CREAT. MATH. INFORM. Volume **25** (2016), No. 1, Pages 99 - 106 Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2016.01.13

Estimating a special difference of harmonic numbers

Alina Sîntămărian

ABSTRACT. The aim of this paper is to investigate a special difference of harmonic numbers. We obtain some limits and inequalities involving harmonic numbers and in the last part of the paper some open problems for investigation are posed.

1. INTRODUCTION

Let H_n be the *n*th harmonic number, i.e.

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n},$$

and let $D_n = H_n - \ln n$. As it is well-known, the sequence $(D_n)_{n \in \mathbb{N}}$ is convergent and $\gamma = \lim_{n \to \infty} D_n$ is Euler's constant ([9, Chapter 9, pp. 69–79], [20, Chapter 1, pp. 7–60], [21, p. 22; problem 72, p. 23], [22, problem 1.20, p. 6]).

As we have already mentioned in [18], [19], [20, pp. 7, 8], various lower and upper estimates have been obtained for $D_n - \gamma$, such as:

$$\frac{1}{2(n+1)} < D_n - \gamma < \frac{1}{2(n-1)}, \quad n \in \mathbb{N} \setminus \{1\} \quad ([23]);$$

$$\frac{1}{2(n+1)} < D_n - \gamma < \frac{1}{2n}, \qquad n \in \mathbb{N} \quad ([15], [28]);$$

$$\frac{1}{2n+1} < D_n - \gamma < \frac{1}{2n}, \qquad n \in \mathbb{N} \quad ([26]);$$

$$\frac{1}{2n+\frac{2}{5}} < D_n - \gamma < \frac{1}{2n+\frac{1}{3}}, \qquad n \in \mathbb{N} \quad ([24], [25]);$$

$$\frac{1}{2n+\frac{2\gamma-1}{1-\gamma}} \le D_n - \gamma < \frac{1}{2n+\frac{1}{3}}, \qquad n \in \mathbb{N} \quad ([25], [1], [3]).$$
(1.1)

It is worth specifying that $\frac{2\gamma-1}{1-\gamma}$ and $\frac{1}{3}$, that appear in (1.1), are the best constants with this property, i.e. $\frac{2\gamma-1}{1-\gamma}$ cannot be replaced by a smaller one and $\frac{1}{3}$ cannot be replaced by a larger one, so that the inequalities to hold for all $n \in \mathbb{N}$ ([25], [1], [3]). Clearly,

$$\lim_{n \to \infty} n(D_n - \gamma) = \frac{1}{2},\tag{1.2}$$

which means that the sequence $(D_n)_{n \in \mathbb{N}}$ converges to γ very slowly, more precisely, with order 1.

This is the reason why many mathematicians tried to discover sequences with higher rate of convergence to γ . A possible method of doing so is to modify the argument of the logarithmic term in D_n .

Received: 10.08.2015. In revised form: 17.12.2015. Accepted: 01.02.2016

²⁰¹⁰ Mathematics Subject Classification. 11Y60, 40A05, 41A44, 33B15.

Key words and phrases. Harmonic number, digamma function, sequence, convergence, Euler's constant, best constant.

For example, D. W. DeTemple considered

$$R_n = H_n - \ln\left(n + \frac{1}{2}\right),$$

and he proved in [4] that

$$\frac{1}{24(n+1)^2} < R_n - \gamma < \frac{1}{24n^2}, n \in \mathbb{N},$$

which implies that

$$\lim_{n \to \infty} n^2 (R_n - \gamma) = \frac{1}{24},$$

so the sequence $(R_n)_{n \in \mathbb{N}}$ converges to γ with order 2.

Another way of increasing the speed of convergence to γ is by subtracting a rational term in D_n . In [27] it is shown that

$$\lim_{n \to \infty} n^2 \left(\gamma - D_n + \frac{1}{2n} \right) = \frac{1}{12},$$
(1.3)

hereby the sequence $(D_n - \frac{1}{2n})_{n \in \mathbb{N}}$ converges to γ with order 2. B.-N. Guo and F. Qi proved in [7, Theorem 1] that

$$\frac{1}{12n^2 + \frac{6}{5}} < \gamma - \left(D_n - \frac{1}{2n}\right) \le \frac{1}{12n^2 + \frac{2(7-12\gamma)}{2\gamma - 1}}, \quad n \in \mathbb{N},$$
(1.4)

the numbers $\frac{6}{5}$ and $\frac{2(7-12\gamma)}{2\gamma-1}$ being the best constants with this property.

All the above-mentioned results, together with a problem (see [17], [11, problem 3.1.3, p. 187], [12, problem 1.3, part a), p. 8]) in which it is asked to be shown that

$$\gamma < H_p + H_q - H_{pq} \le 1, \quad p, q \in \mathbb{N},$$

inspired us in writing the present paper.

In Section 2 it is proved that

$$\lim_{n \to \infty} n[pH_n - H_{n^p} - (p-1)\gamma] = \frac{p}{2}$$

for $p \in \mathbb{N} \setminus \{1\}$.

We obtain the best constants *a* and *b* with the property that the inequalities

$$\frac{1}{n+a} \le 2H_n - H_{n^2} - \gamma < \frac{1}{n+b}$$

hold for every $n \in \mathbb{N}$. These constants are $a = \frac{\gamma}{1-\gamma}$ and $b = \frac{2}{3}$.

Also, we obtain that

$$\lim_{n \to \infty} n^2 \left[\gamma - \left(2H_n - H_{n^2} - \frac{1}{n} \right) \right] = \frac{2}{3}$$

and

$$\lim_{n \to \infty} n^2 \left[(p-1)\gamma - \left(pH_n - H_{n^p} - \frac{p}{2n} \right) \right] = \frac{p}{12}$$

for $p \in \mathbb{N} \setminus \{1, 2\}$, and we prove some inequalities regarding $\gamma - (2H_n - H_{n^2} - \frac{1}{n})$.

We mention that only after obtaining our results, we saw the paper [10].

In Section 3 some open problems for investigation are posed.

Interesting results involving Euler–Mascheroni type sequences can be found in [2]. Other results on harmonic numbers can be found in [8], [13], [16].

Further on we collect some formulae that we need in our analysis. Recall that the digamma function ψ is the logarithmic derivative of the gamma function, i.e.

$$\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}, \quad x \in (0, +\infty).$$

It is known that ([6, Section 8.365, Entry 4, p. 904], [14, Section 5.4, Entry 5.4.14, p. 137])

$$\psi(n+1) = -\gamma + H_n, \quad n \in \mathbb{N}.$$
(1.5)

From the recurrence formula ([6, Section 8.365, Entry 1, p. 904], [14, Section 5.5, Entry 5.5.2, p. 138])

$$\psi(x+1) = \psi(x) + \frac{1}{x}, \quad x \in (0, +\infty),$$

and the asymptotic formula ([14, Section 5.11, Entry 5.11.2, p. 140], see also [6, Section 8.367, Entry 13, p. 906])

$$\psi(x) \sim \ln x - \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6} + \cdots \quad (x \to \infty),$$

we get

$$\psi(x+1) \sim \ln x + \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6} + \dots \quad (x \to \infty).$$
 (1.6)

2. DOUBLE INEQUALITIES FOR HARMONIC NUMBERS

We mention that the idea for the solution of the following limit was provided to the author by O. Furdui (see also [5, problem 1.28, p. 5] for a problem on a double Euler–Mascheroni sequence).

Proposition 2.1. Let $p \in \mathbb{N} \setminus \{1\}$. We have

$$\lim_{n \to \infty} n[pH_n - H_{n^p} - (p-1)\gamma] = \frac{p}{2}$$

Proof. We obtain, based on (1.2), that

$$\lim_{n \to \infty} n[pH_n - H_{n^p} - (p-1)\gamma]$$

=
$$\lim_{n \to \infty} \left[pn(H_n - \ln n - \gamma) - \frac{n^p(H_{n^p} - \ln n^p - \gamma)}{n^{p-1}} \right] = p \cdot \frac{1}{2} - 0 = \frac{p}{2}.$$

Hence, for p = 2 in Proposition 2.1 we get that

$$\lim_{n \to \infty} n(2H_n - H_{n^2} - \gamma) = 1.$$

Now we give our first main result.

Theorem 2.1. We have

$$\frac{1}{n+\frac{\gamma}{1-\gamma}} \le 2H_n - H_{n^2} - \gamma < \frac{1}{n+\frac{2}{3}},$$

for every $n \in \mathbb{N}$. Moreover, the constants $\frac{\gamma}{1-\gamma}$ and $\frac{2}{3}$ are the best possible with this property. *Proof.* As one can easily see,

$$2H_n - H_{n^2} - \gamma = 2(D_n - \gamma) - (D_{n^2} - \gamma).$$

Having in view (1.1), we are able to write that

$$\frac{2}{2n + \frac{2\gamma - 1}{1 - \gamma}} - \frac{1}{2n^2 + \frac{1}{3}} < 2H_n - H_{n^2} - \gamma < \frac{2}{2n + \frac{1}{3}} - \frac{1}{2n^2 + \frac{2\gamma - 1}{1 - \gamma}},$$

 \Box

for all $n \in \mathbb{N}$.

Taking into account that

$$\frac{2}{2n + \frac{2\gamma - 1}{1 - \gamma}} - \frac{1}{2n^2 + \frac{1}{3}} - \frac{1}{n + \frac{\gamma}{1 - \gamma}} = \frac{3(1 - \gamma)(n - 2)(2\gamma n + 1) - 6\gamma^2 - 4\gamma + 7}{3(1 - \gamma)^2 \left(2n + \frac{2\gamma - 1}{1 - \gamma}\right) \left(2n^2 + \frac{1}{3}\right) \left(n + \frac{\gamma}{1 - \gamma}\right)} > 0, \quad n \ge 2,$$

as a straightforward calculation shows, it follows that

$$\frac{1}{n+\frac{\gamma}{1-\gamma}} < \frac{2}{2n+\frac{2\gamma-1}{1-\gamma}} - \frac{1}{2n^2+\frac{1}{3}}, \quad n \geq 2$$

So,

$$\frac{1}{n + \frac{\gamma}{1 - \gamma}} \le 2H_n - H_{n^2} - \gamma,$$

for every $n \in \mathbb{N}$, and the constant $\frac{\gamma}{1-\gamma}$ is the best possible with this property (the equality holds only when n = 1).

Also, a straightforward calculation shows that

$$\frac{2}{2n+\frac{1}{3}} - \frac{1}{2n^2 + \frac{2\gamma - 1}{1 - \gamma}} < \frac{1}{n + \frac{2}{3}}, \quad n \in \mathbb{N},$$

because

$$\frac{1}{n+\frac{2}{3}} - \frac{2}{2n+\frac{1}{3}} + \frac{1}{2n^2 + \frac{2\gamma-1}{1-\gamma}} = \frac{15(1-\gamma)n - 20\gamma + 11}{9(1-\gamma)\left(n+\frac{2}{3}\right)\left(2n+\frac{1}{3}\right)\left(2n^2 + \frac{2\gamma-1}{1-\gamma}\right)} > 0, \quad n \in \mathbb{N},$$

which means that

$$2H_n - H_{n^2} - \gamma < \frac{1}{n + \frac{2}{3}},$$

for every $n \in \mathbb{N}$. It remains to prove that the constant $\frac{2}{3}$ is the best possible with this property, fact which we get from the following two assertions.

We have just proved that

$$\frac{1}{2H_n-H_{n^2}-\gamma}-n>\frac{2}{3},\quad n\in\mathbb{N}.$$

On the other hand, using (1.5) and (1.6), we have

$$\frac{1}{2H_n - H_{n^2} - \gamma} - n = \frac{1}{2\psi(n+1) - \psi(n^2+1)} - n$$
$$= \frac{1}{\frac{1}{n} - \frac{2}{3n^2} + O\left(\frac{1}{n^4}\right)} - n$$
$$= \frac{\frac{2}{3} + O\left(\frac{1}{n^2}\right)}{1 + O\left(\frac{1}{n}\right)} \to \frac{2}{3} \quad (n \to \infty).$$

.

Proposition 2.2. Let $p \in \mathbb{N} \setminus \{1\}$. We have

$$\lim_{n \to \infty} n^2 \left[(p-1)\gamma - \left(pH_n - H_{n^p} - \frac{p}{2n} \right) \right] = \begin{cases} 2 \cdot \frac{1}{12} - 0 \cdot \frac{1}{12} + \frac{1}{2} = \frac{2}{3}, & p = 2, \\ p \cdot \frac{1}{12} - 0 \cdot \frac{1}{12} + 0 = \frac{p}{12}, & p \ge 3. \end{cases}$$

Proof. We obtain, based on (1.3), that

$$\lim_{n \to \infty} n^2 \left[(p-1)\gamma - \left(pH_n - H_{n^p} - \frac{p}{2n} \right) \right]$$

=
$$\lim_{n \to \infty} \left[pn^2 \left(\gamma - H_n + \ln n + \frac{1}{2n} \right) - \frac{1}{n^{2p-2}} \cdot n^{2p} \left(\gamma - H_{n^p} + \ln n^p + \frac{1}{2n^p} \right) + \frac{1}{2n^{p-2}} \right]$$

=
$$\begin{cases} 2 \cdot \frac{1}{12} - 0 \cdot \frac{1}{12} + \frac{1}{2} = \frac{2}{3}, \quad p = 2, \\ p \cdot \frac{1}{12} - 0 \cdot \frac{1}{12} + 0 = \frac{p}{12}, \quad p \ge 3. \end{cases}$$

The other main result of our paper is the following theorem.

Theorem 2.2. We have

$$\frac{2}{3n^2 + \frac{2}{\gamma} - 3} \le \gamma - \left(2H_n - H_{n^2} - \frac{1}{n}\right) < \frac{2}{3n^2 + \frac{43}{100}},$$

for every $n \in \mathbb{N}$. Moreover, the constant $\frac{2}{\gamma} - 3$ is the best possible with this property. *Proof.* Let $v_n = 2H_n - H_{n^2} - \frac{1}{n}$, for $n \in \mathbb{N}$. We have

$$\gamma - v_n = 2\left(\gamma - H_n + \ln n + \frac{1}{2n}\right) - \left(\gamma - H_{n^2} + \ln n^2 + \frac{1}{2n^2}\right) + \frac{1}{2n^2}.$$

We can therefore write, having in view (1.4), that

$$\frac{1}{6n^2 + \frac{3}{5}} - \frac{1}{12n^4 + \frac{2(7-12\gamma)}{2\gamma - 1}} + \frac{1}{2n^2} < \gamma - v_n < \frac{1}{6n^2 + \frac{7-12\gamma}{2\gamma - 1}} - \frac{1}{12n^4 + \frac{6}{5}} + \frac{1}{2n^2},$$

for all $n \in \mathbb{N}$.

It is not difficult to check that

$$\begin{aligned} \frac{1}{6n^2 + \frac{3}{5}} &- \frac{1}{12n^4 + \frac{2(7-12\gamma)}{2\gamma - 1}} + \frac{1}{2n^2} - \frac{2}{3n^2 + \frac{2}{\gamma} - 3} \\ &= \frac{1}{10\gamma(2\gamma - 1)n^2\left(6n^2 + \frac{3}{5}\right)\left(6n^4 + \frac{7-12\gamma}{2\gamma - 1}\right)\left(3n^2 + \frac{2}{\gamma} - 3\right)} \\ &\times \{(n-2)(n+2)[(-1656\gamma^2 + 1788\gamma - 480)n^4 + (-6570\gamma^2 + 7077\gamma - 1896)n^2 \\ &- 24786\gamma^2 + 26466\gamma - 7018] - 99036\gamma^2 + 105729\gamma - 28030\} > 0, \quad n \ge 2, \end{aligned}$$

and this implies that

$$\frac{2}{3n^2 + \frac{2}{\gamma} - 3} < \frac{1}{6n^2 + \frac{3}{5}} - \frac{1}{12n^4 + \frac{2(7-12\gamma)}{2\gamma - 1}} + \frac{1}{2n^2}, \quad n \ge 2$$

So,

$$\frac{2}{3n^2 + \frac{2}{\gamma} - 3} \le \gamma - v_n$$

Alina Sîntămărian

for every $n \in \mathbb{N}$, and the constant $\frac{2}{\gamma} - 3$ is the best possible with this property (the equality holds only when n = 1).

Also, it can be shown that

$$\frac{1}{6n^2 + \frac{7-12\gamma}{2\gamma - 1}} - \frac{1}{12n^4 + \frac{6}{5}} + \frac{1}{2n^2} < \frac{2}{3n^2 + \frac{43}{100}}, \quad n \in \mathbb{N},$$

because

$$\begin{aligned} \frac{2}{3n^2 + \frac{43}{100}} &- \frac{1}{6n^2 + \frac{7-12\gamma}{2\gamma-1}} + \frac{1}{12n^4 + \frac{6}{5}} - \frac{1}{2n^2} \\ &= \frac{-1}{1000(2\gamma - 1)n^2 \left(3n^2 + \frac{43}{100}\right) \left(6n^2 + \frac{7-12\gamma}{2\gamma-1}\right) \left(6n^4 + \frac{3}{5}\right)} \\ &\times \{(n-1)(n+1)[(38640\gamma - 22320)n^4 + (38580\gamma - 22500)n^2 \\ &+ 46824\gamma - 27137] + 45276\gamma - 26234\} > 0, \quad n \in \mathbb{N}. \end{aligned}$$

It follows that

$$\gamma - v_n < \frac{2}{3n^2 + \frac{43}{100}},$$

for every $n \in \mathbb{N}$.

3. Comments and open problems

In Theorem 2.1 we have obtained estimates for $2H_n - H_{n^2} - \gamma$, $n \in \mathbb{N}$, with best possible constants. As it was proved in the beginning of Section 2, we have the following limit $\lim_{n\to\infty} n[pH_n - H_{n^p} - (p-1)\gamma] = \frac{p}{2}$, for $p \in \mathbb{N} \setminus \{1\}$. Therefore, it is natural to investigate the problem of finding the best possible constants *a* and *b* such that

$$\frac{p}{2n+a} \le pH_n - H_{n^p} - (p-1)\gamma < \frac{p}{2n+b},$$
(3.7)

 \square

for every $n \in \mathbb{N}$. In order to do so we consider the sequence $(b_n)_{n \in \mathbb{N}}$ defined by the equality

$$pH_n - H_{n^p} - (p-1)\gamma = \frac{p}{2n+b_n}.$$

Thus

$$b_n = \frac{p}{pH_n - H_{n^p} - (p-1)\gamma} - 2n.$$

We have

$$b_1 = \frac{p}{(p-1)(1-\gamma)} - 2$$

and

$$b_{n} = \frac{p}{p\psi(n+1) - \psi(n^{p}+1)} - 2n$$

$$= \frac{p}{\frac{p}{2n} - \frac{p}{12n^{2}} + \frac{p}{120n^{4}} - \frac{1}{2n^{p}} + \frac{1}{12n^{2p}} + O\left(\frac{1}{n^{6}}\right)}{\frac{p}{2n} - \frac{p}{12n^{2}} + \frac{p}{120n^{4}} - \frac{1}{2n^{p}} + \frac{1}{12n^{2p}} + O\left(\frac{1}{n^{5}}\right)}{\frac{p}{2n} - \frac{p}{12n^{2}} + \frac{p}{120n^{4}} - \frac{1}{2n^{p}} + \frac{1}{12n^{2p}} + O\left(\frac{1}{n^{6}}\right)}{\frac{p}{2n} - \frac{p}{12n^{2}} + \frac{p}{2n^{6}} - \frac{1}{2n^{6}} + \frac{1}{12n^{2p}} + O\left(\frac{1}{n^{6}}\right)}$$

$$\xrightarrow{n \to \infty} \begin{cases} \frac{4}{3}, \quad p = 2, \\ \frac{1}{3}, \quad p \ge 3. \end{cases}$$

104

For $p \geq 3$, it remains to study the preceding problem (3.7), with $a = b_1 = \frac{p}{(p-1)(1-\gamma)} - 2$ and $b = \lim_{n \to \infty} b_n = \frac{1}{3}$. We mention that, for p = 2, we recover the result from Theorem 2.1, with $\frac{a}{2} = \frac{b_1}{2} = \frac{\gamma}{1-\gamma}$ and $\frac{b}{2} = \frac{1}{2} \lim_{n \to \infty} b_n = \frac{2}{3}$. Another problem that can be investigated is related to Theorem 2.2. We consider the

sequence $(\tilde{b}_n)_{n \in \mathbb{N}}$ defined by the equality

$$\gamma - \left(2H_n - H_{n^2} - \frac{1}{n}\right) = \frac{2}{3n^2 + \tilde{b}_n}$$

Thereby

$$\tilde{b}_n = \frac{2}{\gamma - \left(2H_n - H_{n^2} - \frac{1}{n}\right)} - 3n^2$$

Clearly, $\tilde{b}_1 = \frac{2}{\alpha} - 3$ and

$$\begin{split} \tilde{b}_n &= \frac{2}{\psi(n^2+1) - 2\psi(n+1) + \frac{1}{n}} - 3n^2 \\ &= \frac{2}{\frac{2}{3n^2} - \frac{1}{10n^4} + O\left(\frac{1}{n^6}\right)} - 3n^2 \\ &= \frac{\frac{3}{10} + O\left(\frac{1}{n^2}\right)}{\frac{2}{3} + O\left(\frac{1}{n^2}\right)} \xrightarrow{n \to \infty} \frac{9}{20}. \end{split}$$

It would be of interest to study if in Theorem 2.2, the constant $\frac{43}{100}$ can be replaced by $\lim_{n\to\infty} \tilde{b}_n = \frac{9}{20}$ as the best constant.

REFERENCES

- [1] Alzer, H., Inequalities for the gamma and polygamma functions, Abh. Math. Sem. Univ. Hamburg, 68 (1998), 363-372
- [2] Berinde, V. and Mortici, C., New sharp estimates of the generalized Euler-Mascheroni constant, Math. Inequal. Appl., 16 (2013), No. 1, 279-288
- [3] Chen, C.-P. and Qi, F., The best lower and upper bounds of harmonic sequence, RGMIA, 6 (2003), No. 2, 303-308
- [4] DeTemple, D. W., A quicker convergence to Euler's constant, Amer. Math. Monthly, 100 (1993), No. 5, 468–470
- [5] Furdui, O., Limits, Series, and Fractional Part Integrals. Problems in Mathematical Analysis, Springer, New York, 2013
- [6] Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products (7th ed.), Elsevier/Academic Press, Amsterdam, 2007
- [7] Guo, B.-N. and Qi, F., Sharp bounds for harmonic numbers, Appl. Math. Comput., 218 (2011), No. 3, 991–995
- [8] Guo, B.-N. and Qi, F., Sharp inequalities for the psi function and harmonic numbers, Analysis, 34 (2014), No. 2, 201 - 208
- [9] Havil, J., Gamma. Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003
- [10] Mačys, J. J., A new problem, Amer. Math. Monthly, 119 (2012), No. 1, p. 82
- [11] Mitrinović, D. S., Analytic Inequalities, Springer-Verlag, Berlin, Heidelberg, 1970
- [12] Mocică, G., Probleme de functii speciale, Editura Didactică și Pedagogică, Bucuresti, 1988
- [13] Niu, D.-W., Zhang, Y.-J. and Qi, F., A double inequality for the harmonic number in terms of the hyperbolic cosine, Turkish J. Anal. Number Theory, 2 (2014), No. 6, 223–225
- [14] Olver, F. W. J. (ed.), Lozier, D. W. (ed.), Boisvert R. F. (ed.) and Clark C. W. (ed.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010
- [15] Rippon, P. J., Convergence with pictures, Amer. Math. Monthly, 93 (1986), No. 6, 476-478
- [16] Qi, F. and Luo, Q.-M., Complete monotonicity of a function involving the gamma function and applications, Period. Math. Hungar., 69 (2014), No. 2, 159-169
- [17] Sandham, H. F., Problem E819, Amer. Math. Monthly, 55 (1948), p. 317
- [18] Sîntămărian, A., A generalization of Euler's constant, Numer. Algorithms, 46 (2007), No. 2, 141–151
- [19] Sîntămărian, A., Some inequalities regarding a generalization of Euler's constant, J. Inequal. Pure Appl. Math., 9 (2008), No. 2, 7 pp., Article 46
- [20] Sîntămărian, A., A Generalization of Euler's Constant, Editura Mediamira, Cluj-Napoca, 2008

Alina Sîntămărian

- [21] Sîntămărian, A., Probleme selectate cu șiruri de numere reale, Editura U. T. Press, Cluj-Napoca, 2008
- [22] Sîntămărian, A. and Furdui, O., Teme de analiză matematică. Exerciții şi probleme (Ediția a II-a), Presa Universitară Clujeană, Cluj-Napoca, 2015
- [23] Tims, S. R. and Tyrrell, J. A., Approximate evaluation of Euler's constant, Math. Gaz., 55 (1971), No. 391, 65-67
- [24] Tóth, L., Problem E3432, Amer. Math. Monthly, 98 (1991), No. 3, p. 264
- [25] Tóth, L., Problem E3432 (Solution), Amer. Math. Monthly, 99 (1992), No. 7, 684-685
- [26] Vernescu, A., Ordinul de convergență al şirului de definiție al constantei lui Euler, Gazeta Matematică, Seria B, 88 (1983), No. 10-11, 380–381
- [27] Vernescu, A., O nouă convergență accelerată către constanta lui Euler, Gazeta Matematică, Seria A, 17 (96) (1999), No. 4, 273–278
- [28] Young, R. M., Euler's constant, Math. Gaz., 75 (1991), No. 472, 187-190

DEPARTMENT OF MATHEMATICS TECHNICAL UNIVERSITY OF CLUJ-NAPOCA MEMORANDUMULUI 28, 400114 CLUJ-NAPOCA, ROMANIA Email address: Alina.Sintamarian@math.utcluj.ro