CREAT. MATH. INFORM. Volume 25 (2016), No. 1, Pages 71 - 75

Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2016.01.09

Remark on upper bounds of Randić index of a graph

I. Ž. MILOVANOVIĆ¹, P. M. BEKAKOS², M. P. BEKAKOS² and E. I. MILOVANOVIĆ¹

ABSTRACT. Let G = (V, E) be an undirected simple graph of order *n* with *m* edges without isolated vertices. Further, let $d_1 \ge d_2 \ge \cdots \ge d_n$ be vertex degree sequence of G. General Randić index of graph G = (V, E) is defined by $R_{\alpha} = \sum_{\alpha \in \mathbb{R}} (d_i d_j)^{\alpha}$, where $\alpha \in \mathbb{R} - \{0\}$. We consider the case when $\alpha = -1$ and obtain upper $(i,j) \in E$

bound for R_{-1} .

1. INTRODUCTION

Let G = (V, E) be an undirected simple graph of order *n* with no isolated vertices. The general Randic index R_{α} defined by Bollobas and Erdos [2]

$$R_{\alpha} = \sum_{(i,j)\in E} (d_i d_j)^{\alpha},$$

where α is a given parameter and d_i the degree of vertex *i*, is generalization of the classic index, where $\alpha = -\frac{1}{2}$, introduced by Randic in 1975 [16] for studies organic compounds and boiling points in chemistry. Since then, studies for general Randić index pay attention on the case where graph is a tree or a chemical graph (see for example [7, 8, 19]). Besides, general Randić index, particulary its upper/lower bounds on general graphs has attracted recently the attention of many mathematicians and computer scientists. For a survey of its mathematical properties and application in spectral graph theory, see [6, 9, 10, 18, 20]. Since the invariant R_{α} can be exactly determined for only a small number of graph classes, other methods for approximate calculation, asymptotic assessments, as well as inequalities that establish upper/lower bounds for this graph invariant depending of other graph parameters are of interest. This paper concerns with upper bounds for R_{-1} .

2. Preliminaries

In what follows, we outline a few results of spectral graph theory and state a few analytical inequalities that will be needed in the subsequent considerations.

In [13] Lu *et all* proved the following result:

Theorem 2.1. [13] Let G be undirected, simple graph of order $n, n \ge 2$, with no isolated vertices. Then

$$R_{-1} \le \frac{1}{2} \sum_{i=1}^{n} \frac{1}{d_i}.$$
(2.1)

Equality holds if and only if G is isomorph with k-regular graph, $1 \le k \le n-1$.

Zhou and Luo [21] proved the following result.

Received: 01.08.2015. In revised form: 08.10.2015. Accepted: 01.02.2016 2010 Mathematics Subject Classification. 15A18, 05C50.

Key words and phrases. General Randić index, vertex degree, upper bounds.

Corresponding author: I. Ž. Milovanović; igor@elfak.ni.ac.rs

Theorem 2.2. [21]. Let G be a graph with n vertices, m edges, maximum vertex degree d_1 and minimum vertex degree $d_n \ge 1$. Then for $\alpha \le -1$

$$R_{\alpha} \leq 4^{\alpha - 1} n^{-2\alpha} m^{1 + 2\alpha} \left(\sqrt{\frac{d_1^{\alpha}}{d_n^{\alpha}}} + \sqrt{\frac{d_n^{\alpha}}{d_1^{\alpha}}} \right)^2,$$

with equality if and only if G is a regular graph.

For our consideration the case $\alpha = -1$ is of interest. In that case the above inequality becomes

$$R_{-1} \le \frac{n^2}{16m} \left(\sqrt{\frac{d_1}{d_n}} + \sqrt{\frac{d_n}{d_1}} \right)^2$$
(2.2)

In [18] Shi proved the following.

Theorem 2.3. [18]. Let G = (V, E) be a graph of order n and minimum degree d_n . Let $\alpha \in (-\infty, -\frac{1}{2}]$. Then

$$R_{\alpha} \le \frac{n}{2} d_n^{1+2\alpha},$$

with equality if and only if G is regular.

For $\alpha = -1$ the above inequality becomes

$$R_{-1} \le \frac{n}{2d_1} \tag{2.3}$$

Andrica and Badea [1] (see also Cerone, Dragomir [4]) proved the following result:

Theorem 2.4. Let a_1, a_2, \ldots, a_n be a sequence of positive real numbers, for which there are real constants r and R so that $0 < r \le a_i \le R < +\infty$, for each $i = 1, 2, \ldots, n$. Then

$$\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} \frac{1}{a_i}\right) \le n^2 \left(1 + \left(\sqrt{\frac{R}{r}} - \sqrt{\frac{r}{R}}\right)^2 \alpha(n)\right)$$
(2.4)

where

$$\alpha(n) = \frac{1}{n} \left\lfloor \frac{n}{2} \right\rfloor \left(1 - \frac{1}{n} \left\lfloor \frac{n}{2} \right\rfloor \right).$$

3. MAIN RESULTS

In the following theorem we establish an upper bound for R_{-1} in terms of the parameters n, m, d_1 and d_n .

Theorem 3.5. Let G be undirected, simple graph of order $n, n \ge 2$, with m edges and with no isolated vertices. Then

$$R_{-1} \le \frac{n^2}{4m} \left(1 + \left(\sqrt{\frac{d_1}{d_n}} - \sqrt{\frac{d_n}{d_1}} \right)^2 \alpha(n) \right).$$
(3.5)

Equality holds if and only if G is k-regular graph, $1 \le k \le n-1$.

Proof. For $a_i = d_i$, i = 1, 2, ..., n, $r = d_n$ and $R = d_1$, the inequality (2.4) transforms into

$$\sum_{i=1}^{n} d_i \sum_{i=1}^{n} \frac{1}{d_i} \le n^2 \left(1 + \left(\sqrt{\frac{d_1}{d_n}} - \sqrt{\frac{d_n}{d_1}} \right)^2 \alpha(n) \right)$$
(3.6)

Since $\sum_{i=1}^{n} d_i = 2m$, the inequality (3.6) becomes

$$\sum_{i=1}^{n} \frac{1}{d_i} \le \frac{n^2}{2m} \left(1 + \left(\sqrt{\frac{d_1}{d_n}} - \sqrt{\frac{d_n}{d_1}} \right)^2 \alpha(n) \right).$$

From this and the inequality (2.1) we obtain inequality (3.5).

Since equalities in (3.6) and (2.1) hold if and only if $d_1 = d_2 = \cdots = d_n$, we conclude that equality in (3.5) holds if and only if *G* is *k*-regular graph, $1 \le k \le n-1$.

Remark 3.1. Since the following is valid (see [14])

$$\alpha(n) = \frac{1}{n} \left\lfloor \frac{n}{2} \right\rfloor \left(1 - \frac{1}{n} \left\lfloor \frac{n}{2} \right\rfloor \right) = \frac{1}{4} \left(1 - \frac{1 + (-1)^{n+1}}{2n^2} \right),$$

inequality (3.5) can be represented in a form

$$R_{-1} \leq \begin{cases} \frac{n^2}{16m} \left(\sqrt{\frac{d_1}{d_n}} + \sqrt{\frac{d_n}{d_1}}\right)^2, & n \text{ is even} \\ \frac{n^2 - 1}{16m} \left(\sqrt{\frac{d_1}{d_n}} + \sqrt{\frac{d_n}{d_1}}\right)^2 + \frac{1}{4m}, & n \text{ is odd} \end{cases}$$

This means that inequality (3.5) is stronger than (2.2) for odd n.

Corollary 3.1. Let G be an undirected simple graph of order $n, n \ge 2$, with m edges and with no isolated vertices.

If $d_n = 1$ then

$$R_{-1} \le \frac{n^2}{4m} \left(1 + \frac{(n-2)^2}{n-1} \alpha(n) \right).$$

Equality holds if and only if $G \cong K_2$.

If $d_n \geq 2$ then

$$R_{-1} \le \frac{n^2}{4m} \left(1 + \frac{(n-3)^2}{2(n-1)} \alpha(n) \right).$$

Equality holds if and only if $G \cong K_3$.

Remark 3.2. The inequalities (3.5) and (2.3) are incomparable. Thus, for example, for $G = P_n$, $n \ge 3$, the inequality (3.5) is stronger than (2.3), whereas for $G = K_{1,n-1}$ the opposite is valid.

Our next result is an upper bound for R_{-1} in terms of n, m, d_2 , and d_n .

Theorem 3.6. Let G be an undirected simple graph of order $n, n \ge 3$, with m edges and with no isolated vertices. Then

$$R_{-1} \le \frac{1}{2d_2} + \frac{(n-1)^2}{2(2m-n+1)} \left(1 + \left(\sqrt{\frac{d_2}{d_n}} - \sqrt{\frac{d_n}{d_2}}\right)^2 \alpha(n-1) \right)$$
(3.7)

where

$$\alpha(n-1) = \frac{1}{4} \left(1 - \frac{1 + (-1)^n}{2(n-1)^2} \right).$$

Equality holds if and only if $G \cong K_n$.

Proof. For $a_i = d_i$, i = 1, 2, ..., n, $r = d_n$ and $R = d_2$, inequality

$$\left(\sum_{i=2}^{n} a_i\right) \left(\sum_{i=2}^{n} \frac{1}{a_i}\right) \le (n-1)^2 \left(1 + \left(\sqrt{\frac{R}{r}} - \sqrt{\frac{r}{R}}\right)^2 \alpha(n-1)\right)$$

where

$$\alpha(n-1) = \frac{1}{4} \left(1 - \frac{1 + (-1)^n}{2(n-1)^2} \right),$$

transforms into

$$\left(\sum_{i=2}^{n} d_i\right) \left(\sum_{i=2}^{n} \frac{1}{d_i}\right) \le (n-1)^2 \left(1 + \left(\sqrt{\frac{d_2}{d_n}} - \sqrt{\frac{d_n}{d_2}}\right)^2 \alpha(n-1)\right).$$
(3.8)

Since $\sum_{i=2}^{n} d_i = 2m - d_1$, the inequality (3.8) becomes

$$\sum_{i=1}^{n} \frac{1}{d_i} \le \frac{1}{d_1} + \frac{(n-1)^2}{2m-d_1} \left(1 + \left(\sqrt{\frac{d_2}{d_n}} - \sqrt{\frac{d_n}{d_2}}\right)^2 \alpha(n-1) \right).$$

Bearing in mind the above and the inequality (2.1) we obtain

$$R_{-1} \le \frac{1}{2d_1} + \frac{(n-1)^2}{2(2m-d_1)} \left(1 + \left(\sqrt{\frac{d_2}{d_n}} - \sqrt{\frac{d_n}{d_2}}\right)^2 \alpha(n-1) \right).$$

Since

 $d_2 \leq d_1$ and $d_1 \leq n-1$, i.e. $2m - d_1 \geq 2m - n + 1$ (3.9) from the last inequality we arrive at (3.7).

Equality in (3.8) holds if and only if $d_2 = d_3 = \cdots = d_n$, and in (3.9) if and only if $d_1 = d_2$ and $d_1 = n - 1$. This means that equality in (3.7) holds if and only if $d_1 = d_2 = \cdots = d_n = n - 1$, i.e. if $G \cong K_n$.

Remark 3.3. Since $\alpha(n-1) = \frac{1}{4} \left(1 - \frac{1 + (-1)^n}{2(n-1)^2} \right)$, $n \ge 3$, inequality (3.7) can be represented in the following way

$$R_{-1} \leq \begin{cases} \frac{1}{2d_2} + \frac{(n-1)^2}{8(2m-n+1)} \left(\sqrt{\frac{d_2}{d_n}} + \sqrt{\frac{d_n}{d_2}}\right)^2, & \text{if } n \text{ is odd} \\ \frac{1}{2d_2} + \frac{1}{8(2m-n+1)} \left(n(n-2) \left(\sqrt{\frac{d_2}{d_n}} + \sqrt{\frac{d_n}{d_2}}\right)^2 + 4\right), & \text{if } n \text{ is even} \end{cases}$$

Remark 3.4. The inequalities (3.7) and (2.3) are incomparable. Suppose $K_n - e$ is a graph obtained after removing an edge e from a complete graph K_n . For $G = K_n - e$ the inequality (3.7) is stronger than (2.3). For $G = K_{1,n-1}$ the inequality (2.3) is stronger than (3.7).

References

- Andrica, D. and Badea, C., Grüss inequality for positive linear functionals, Period. Math. Hungar., 19 (1988), No. 2, 155–167
- [2] Bollobas, B. and Erdös, P., Graphs of extremal weights, Ars Combin., 50 (1998), 225–233
- [3] Cavers, M., Fallat, S. and Kirkland, S., On the normalized Laplacian energy and general Randić index R₋₁ of graphs, Lin. Algebra Appl., 433 (2010), 172–190
- [4] Cerone, P. and Dragomir, S. S., A refinement of the Grüss inequality and applications, Tamkang J. Math., 38 (2007), No. 1, 34–49
- [5] Chung, Fan R. K., Spectral graph theory, Am. Math. Soc., Providence, 1997

74

- [6] Clark, L. H. and Moon, J. W., On the general Randić index for certain families of trees, Ars. Combin., 54 (2000), 223–235
- [7] Duidea, M. V., Florescu, M. S. and Khadikar, P. V., Molecular topology and its applications, Eficon Press, Bucarest, 2006
- [8] Li, X. and Gutman, I., Mathematical aspects on Randić -type molecular structure descriptors, l, Univ. Kragujevac, Kragujevac, 2006
- [9] Li, X. and Shi, Y., A survey on the Randić index, MATCH Commun. Math. Comput. Chem., 59 (2008), 127-156
- [10] Li, X., Wang, X. and Wei, B., On the lower and upper bounds for general Randić index of chemical (n, m)-graphs, MATCH Commun. Math. Comput. Chem., **52** (2004), 157–166
- [11] Li, X. and Yang, Y., Best lower and upper bounds for the Randić index R_{-1} of chemical trees, MATCH Commun. Math. Comput. Chem., **52** (2004), 147–156
- [12] Li, X. and Yang, Y., Sharp bounds for general Randić index, MATCH Commun. Math. Comput. Chem., 51 (2004), 155–166
- [13] Lu, M., Liu, H. and Tian, F., The connectivity index, MATCH Commun. Math. Comput. Chem., No. 51 (2004), 149–154
- [14] Niculescu, C. and Persson, L. C., Convex functions and their applications, Canadian Math. Soc., 2006
- [15] Poglioni, L., From molecular connectivity indices to semiempirical connectivity terms: Recent trends ingraph theoretical descriptors, Chem. Rev., 100 (2000), 3827–3858
- [16] Randić, M., On characterization of molecular branching, J. Amer. Chem Soc., 97 (1975), 6609-6615
- [17] Randić, M., On history of the Randić index and energy hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem., 59 (2008), 5–124
- [18] Shi, L., Bounds on Randić indices, Disrete Math., 309 (2009), No. 16 5238-5241
- [19] Todeschini, R., and Consonni, V., Hanbook of Molecular descriptors, Wiley-VCH, Weinheim, 2000
- [20] Yu Feng, G., Randić index and eigenvalues of graphs, Rocky Mountain J. Math., 40 (2010), 713–721
- [21] Zhou, B. and Luo, W., A note on general Randić index, MATCH Commun. Math. Comput. Chem., 62 (2009), 155-162

¹ FACULTY OF ELECTRONIC ENGINEERING A. MEDVEDEVA 14, P. O. BOX 73, 18000 NIŠ, SERBIA *Email address*: {igor, ema}@elfak.ni.ac.rs

²DEMOCRITUS UNIVERSITY OF THRACE, XANTHI, GREECE *Email address*: mbekakos@ ee.duth.gr