{2}\right)$ a unique solution.
Proof. Consider the operator $H: C_{L}\left([a, b],[a, b]^{2}\right) \rightarrow C\left([a, b],[a, b]^{2}\right)$ defined by

$$
\begin{gathered}
(H y)(t)=\left(\left(H_{1} y\right)(t),\left(H_{2} y\right)(t)\right), t \in[a, b] \\
\left(H_{1} y\right)(t)=f_{1}(t)+\int_{a}^{b} K_{1}\left(t, y_{1}(s), y_{2}(s), y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{2}(s)\right)\right) d s \\
\left(H_{2} y\right)(t)=f_{2}(2)+\int_{a}^{b} K_{2}\left(t, y_{1}(s), y_{2}(s), y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{2}(s)\right)\right) d s
\end{gathered}
$$

By conditions (i)-(v), we deduce that the operator is well defined and similarly to Theorem 2.3, we obtain that the operator H is L-Lipschitzian, hence

$$
H\left(C_{L}\left([a, b],[a, b]^{2}\right)\right) \subset C_{L}\left([a, b],[a, b]^{2}\right) .
$$

In what follows we will demonstrate that the operator H is Q-Lipschitzian. For $t \in[a, b]$ and $y, z \in C_{L}\left([a, b],[a, b]^{2}\right)$, we have:

$$
d_{C}(H y, H z)=\binom{\left\|H_{1} y-H_{1} z\right\|_{C}}{\left\|H_{2} y-H_{2} z\right\|_{C}}
$$

We have

$$
\begin{gathered}
\left|\left(H_{1} y\right)(t)-\left(H_{1} z\right)(t)\right| \leq \\
\leq \int_{a}^{b}\left|K_{1}\left(t, y_{1}(s), y_{2}(s), y_{1}\left(y_{1}(s)\right), y_{2}\left(y_{2}(s)\right)\right)-K_{1}\left(t, z_{1}(s), z_{2}(s), z_{1}\left(z_{1}(s)\right), z_{2}\left(z_{2}(s)\right)\right)\right| d s \leq \\
\leq \int_{a}^{b}\left[L_{11}\left|y_{1}(s)-z_{1}(s)\right|+L_{12}\left|y_{2}(s)-z_{2}(s)\right|+L_{13}\left|y_{1}\left(y_{1}(s)\right)-z_{1}\left(z_{1}(s)\right)\right|+\right. \\
\left.+L_{14}\left|y_{2}\left(y_{2}(s)\right)-z_{2}\left(z_{2}(s)\right)\right|\right] d s \leq \\
\leq \int_{a}^{b}\left[L_{11}\left|y_{1}(s)-z_{1}(s)\right|+L_{12}\left|y_{2}(s)-z_{2}(s)\right|+L_{13}\left|y_{1}\left(y_{1}(s)\right)-y_{1}\left(z_{1}(s)\right)\right|\right. \\
\left.+L_{13}\left|y_{1}\left(z_{1}(s)\right)-z_{1}\left(z_{1}(s)\right)\right|+L_{14}\left|y_{2}\left(y_{2}(s)\right)-y_{2}\left(z_{2}(s)\right)\right|+L_{14}\left|y_{2}\left(z_{2}(s)\right)-z_{2}\left(z_{2}(s)\right)\right|\right] d s \\
\leq(b-a)\left[L_{11}+L_{13}(L+1)\right] \cdot\left\|y_{1}-z_{1}\right\|_{C}+(b-a)\left[L_{12}+L_{14}(L+1)\right] \cdot\left\|y_{2}-z_{2}\right\| \|_{C}
\end{gathered}
$$

In a similar manner, we obtain

$$
\left|\left(H_{2} y\right)(t)-\left(H_{2} z\right)(t)\right| \leq(b-a)\left[L_{21}+L_{23}(L+1)\right] \cdot\left\|y_{1}-z_{1}\right\|_{C}+(b-a)\left[L_{22}+L_{24}(L+1)\right] \cdot\left\|y_{2}-z_{2}\right\|_{C}
$$

Consequently, we infer that $d_{C}(H y, H z) \leq Q \cdot d_{C}(y, z), \forall y, z \in C_{L}\left([a, b],[a, b]^{2}\right)$, where

$$
Q=\left(\begin{array}{cc}
(b-a)\left[L_{11}+L_{13}(L+1)\right] & (b-a)\left[L_{12}+L_{14}(L+1)\right] \\
(b-a)\left[L_{21}+L_{23}(L+1)\right] & (b-a)\left[L_{22}+L_{24}(L+1)\right]
\end{array}\right)
$$

By hypothesis (vi), the eigenvalues of the matrix Q lie in the open unit disc of the complex plane.

From the Theorem 1.2 it follows that Q is convergent to zero and, by Perov's fixed point theorem, the operator $H: C_{L}\left([a, b],[a, b]^{2}\right) \rightarrow C_{L}\left([a, b],[a, b]^{2}\right)$ has a unique fixed point which is the solution of (2.3) in $C_{L}\left([a, b],[a, b]^{2}\right)$.

3. Examples

To illustrate our last results, we present the following examples.
Example 3.1. We consider the following system:

$$
\left\{\begin{array}{l}
y_{1}(x)=\frac{x}{2}+\int_{0}^{1}\left[\frac{x+1}{3} \cdot y_{1}\left(y_{1}(x)\right)+\frac{2 x+1}{6} y_{2}\left(y_{1}(x)\right)\right] d x \tag{3.4}\\
y_{2}(x)=\frac{x^{2}}{4}+\int_{0}^{1}\left[\frac{x+1}{7} \cdot y_{1}\left(y_{2}(x)\right)+\frac{3 x+1}{14} y_{2}\left(y_{2}(x)\right)\right] d x
\end{array}\right.
$$

and apply Theorem 2.3.
In this case we have $a=0, b=1, K \in C\left([0,1]^{3},[0,1]^{2}\right), K=$ $\left(K_{1}\left(x, u_{1}, u_{2}\right) ; K_{2}\left(x, u_{1}, u_{2}\right)\right)$,

$$
\begin{aligned}
& K_{1}\left(x, u_{1}, u_{2}\right)=\frac{x+1}{3} \cdot u_{1}+\frac{2 x+1}{6} \cdot u_{2} ; K_{2}\left(x, u_{1}, u_{2}\right)=\frac{x+1}{7} \cdot u_{1}+\frac{3 x+1}{14} \cdot u_{2} . \\
& f \in C\left([0,1],[0,1]^{2}\right), f=\left(f_{1}(x), f_{2}(x)\right), f_{1}(x)=\frac{x}{2}, f_{2}(x)=\frac{x^{2}}{4} .
\end{aligned}
$$

The Lipschitz constants are $L_{11}=\frac{2}{3}, L_{12}=\frac{1}{2}, L_{21}=L_{22}=\frac{2}{7}$, and $L_{K}=\frac{1}{3}, L_{f}=\frac{1}{2}$, $M=\frac{2}{3}$. By condition (iv) we obtain $L \geq \frac{5}{6}$ and

$$
Q=\left(\begin{array}{cc}
\frac{4+3 L}{6} & \frac{1}{2} \\
\frac{2}{7} & \frac{2 L+2}{7}
\end{array}\right) .
$$

and its eigenvalues are

$$
\begin{aligned}
& r_{1}:=\frac{1}{84}\left(33 L+40+\sqrt{1599 L^{2}+288 L+1264}\right) \\
& r_{2}:=\frac{1}{84}\left(33 L+40-\sqrt{1599 L^{2}+288 L+1264}\right)
\end{aligned}
$$

The eigenvalues of the matrix $\mathrm{Q}, r_{1}, r_{2} \in(-1,1)$ for $1 \leq L<17,6394$ (the previous calculations were made by the Maple).

Under these assumptions the system (3.4) has a unique solution.
Example 3.2. We now illustrate Theorem 2.4 by means of the following system:

$$
\left\{\begin{array}{c}
y_{1}(x)=\frac{x}{3}+\int_{0}^{1}\left[\frac{x}{10} \cdot\left(y_{1}(x)+y_{2}(x)\right)+\frac{x+1}{20}\left(y_{1}\left(y_{1}(x)\right)+y_{2}\left(y_{2}(x)\right)\right)\right] d x \tag{3.5}\\
y_{2}(x)=\frac{x^{2}}{9}+\int_{0}^{1}\left[\frac{x+1}{9}\left(y_{1}(x)+y_{2}(x)\right)+\frac{3 x+1}{18}\left(y_{1}\left(y_{1}(x)\right)+y_{2}\left(y_{2}(x)\right)\right)\right] d x
\end{array}\right.
$$

We have $a=0, b=1, K \in C\left([0,1]^{5},[0,1]^{2}\right)$, $K=\left(K_{1}\left(x, u_{1}, u_{2}, u_{3}, u_{4}\right), K_{2}\left(x, u_{1}, u_{2}, u_{3}, u_{4}\right)\right)$;
$K_{1}\left(x, u_{1}, u_{2}, u_{3}, u_{4}\right)=\frac{x}{10} \cdot\left(u_{1}+u_{2}\right)+\frac{x+1}{20} \cdot\left(u_{3}+u_{4}\right)$
$K_{2}\left(x, u_{1}, u_{2}, u_{3}, u_{4}\right)=\frac{x+1}{9} \cdot\left(u_{1}+u_{2}\right)+\frac{3 x+1}{18} \cdot\left(u_{3}+u_{4}\right)$
$f \in C\left([0,1],[0,1]^{2}\right), f=\left(f_{1}(x), f_{2}(x)\right), f_{1}(x)=\frac{x}{3}, f_{2}(x)=\frac{x^{2}}{9}$.
The Lipschitz constants are $L_{11}=L_{12}=L_{13}=L_{14}=\frac{1}{10}, L_{21}=L_{22}=L_{23}=L_{24}=\frac{2}{9}$, $L_{K}=\frac{1}{10}, L_{f}=\frac{1}{3}$, and $M=\frac{4}{5}$. The matrix

$$
Q=\left(\begin{array}{cc}
\frac{2+L}{10} & \frac{2+L}{10} \\
\frac{4+L}{9} & \frac{4+L}{9}
\end{array}\right)
$$

has the eigenvalues

$$
r_{1}=0, r_{2}=\frac{19 L+58}{90}
$$

The matrix Q is convergent to zero if $\frac{2+L}{10}+\frac{4+L}{9}<1$. By hypothesis (iv) of Theorem 2.4 we obtain $L \geq \frac{13}{30}$ and by the fact that $r_{1}, r_{2} \in(-1,1)$, we deduce that L must satisfy the double inequality

$$
\frac{13}{30} \leq L \leq \frac{32}{19}
$$

By choosing $L=1$, we conclude that the system (3.5) has a unique solution in $C_{1}\left([0,1],[0,1]^{2}\right)$ and this solution can be obtained by successive approximation, through the recurrence relation

$$
\left(y_{1_{k+1}}, y_{2_{k+1}}\right)=H\left(y_{1_{k}}, y_{2_{k}}\right), \forall k \in \mathbb{N},
$$

where H is the operator defined in Theorem 2.4.

References

[1] Agarwal, R. P., Bohner, M., Li, T. and Zhang, C., Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math., 30 (2014), No. 1, 1-6
[2] Benchohra, M. and Darwish, M. A., On unique solvability of quadric integral equations with linear modification of the argument, Miskolc Math. Notes, 10 (2009), No. 1, 3-10
[3] Berinde, V., Iterative Approximation of Fixed Points, 2nd Ed., Springer Verlag, Berlin Heidelberg New York, 2007
[4] Berinde, V., Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes, Vol. 11 (2010), No. 1, pp. 1326
[5] Bica, A. M. and Galea, L. F., Smooth dependence by lag at initial value problems for delay integro-differential equation, Carpathian J. Math., 26 (2010), No. 1, 41-51
[6] Budişan, S., Positive solutions of functional differential equations, Carpathian J. Math., 22 (2006), No. 1-2, 13-19
[7] Buica, A., Existence and continuous dependence of solutions of some functional-differential equations, Seminar of Fixed Point Theory, 3 (1995), 1-14
[8] Chiu, K. S. and Pinto, M., Oscillatory and periodic solutions in alternately advanced and delayed differential equations, Carpathian J. Math., 29 (2013), No. 2, 149-158
[9] Dobriţoiu, M., System of integral equations with modified argument, Carpathian J. Math., 24 (2008), No. 2, 26-36
[10] Egri, E., A boundary value problem for a system of iterative functional-differential equations, Carpathian J. Math., 24 (2008), No. 1, 23-36
[11] Egri, E. and Rus, I. A., First order iterative functional-differential equation with parameter, Stud. Univ. BabeşBolyai Math., 52 (2007), No. 4, 67-80
[12] Fečkan, E., On certain type of functional differential equations, Math. Slovaca, 43 (1993), 39-43
[13] Gabor, R. V., Successive approximations for the solution of second order advanced differential equations, Carpathian J. Math., 22 (2006), No. 1-2, 57-64
[14] Ilea, V. A. and Otrocol, D., Integro-differential equation with two times modifications Carpathian J. Math., 27 (2011), No. 2, 209-216
[15] Ishikawa, S., Fixed point and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59 (1976), No. 1, 65-71
[16] Lauran, M., Existence results for some differential equations with deviating argument, Filomat, 25 (2011), No. 2, 21-31
[17] Lauran, M., Nonexpansive operators associated to a system of integral equations with deviating argument, Scientific Studies and Research, 23 (2013), No. 2, 21-31
[18] Mojsej, I. and Tartal'ová, A., Sufficient conditions for the existence of some nonoscillatory solutions of third-order nonlinear differential equations, Carpathian J. Math., 27 (2011), No. 1, 105-113
[19] Mureşan, V., A Volterra functional-integral equation, via weakly Picard operators technique, Carpathian J. Math., 30 (2014), No. 3, 369-375
[20] Mureşan, V., Differential equations with deviating argument, via weakly Picard operators theory, Carpathian J. Math., 29 (2013), No. 1, 53-60
[21] Mureşan, V., On the solutions of second order functional-differential equation, Carpathian J. Math., 28 (2012), No. 1,111-116
[22] Muslim, M. and Agarwal, R. P., Existence, uniqueness and convergence of approximate solutions of nonlocal functional differential equations, Carpathian J. Math., 27 (2011), No. 2, 249-259
[23] Rontó, A. and Rontó, M., On constructive investigation of a class of non-linear boundary value problems for functional differential equations, Carpathian J. Math., 29 (2013), No. 1, 91-108
[24] Rus, I. A., Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26 (2010), No. 2, 230-258
[25] Rus, I. A. and Şerban, M. A., Some existence results for a system of operatorial equations, Bull. Math. Soc. Sci. Math., Roumanie (N.S.), 57 (105) (2014), No. 1, 101-108

Department of Mathematics and Computer Science
North University Center at Baia Mare
Technical University of Cluj-Napoca
Victoriei 76, 430122 Baia Mare, Romania
Email address: lauranmonica@yahoo.com

