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Integral inequalities concerning polynomials with polar
derivatives

ABDULLAH MIR and SHAHISTA BASHIR

ABSTRACT. Let P(2) be a polynomial of degree n and for any complex number «, let
Do P(2) = nP(z) + (o — 2) P’ (2)

denote the polar derivative of P(z) with respect to a complex number c.
In this paper, we present an integral inequality for the polar derivative of a polynomial P(z). Our result
includes as special cases several interesting generalizations of some Zygmund type inequalities for polynomials.

1. INTRODUCTION

Let P, be the class of polynomials P(z) = Y a,z" of degree at most n and P’(z) its
v=0
derivative. For a complex number « and for P € P,,, let

Do P(z) :=nP(z) + (a — 2)P'(2).

Note that D, P(z) is a polynomial of degree at most n — 1. This is the so-called polar
derivative of P(z) with respect to point « ([12]). It generalizes the ordinary derivative in
the following sense:

lim LQP(Z)

a—00 «

= P'(2).

Now corresponding to a given n'" degree polynomial P(z), we construct a sequence of
polar derivatives

Do, P(2) =nP(2) + (a1 — 2)P'(2)

Do, Da, ... Do, P(z) = (n — k+1)Dg,Da, ... Da,_,P(2)

. Ap—1
+ (ag — 2)(DayDay - .. Doy, P(2)) , k=2,3,...,n.
The points a1, @, ..., k = 1,2,3,...,n may or may not be distinct. Like the k*" ordi-

nary derivative P(*)(2) of P(z), the k' polar derivative Dy, D, . .. Dy, P(2) of P(2) is a
polynomial of degree at most n — k. We shall write P;(2) = Dy, Da,._, - - - Do, P(2), so that

Pi(2) = (n—t+1)P_1(2) + (as — 2)P,_,(2),t =1,2,...n,
Py(z) = P(2).
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For P € P,,, we have

max [P'(2) < nmax | P(2)] (1.1)

and for every r > 1,

27 r T 27 r ks
{/ P'(ew)‘ de} gn{/ P(eia)‘ d9} . (1.2)
0 0

The inequality (1.1) is a classical result of Bernstein [9] whereas the inequality (1.2) is due
to Zygmund [17] who proved it for all trigonometric polynomials of degree n and not
only for those of the form P(e'?). Arestov [1] proved that (1.2) remains true for 0 < r < 1
as well. If we let r — oo in (1.2) we get (1.1).

The above two inequalities (1.1) and (1.2) can be sharpened if we restrict ourselves to the
class of polynomials having no zeros in |z| < 1. In fact, if P(z) # 0in |z| < 1, then (1.1)
and (1.2) can be respectively replaced by

n
max |P’(2)] < = max |P(z 1.3
max |P'(2)] < § max|P(2) (1.3
and
27 ) r % 27 ) r %
{/ P'(e”’)‘ d9} gnBT{/ P(e“’)‘ d9} , (1.4)
0 0
where

—1

27 r T
n= ok [Treefaal
2 0

The inequality (1.3) was conjectured by Erdos and later verified by Lax [7], whereas (1.4)
was proved by De-Bruijn [6] for » > 1. Further, Rahman and Schmeisser [13] have shown
that (1.4) holds for 0 < r < 1 as well. If we let » — oo in inequality (1.4), we get (1.3).
Aziz was among the first to extend some of the above inequalities by replacing the deriv-
ative with the polar derivatives of polynomials. Recently several papers were devoted by
different authors to the same topic (for example see [8], [11], [15] and [16]). In fact in 1988,
Aziz [2] extended (1.3) to the polar derivative of a polynomial and proved that if P € P,
and P(z) # 01n |z| < 1, then for every complex number o with |a| > 1,

1+eia

max | D P(2)] < 5 (laf + 1) max |P(2)] (15)

As an L, analogue of (1.5) and a generalization of (1.4) Aziz and Rather [4] proved that, if
P e P, and P(z) # 0in |z| < 1, then for every complex number « with || > 1 and r > 1,

(r

r

r v 2m r
DaP(ew)’ d@} Sn(a|—|—l)Cr{/O ‘P(ew)‘ da} : (1.6)

1 2 r %1
C, = {/ dw} . 1.7)
2 0

Dividing both sides of (1.5) and (1.6) by |a| and letting o — oo yields (1.3) and (1.4) re-
spectively.
In this paper, we shall prove the following more general result which as special case gives

where

14"
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interesting generalizations of (1.5) and (1.6).

2. MAIN RESULTS

Theorem 2.1. If P € P, and P(z) # 0in |z| < 1, then for all 5, a; with |B| < 1,|a;| > 1 for
1<i<t,t<n—1landr >1,

0 i niAa, 0" ’ BlAa, o N ’
{/0 e P (e 9)—|—ﬂt27tP(e N doy < ng{ Ba,+ | 2|t71 C, x /0 P dby
(2.8)
where
Ao, = (laa] = 1)(laz[ = 1) ... (Jou| = 1),
Ba, = (loa| + 1)(Jez[ + 1) ... (|| + 1),
ng=nn—-1)...(n —t+1), (2.9
and C, is defined by (1.7).
If we take oy = a2 = ... = a4 = «, then divide both sides of (2.8) by |a|" and let

|a| = oo, we get the following result.

Corollary 2.1. If P € P, and P(z) # 0in |z| < 1, then forall fwith |5] < 1,1 <t <n—1

andr > 1,
% 27
i i Nt o |" B
etaP(t)(eG)+52—:P(e 9)‘ d@} Snt{1+2|t_|l}cr{/0

(

where n, is defined in (2.9) and C, in (1.7).
If we put t = 1in (2.8) , we get the following result.

1
p

P(e“’)’rdﬁ} ,

Corollary 2.2. If P € P,, and P(z) # 0 in |z| < 1, then for every complex numbers «, 5 with
la] > 1,18 < landr >1,

(r

"Dy P(e) + nﬁ(OA;I)P(em)’TdH} T < n{(|a| + 1)+ |8](Ja] — 1)}C’T

AL

Remark 2.1. For 8 = 0, (2.10) reduces to (1.6). Further, making r — oo in (2.10), we get for
la] > 1and |B] <1,

r

P(ei‘g)‘rde} , 2.10)

where C, is defined in (1.7).

lmlzfi 2D, P(z) + nﬁ@P(z)‘ <

|3

{(Ial + 1)+ 18l(laf - 1)} max |P(z)]. (2.11)

If we take § = 0 in (2.11), we get (1.5).
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3. LEMMAS

For the proof of the Theorem 2.1, we need the following Lemmas:

Lemma 3.1. Let Q(z) be a polynomial of degree n having all its zeros in |z| < 1 and P(z)
be a polynomial of degree at most n. If |P(z)| < |Q(z)] for |z| = 1, then for all B, a; with
1Bl <1,|ey| >1,i=1,2,...,tand t <n —1,

2Qu(z) + C” (2)] for |2| > 1,

AP(2) + ﬁ"’f;at P(Z)\ <

where ny and A,, are defined in (2.9).
The above lemma is due to Bidkham and Soleiman Mezerji [5].

Lemma 3.2. If P(z) is a polynomial of degree n, then for every complex o« and r > 0,

{/O DoP(E)| de} gn(a|+1){/0 P(e) de} .

The above Lemma is due to Rather [14].
), then for every r > 0 and y real,

Lemma 3.3. If P € P,, and Q(z) = 2" P(

I

The above Lemma is due to Aziz and Rather [3].

ISR

r 2
e + Q' (e)| dbdy < 27mr/
0

P(e“’)‘rde.

4. PROOF OF THEOREM
Proof of Theorem 2.1. Since P € P, and P(z) # 0in |z| < 1, then the polynomial Q(z) =

1
z"P(E) €P,and Q(z) #0in |z| > 1.
By Lemma 3.1, we have for all 5, a; with 5] < 1,]|a;| > 1,1 <i<t,t<n-—1

TLtAat ntAoq

2P,(2) + B P(z )\ < |2'Qu(z) + B

where n; and A,, are defined in (2.9).
Now for every real v and s > 1, it can be easily verified that

( )‘ for |2] = 1, (4.12)

> |14,

’s + ™
which implies for each r > 1,

2 r 2
f el |
0 0
A

If €10 Py () + B2 P(ei?) # 0, we take

s+ e 1+€e| dy.

OQue) + 5 QL)

ethPt(ezO) =+ B O‘f P( )

S = 5




Integral inequalities concerning polynomials with polar derivatives 81

then by (4.12), s > 1 and we get

2m
/0

Mele pe) ) + e {eQue) + 85 ) ay

{eitﬁpt(ew) + B

' ‘ e ‘ eitGQt( 20) + g ngA 0‘1 Q(ew) r
_ eztGPt(eze) + Bnt;at P(ezé) 14+ ez'y{ - A } d’}/
0 eitd P, (eif) 4 =2t t at P(ei)
) A,
A, 2] €QuE) + BTQE) |
— eztGPt(ew) + 6 oy P(em) 1+ e d’)/
2t n A
0 ethPt(eze) +B t O(t P(eie)
ito 6 Oft 0 r
) , A e ||€Qu(e?) + B Col
— eztOPt(ezF)) +6nt tat P(em) / A 4 et dv
2 0 eitd Py(eif) 4 =2t i at P(e?)
. . Aa T i [T
oy ] [
0
(4.13)

This inequality is trivially true if
eitGPt< 19) +6 at P( ) 0.
Integrating both sides of (4.13) with respect to 8 from 0 to 27, we get

I

¢ P, () + B A‘“P( )} + e { Qi) + 8™ ‘”Q( “")Hrd@dv

27
Z/
0

. . Aa o |7 2 i~ T
e P, (et + 6LP(619)’ d@/ ’1 + e”‘ dr.
0

2t
(4.14)
1 1

As Q(z) = 2"P (%) therefore P(z) = "Q(%) and it can be easily verified that for 0 < 6 <
2,

np(ew) o eiOP/(eiO) _ ei(nfl)ew
and

TLQ(BW) _ eiGQl(ew) — 6i(n71)0m'
Hence

np(ew) +6an(€i9) _ 6i9p/(6i6') +6i(n71)9Ql(6i0) + R <ei0Q/(ei0) + ei(nl)ep/(eio))

— i (P'<el‘9> " ew%e”)) + eitn 10 (Q’(e”) P
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which gives

n| P(e) +eQ(e™)| < [P/(e) + 1@ (¢ + [ + e P
_ Q‘P’(em) n e”Q’(ew)’. (4.15)
Also, we have
DaP(e)+7 DaQ(e”)| = [nP(e?)+(a = ) P'(e)+¢" <nQ(ei9)+(a—ei9)Q/(ei9)> |
= |(nP(e?) — e P/(e?)) + e (m)(ei@) - er'(ew))
+a(P/(e?) + Q)]
= | (@@ + P e (P 4 Q)

P/(ew) 4 ein/(eiﬁ)‘

IN

Pl(eiG) + einy/(eie)

+ laf

(laf + 1)’p'(ei9) + e”Q’(ew)‘. (4.16)
Further, since F(z) = P(z) + ¢7Q(z) is a polynomial of degree n so that Fi(z) =

Pi(z) + €7Q4(z) is a polynomial of degree n — ¢, < n — 1, we have by the repeated
application of Lemma 3.2, for r > 1,

27
/0

Equivalently,

27
/0

27
< <nft+1>r<|at|+1>'“/0

Do, Dy, ... Dy, F(e?)| db.

r 2m
Da, Day... Do F(e®)| db < (n—t+1)r(|at|+1)7“/
0

DalDQQ e DoctP(eig) + ei’yDalDOQ t 'DatQ(eie)‘ de

Do, D, ...Da, ,P(¢°) + ¢ Dy, D, ... D, Q)]

<m—t+D"n—t+2)"...(n—D"(Jou| + )" (Jar—1| +1)" ... (Jao| +1)"

27
X/
0

Integrating both sides of (4.17) with respect to v from 0 to 27, we get with the help of
Lemma 3.3 and inequality (4.16) that for each r > 1,

2w 27
/0 /O

Da, P(¢) + ¢7D,, Q)| do. (4.17)

Py(e) + e”Qt(ew)‘Tdefy <o —t+1) (n—t+2) ... (n—1)"

2T

xn'(Jau| +1)" (Jaz—a [+ 1) (Jaz[ + 1)" (Jaa | + 1)T/O

P(e”)(rde.
(4.18)
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From (4.14), we have for > 1, it follows by Minkowski’s inequality that

2m ) % 2m
([ vl
0 0

27 27
ST
0 0

27w p2m ) . T % Aa m p2m
S{/ / Pt(ew)+ert(ew)‘ d0d'y} +|ﬁ‘nt2t t / /
0 0 0 0

which gives on using (4.15),(4.18) and Lemma 3.3 that for every § with |3] < 1,
r > 1 and v real,

r

) ) A, T
eztOPt(ew) +,8nt tP(ele)‘ d9}

2t

Sl

ntAat
2t

it (Pt(ew) +ei7Qt(ei0)) 43 (P(ew) +emQ(ei9>)‘Td9d7}

P(ew)Jre”Q(ew)’Tde’y} )

2m ) % 2T ) TltA ) r B
/ |1 +6w|rd’7 / eztGPt(ezG) +/8 2t0¢t P(ew)‘ 46
0 0
. A 2m " r B
< (%)?nt{Bm + 1815 }{ /0 P(e’ )\ d@} : (4.19)
which is equivalent to (2.8). This completes the proof of the Theorem 2.1. O

Remark 4.2. Since inequality (1.6) holds for » > 1 and it has been shown in [10] that the
same inequality holds for 0 < r < 1 as well. The authors have a feeling that the results of
the present paper may be extended to 0 < r < oo.
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