Remark on upper bounds of Randić index of a graph

I. Ž. Milovanović ${ }^{1}$, P. M. Bekakos ${ }^{2}$, M. P. Bekakos ${ }^{2}$ and E. I. Milovanović ${ }^{1}$

Abstract

Let $G=(V, E)$ be an undirected simple graph of order n with m edges without isolated vertices. Further, let $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ be vertex degree sequence of G. General Randić index of graph $G=(V, E)$ is defined by $R_{\alpha}=\sum_{(i, j) \in E}\left(d_{i} d_{j}\right)^{\alpha}$, where $\alpha \in \mathbb{R}-\{0\}$. We consider the case when $\alpha=-1$ and obtain upper bound for R_{-1}.

1. Introduction

Let $G=(V, E)$ be an undirected simple graph of order n with no isolated vertices. The general Randic index R_{α} defined by Bollobas and Erdos [2]

$$
R_{\alpha}=\sum_{(i, j) \in E}\left(d_{i} d_{j}\right)^{\alpha}
$$

where α is a given parameter and d_{i} the degree of vertex i, is generalization of the classic index, where $\alpha=-\frac{1}{2}$, introduced by Randic in 1975 [16] for studies organic compounds and boiling points in chemistry. Since then, studies for general Randić index pay attention on the case where graph is a tree or a chemical graph (see for example [7, 8, 19]). Besides, general Randić index, particulary its upper/lower bounds on general graphs has attracted recently the attention of many mathematicians and computer scientists. For a survey of its mathematical properties and application in spectral graph theory, see [6, 9, 10, 18, 20]. Since the invariant R_{α} can be exactly determined for only a small number of graph classes, other methods for approximate calculation, asymptotic assessments, as well as inequalities that establish upper/lower bounds for this graph invariant depending of other graph parameters are of interest. This paper concerns with upper bounds for R_{-1}.

2. Preliminaries

In what follows, we outline a few results of spectral graph theory and state a few analytical inequalities that will be needed in the subsequent considerations.

In [13] Lu et all proved the following result:
Theorem 2.1. [13] Let G be undirected, simple graph of order $n, n \geq 2$, with no isolated vertices. Then

$$
\begin{equation*}
R_{-1} \leq \frac{1}{2} \sum_{i=1}^{n} \frac{1}{d_{i}} \tag{2.1}
\end{equation*}
$$

Equality holds if and only if G is isomorph with k-regular graph, $1 \leq k \leq n-1$.
Zhou and Luo [21] proved the following result.

[^0]Theorem 2.2. [21]. Let G be a graph with n vertices, m edges, maximum vertex degree d_{1} and minimum vertex degree $d_{n} \geq 1$. Then for $\alpha \leq-1$

$$
R_{\alpha} \leq 4^{\alpha-1} n^{-2 \alpha} m^{1+2 \alpha}\left(\sqrt{\frac{d_{1}^{\alpha}}{d_{n}^{\alpha}}}+\sqrt{\frac{d_{n}^{\alpha}}{d_{1}^{\alpha}}}\right)^{2}
$$

with equality if and only if G is a regular graph.
For our consideration the case $\alpha=-1$ is of interest. In that case the above inequality becomes

$$
\begin{equation*}
R_{-1} \leq \frac{n^{2}}{16 m}\left(\sqrt{\frac{d_{1}}{d_{n}}}+\sqrt{\frac{d_{n}}{d_{1}}}\right)^{2} \tag{2.2}
\end{equation*}
$$

In [18] Shi proved the following.
Theorem 2.3. [18]. Let $G=(V, E)$ be a graph of order n and minimum degree d_{n}. Let $\alpha \in$ $\left(-\infty,-\frac{1}{2}\right]$. Then

$$
R_{\alpha} \leq \frac{n}{2} d_{n}^{1+2 \alpha}
$$

with equality if and only if G is regular.
For $\alpha=-1$ the above inequality becomes

$$
\begin{equation*}
R_{-1} \leq \frac{n}{2 d_{1}} \tag{2.3}
\end{equation*}
$$

Andrica and Badea [1] (see also Cerone, Dragomir [4]) proved the following result:
Theorem 2.4. Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of positive real numbers, for which there are real constants r and R so that $0<r \leq a_{i} \leq R<+\infty$, for each $i=1,2, \ldots, n$. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{a_{i}}\right) \leq n^{2}\left(1+\left(\sqrt{\frac{R}{r}}-\sqrt{\frac{r}{R}}\right)^{2} \alpha(n)\right) \tag{2.4}
\end{equation*}
$$

where

$$
\alpha(n)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\left(1-\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right) .
$$

3. Main results

In the following theorem we establish an upper bound for R_{-1} in terms of the parameters n, m, d_{1} and d_{n}.

Theorem 3.5. Let G be undirected, simple graph of order $n, n \geq 2$, with m edges and with no isolated vertices. Then

$$
\begin{equation*}
R_{-1} \leq \frac{n^{2}}{4 m}\left(1+\left(\sqrt{\frac{d_{1}}{d_{n}}}-\sqrt{\frac{d_{n}}{d_{1}}}\right)^{2} \alpha(n)\right) \tag{3.5}
\end{equation*}
$$

Equality holds if and only if G is k-regular graph, $1 \leq k \leq n-1$.
Proof. For $a_{i}=d_{i}, i=1,2, \ldots, n, r=d_{n}$ and $R=d_{1}$, the inequality (2.4) transforms into

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i} \sum_{i=1}^{n} \frac{1}{d_{i}} \leq n^{2}\left(1+\left(\sqrt{\frac{d_{1}}{d_{n}}}-\sqrt{\frac{d_{n}}{d_{1}}}\right)^{2} \alpha(n)\right) \tag{3.6}
\end{equation*}
$$

Since $\sum_{i=1}^{n} d_{i}=2 m$, the inequality (3.6) becomes

$$
\sum_{i=1}^{n} \frac{1}{d_{i}} \leq \frac{n^{2}}{2 m}\left(1+\left(\sqrt{\frac{d_{1}}{d_{n}}}-\sqrt{\frac{d_{n}}{d_{1}}}\right)^{2} \alpha(n)\right)
$$

From this and the inequality (2.1) we obtain inequality (3.5).
Since equalities in (3.6) and (2.1) hold if and only if $d_{1}=d_{2}=\cdots=d_{n}$, we conclude that equality in (3.5) holds if and only if G is k-regular graph, $1 \leq k \leq n-1$.

Remark 3.1. Since the following is valid (see [14])

$$
\alpha(n)=\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\left(1-\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right)=\frac{1}{4}\left(1-\frac{1+(-1)^{n+1}}{2 n^{2}}\right),
$$

inequality (3.5) can be represented in a form

$$
R_{-1} \leq \begin{cases}\frac{n^{2}}{16 m}\left(\sqrt{\frac{d_{1}}{d_{n}}}+\sqrt{\frac{d_{n}}{d_{1}}}\right)^{2}, & n \text { is even } \\ \frac{n^{2}-1}{16 m}\left(\sqrt{\frac{d_{1}}{d_{n}}}+\sqrt{\frac{d_{n}}{d_{1}}}\right)^{2}+\frac{1}{4 m}, & n \text { is odd }\end{cases}
$$

This means that inequality (3.5) is stronger than (2.2) for odd n.
Corollary 3.1. Let G be an undirected simple graph of order $n, n \geq 2$, with m edges and with no isolated vertices.

If $d_{n}=1$ then

$$
R_{-1} \leq \frac{n^{2}}{4 m}\left(1+\frac{(n-2)^{2}}{n-1} \alpha(n)\right)
$$

Equality holds if and only if $G \cong K_{2}$.
If $d_{n} \geq 2$ then

$$
R_{-1} \leq \frac{n^{2}}{4 m}\left(1+\frac{(n-3)^{2}}{2(n-1)} \alpha(n)\right)
$$

Equality holds if and only if $G \cong K_{3}$.
Remark 3.2. The inequalities (3.5) and (2.3) are incomparable. Thus, for example, for $G=P_{n}, n \geq 3$, the inequality (3.5) is stronger than (2.3), whereas for $G=K_{1, n-1}$ the opposite is valid.

Our next result is an upper bound for R_{-1} in terms of n, m, d_{2}, and d_{n}.
Theorem 3.6. Let G be an undirected simple graph of order $n, n \geq 3$, with m edges and with no isolated vertices. Then

$$
\begin{equation*}
R_{-1} \leq \frac{1}{2 d_{2}}+\frac{(n-1)^{2}}{2(2 m-n+1)}\left(1+\left(\sqrt{\frac{d_{2}}{d_{n}}}-\sqrt{\frac{d_{n}}{d_{2}}}\right)^{2} \alpha(n-1)\right) \tag{3.7}
\end{equation*}
$$

where

$$
\alpha(n-1)=\frac{1}{4}\left(1-\frac{1+(-1)^{n}}{2(n-1)^{2}}\right) .
$$

Equality holds if and only if $G \cong K_{n}$.

Proof. For $a_{i}=d_{i}, i=1,2, \ldots, n, r=d_{n}$ and $R=d_{2}$, inequality

$$
\left(\sum_{i=2}^{n} a_{i}\right)\left(\sum_{i=2}^{n} \frac{1}{a_{i}}\right) \leq(n-1)^{2}\left(1+\left(\sqrt{\frac{R}{r}}-\sqrt{\frac{r}{R}}\right)^{2} \alpha(n-1)\right)
$$

where

$$
\alpha(n-1)=\frac{1}{4}\left(1-\frac{1+(-1)^{n}}{2(n-1)^{2}}\right)
$$

transforms into

$$
\begin{equation*}
\left(\sum_{i=2}^{n} d_{i}\right)\left(\sum_{i=2}^{n} \frac{1}{d_{i}}\right) \leq(n-1)^{2}\left(1+\left(\sqrt{\frac{d_{2}}{d_{n}}}-\sqrt{\frac{d_{n}}{d_{2}}}\right)^{2} \alpha(n-1)\right) \tag{3.8}
\end{equation*}
$$

Since $\sum_{i=2}^{n} d_{i}=2 m-d_{1}$, the inequality (3.8) becomes

$$
\sum_{i=1}^{n} \frac{1}{d_{i}} \leq \frac{1}{d_{1}}+\frac{(n-1)^{2}}{2 m-d_{1}}\left(1+\left(\sqrt{\frac{d_{2}}{d_{n}}}-\sqrt{\frac{d_{n}}{d_{2}}}\right)^{2} \alpha(n-1)\right)
$$

Bearing in mind the above and the inequality (2.1) we obtain

$$
R_{-1} \leq \frac{1}{2 d_{1}}+\frac{(n-1)^{2}}{2\left(2 m-d_{1}\right)}\left(1+\left(\sqrt{\frac{d_{2}}{d_{n}}}-\sqrt{\frac{d_{n}}{d_{2}}}\right)^{2} \alpha(n-1)\right)
$$

Since

$$
\begin{equation*}
d_{2} \leq d_{1} \quad \text { and } \quad d_{1} \leq n-1, \quad \text { i.e. } \quad 2 m-d_{1} \geq 2 m-n+1 \tag{3.9}
\end{equation*}
$$

from the last inequality we arrive at (3.7).
Equality in (3.8) holds if and only if $d_{2}=d_{3}=\cdots=d_{n}$, and in (3.9) if and only if $d_{1}=d_{2}$ and $d_{1}=n-1$. This means that equality in (3.7) holds if and only if $d_{1}=d_{2}=$ $\cdots=d_{n}=n-1$, i.e. if $G \cong K_{n}$.
Remark 3.3. Since $\alpha(n-1)=\frac{1}{4}\left(1-\frac{1+(-1)^{n}}{2(n-1)^{2}}\right), n \geq 3$, inequality (3.7) can be represented in the following way

$$
R_{-1} \leq \begin{cases}\frac{1}{2 d_{2}}+\frac{(n-1)^{2}}{8(2 m-n+1)}\left(\sqrt{\frac{d_{2}}{d_{n}}}+\sqrt{\frac{d_{n}}{d_{2}}}\right)^{2}, & \text { if } n \text { is odd } \\ \frac{1}{2 d_{2}}+\frac{1}{8(2 m-n+1)}\left(n(n-2)\left(\sqrt{\frac{d_{2}}{d_{n}}}+\sqrt{\frac{d_{n}}{d_{2}}}\right)^{2}+4\right), & \text { if } n \text { is even }\end{cases}
$$

Remark 3.4. The inequalities (3.7) and (2.3) are incomparable. Suppose $K_{n}-e$ is a graph obtained after removing an edge e from a complete graph K_{n}. For $G=K_{n}-e$ the inequality (3.7) is stronger than (2.3). For $G=K_{1, n-1}$ the inequality (2.3) is stronger than (3.7).

References

[1] Andrica, D. and Badea, C.,Grüss inequality for positive linear functionals, Period. Math. Hungar., 19 (1988), No. 2, 155-167
[2] Bollobas, B. and Erdös, P., Graphs of extremal weights, Ars Combin., 50 (1998), 225-233
[3] Cavers, M., Fallat, S. and Kirkland, S., On the normalized Laplacian energy and general Randić index R_{-1} of graphs, Lin. Algebra Appl., 433 (2010), 172-190
[4] Cerone, P. and Dragomir, S. S., A refinement of the Grüss inequality and applications, Tamkang J. Math., 38 (2007), No. 1, 34-49
[5] Chung, Fan R. K., Spectral graph theory, Am. Math. Soc., Providence, 1997
[6] Clark, L. H. and Moon, J. W., On the general Randić index for certain families of trees, Ars. Combin., 54 (2000), 223-235
[7] Duidea, M. V., Florescu, M. S. and Khadikar, P. V., Molecular topology and its applications, Eficon Press, Bucarest, 2006
[8] Li, X. and Gutman, I., Mathematical aspects on Randić -type molecular structure descriptors, 1, Univ. Kragujevac, Kragujevac, 2006
[9] Li, X. and Shi, Y., A survey on the Randić index, MATCH Commun. Math. Comput. Chem., 59 (2008), 127-156
[10] Li, X., Wang, X. and Wei, B., On the lower and upper bounds for general Randić index of chemical (n, m)-graphs, MATCH Commun. Math. Comput. Chem., 52 (2004), 157-166
[11] Li, X. and Yang, Y., Best lower and upper bounds for the Randić index R_{-1} of chemical trees, MATCH Commun. Math. Comput. Chem., 52 (2004), 147-156
[12] Li, X. and Yang, Y., Sharp bounds for general Randić index, MATCH Commun. Math. Comput. Chem., 51 (2004), 155-166
[13] Lu, M., Liu, H. and Tian, F., The connectivity index, MATCH Commun. Math. Comput. Chem., No. 51 (2004), 149-154
[14] Niculescu, C. and Persson, L. C., Convex functions and their applications, Canadian Math. Soc., 2006
[15] Poglioni, L., From molecular connectivity indices to semiempirical connectivity terms: Recent trends ingraph theoretical descriptors, Chem. Rev., 100 (2000), 3827-3858
[16] Randić, M.,On characterization of molecular branching, J. Amer. Chem Soc., 97 (1975), 6609-6615
[17] Randić, M., On history of the Randić index and energy hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem., 59 (2008), 5-124
[18] Shi, L., Bounds on Randić indices, Disrete Math., 309 (2009), No. 16 5238-5241
[19] Todeschini, R., and Consonni, V., Hanbook of Molecular descriptors, Wiley-VCH, Weinheim, 2000
[20] Yu Feng, G., Randić index and eigenvalues of graphs, Rocky Mountain J. Math., 40 (2010), 713-721
[21] Zhou, B. and Luo, W., A note on general Randić index, MATCH Commun. Math. Comput. Chem., 62 (2009), 155-162
${ }^{1}$ Faculty of Electronic Engineering
A. Medvedeva 14, P. O. Box 73, 18000 Niš, Serbia

Email address: \{igor, ema\}@elfak.ni.ac.rs
${ }^{2}$ Democritus University of Thrace, Xanthi, Greece
Email address: mbekakos@ ee.duth.gr

[^0]: Received: 01.08.2015. In revised form: 08.10.2015. Accepted: 01.02.2016
 2010 Mathematics Subject Classification. 15A18, 05C50.
 Key words and phrases. General Randić index, vertex degree, upper bounds.
 Corresponding author: I. Ž. Milovanović; igor@elfak.ni.ac.rs

