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Linear relations on the coefficients of the linking
polynomial

KOKO K. KAYIBI1 , S. PIRZADA2 and AHMAD M. ALGHAMDI3

ABSTRACT. In 1972, Brylawski showed that the coefficients of the Tutte polynomial of a matroid are not
independent, but they obey some linear relations. This result was extended to matroid perspectives by Vergnas
in 1999. We extend this result further to all matroids pairs, and we conjecture that all the linear relations obeyed
by the coefficients of the linking polynomial are linear combinations of the “basic” ones.

1. INTRODUCTION

Let M be a matroid defined on a set E. The Tutte polynomial of M is a 2-variable
polynomial defined as

T (M ;x, y) =
∑
X⊆E

(x− 1)
r(E)−r(X)

(y − 1)
|X|−r(X)

, (1.1)

where r is the rank function of M . For an exposure into this topic, see [2, 3, 4, 5, 17]. The
Tutte polynomial can be expanded as

T (M ;x, y) =
∑
ij

Tijx
iyj .

It is shown by Brylawski [1] that the coefficients Tij are not independent, but they obey
linear relations given in the following theorem.

Theorem 1.1. [1] If M is a matroid defined on a set E such that |E| > m for some integer m,
and T (M ;x, y) =

∑
i,j
Tijx

i

y
j

then the following identity holds among the coefficients Tij :

Im(M) =

m−1∑
i=0

m−i−1∑
j=0

(−1)
j

(
m− i− 1

j

)
Tij = 0.

Furthermore, in the vector space V of linear combinations of Tutte coefficients {T
ij
}, the vectors

{I
1
, . . . , I

m
, . . .} form a basis for the subspace of all linear identities which hold for all but a finite

number of Tutte polynomials.

Now, letM → N be a matroid perspective defined on a setE with rank functions r and
s for M and N , respectively. Theorem 1.1 was extended to the perspective polynomial
t(M → N ;x, y, z) by Vergnas [11] as follows.
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Theorem 1.2. [11] Let t
ijk

denotes the coefficient of x
i

y
j

z
k

in the Tutte polynomial t(M →
N ;x, y, z) of a matroid perspective M → N . For non negative integers m, d, let

f
m

=
∑

0≤i+j≤m,k≥0

(−1)
i+k

(
m− j + k

i+ k

)
t
ijk
,

f
m,d

=
∑

0≤i+j≤m,0≤k≤d

(−1)
i+k

(
m− j + k

i+ k

)
t
ijk
.

If the number of elements of M (or N ) is at least m + 1 then the coefficients in t(M → N)
satisfy the relation fm = 0.

Conversely, {f
m,d
} for m = 0, 1 . . . constitutes a basis of the vector space of linear forms f in

finitely many variables t
ijk

with i, j = 0, 1 . . . and 0 ≤ k ≤ d such that f = 0 is satisfied by the
coefficients of Tutte polynomials of all but a finite number of matroid perspectives M → N with
r(E)− s(E) = d.

We present an extension for any matroid pair. Indeed, for two matroids M and N de-
fined on the setE and having rank functions r and s, respectively, the linking polynomial,
denoted by Q(M,N ;x, y, u, v), is defined as follows.

Q(M,N ;x, y, u, v) =
∑
X⊆E

(x− 1)
r(E)−r(X)

(y − 1)
|X|−r(X)

(u− 1)
s(E)−s(X)

(v − 1)
|X|−s(X)

.

The linking polynomial, studied in [6, 7, 8, 18], is essentially equivalent to the 3-variable
polynomial defined and studied by Las Vergnas in a series of papers [11, 12, 13, 14, 15, 16].
It also partially contains the Tutte invariant of 2-polymatroids defined by Oxley and Whittle
in [9, 10]. Let the linking polynomial be expanded as

Q(M,N ;x, y, u, v) =
∑
ijkl

q
ijkl

xiyjukvl.

We present the linear relations obeyed by the coefficients q
ijkl

.

2. MAIN RESULTS

Theorem 2.3. Let (M,N) be a matroid pair defined on a set E with |E| = n. Let the rank
functions be r and s for M and N , respectively. For non negative integer m, let

Πn,m =

r(E)∑
i=0

n∑
j=0

s(E)∑
k=0

n∑
l=0

τ
1∑

τ=0

σ
1∑

σ=0

q
ijkl

2
τ

(−1)
n−m−l+σ

(
i+ j

τ

)(
k+ l

σ

)(
n− j

m+i+l −τ −σ

)
, (2.2)

where τ
1

= min{m+ i+ l, i+ j} and σ
1

= min{m+ i+ l − τ, k + l}.
Then, for all non negative integers m such that n − r(E) + s(E) > m the coefficients of

Q(M,N, x, y, u, v) obey the linear relations Π
n,m

= 0.

In order to prove this theorem, we need some preliminary lemmas. The next lemma is
just a special case of Equation (3) of [18].

Lemma 2.1. Let (M,N) be a matroid pair defined on the set E with |E| = n such that r and s
are the rank functions of M and N , respectively. Then for all real numbers α not equal to 0 or 1
the following holds:

Q

(
M,N ;

2α− 1

α
,

2α− 1

α− 1
, α+ 1,

α+ 1

α

)
= α

n+s(E)−r(E)

(α− 1)
r(E)−n

. (2.3)
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Let a function, denoted by p(α), be defined as

p(α) =

r(E)∑
i=0

n∑
j=0

s(E)∑
k=0

n∑
l=0

q
ijkl

(2α− 1)
i+j

α
−i−l

(α− 1)
n−j

(α+ 1)
k+l

.

Lemma 2.2. Let (M,N) be a pair of matroids defined on the set E with |E| = n. Let m be an
integer such that m < n− r(E) + s(E). Then the coefficients of Q(M,N ;x, y, u, v) obey a set of
relations given by equating to zero the coefficients of αm in the polynomial p(α).

Proof. In what follows, the expression
∑

i,j,k,l
stands for

∑r(E)

i=0

∑n

j=0

∑s(E)

k=0

∑n

l=0
. By Lemma

2.1, we get equation (2.3). On the other hand it is routine to check, by rearranging the
powers, that

Q
(
M,N ;

2α− 1

α
,

2α− 1

α− 1
, α+ 1,

α+ 1

α

)
=
∑
i,j,k,l

q
ijkl

(2α− 1)
i+j

α
−i−l

(α− 1)
−j

(α+ 1)
k+l

(2.4)

Thus, using Equations (2.3) and (2.4) we get∑
i,j,k,l

q
ijkl

(2α− 1)
i+j

α
−i−l

(α− 1)
−j

(α+ 1)
k+l

= α
|E|+s(E)−r(E)

(α− 1)
r(E)−n

,

which can be rewritten as∑
ijkl

q
ijkl

(2α− 1)
i+j

α
−i−l

(α− 1)
n−j

(α+ 1)
k+l

= α
n+s(E)−r(E)

(α− 1)
r(E)

. (2.5)

But, for all matroids defined on a set E with |E| = n and rank function r, we have
n−r(E) ≥ 0. Thus the right hand side of equation (2.5) is a polynomial in α, as n−r(E)+
s(E) is always non negative. Therefore the left hand side of Equation (2.5), which is p(α),
is also a polynomial in α.

Now, let m be an integer such that n− r(E) + s(E) > m. All the exponents of α in the
polynomial in the right hand side of Equation (2.5) are greater thanm. Thus the coefficient
of α

m

is zero in the right hand side of equation (2.5). This implies that the sum over all
the coefficients of α

m

must also be zero in the left hand side of Equation (2.5). This gives
a relation obeyed by the coefficients of q

ijkl
in the left hand side. �

The next lemma is a basic property of the binomial coefficients.

Lemma 2.3. Let a
1
, a

2
, a

3
, b

1
, b

2
, b

3
,m

1
,m

2
,m

3
,m be integers, an let x be an indeterminate.

Then, for all m ≤ m
1

+ m
2

+ m
3
, the coefficient of x

m

in the polynomial (a
1
x + b

1
)
m1 (a

2
x +

b2)
m

2 (a3x+ b3)
m

3 is given by

m∑
τ=0

m−τ∑
σ=0

(
m3

τ

)(
m2

σ

)(
m1

m− τ − σ

)
a
τ

3
b
m3−τ

3
a
σ

2
b
m2−σ

2
a
m−τ−σ

1
b
m1−m+σ+τ

1
.

Proof of Theorem 2.3. First of all, we observe that the coefficient of α
m

in the left hand
side of Equation (2.5) is the coefficient of α

m+i+l

in the polynomial∑
i,j,k,l

q
ijkl

(2α− 1)
i+j

(α− 1)
n−j

(α+ 1)
k+l

. (2.6)

By Lemma 2.2, one gets some relations obeyed by the coefficients ofQ(M,N) by equat-
ing to zero the coefficient of α

m

in p(α) for m < n − r(E) + s(E). Now using Lemma 2.3
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on equation (2.6), where we make the substitutions a
1

= 1, a
2

= 1, a
3

= 2, b
1

= −1, b
2

= 1,
b
3

= −1, m
1

= n− j, m
2

= k + l, m
3

= i+ j, we get

r(E)∑
i=0

n∑
j=0

s(E)∑
k=0

n∑
l=0

m+i+l∑
τ=0

m+i+l−τ∑
σ=0

q
ijkl

2
τ

(−1)
n−m−l+σ

(
i+j

τ

)(
k+l

σ

)(
n−j

m+ i+l −τ −σ

)
=0.

But, we know that
(
i+j
τ

)
= 0 for all τ > i+ j. Similarly,

(
k+l
σ

)
= 0 for all σ > k+ l. Thus

we can limit the upper bound of the summations over τ to min{m+ i+ l, i+ j} and over
σ to min{m+ i+ l − τ, k + l} in order to eliminate the zero terms. �
Examples. Consider the class of matroid pairs (M,N) such that |E| = 1 and |E| − r(E) +
s(E) ≥ 1. This class contains the pairs (C,C), (L,C), (L,L), where C and L denote a
coloop and a loop, respectively. It is routine to check that

Π
1,0

= −q
0000
− 3q

1000
− q

0100
− q

0010
− 2q

1010
+ q

0101
= 0. (2.7)

We hasten to say that the relation (2.7) holds for the coefficients of all Q(M,N), where
the pair (M,N) satisfy the condition |E| − r(E) + s(E) ≥ 1.

But, consider the matroid pair (C,L). Here |E| + s(E) − r(E) = 0. Thus it seems
impossible to use Theorem 2.3 in this case. But we know that

Q(C,L;x, y, u, v) = Q(L,C;u, v, x, y).

Thus, the linear relations obeyed by the coefficients of Q(C,L) can be deduced from
those of Q(L,C). This is the object of the following result.

Corollary 2.1. Let m be a nonnegative integer. Let P
n,m

be the class of all the matroid pairs
defined on E with |E| = n and whose Q-coefficients obey the linear relation Π

n,m
. Let Ps

n,m
be

the class of pairs (N,M) for all pairs (M,N) ∈ Pn,m . Then Ps
n,m

is the class of the matroid pairs
whose Q-coefficients obey the relation Π

s

n,m
where Π

s

n,m
is obtained from Π

n,m
by interchanging

the indices i and k, j and l in Π
n,m

.

Proof. If (M,N) ∈ P
n,m

then, by the symmetry property of Q, we have

Q(N,M ;x, y, u, v) = Q(M,N ;u, v, x, y).

Thus, if the coefficients of Q(M,N ;x, y, u, v) obey the relation Π
n,m

, the coefficients
of Q(N,M ;x, y, u, v) must obey the same relation, except that the index i becomes k, j
becomes l and vice versa. �

Remark. One may have noticed that the expression |E| − r(E) + s(E), which stems from
Equation (2.3), is not symmetric in r and s. But by the symmetry property of Q, we get
that

Q

(
N,M ;

2α− 1

α
,

2α− 1

α− 1
, α+ 1,

α+ 1

α

)
= Q

(
M,N ;α+ 1,

α+ 1

α
,

2α− 1

α
,

2α− 1

α− 1

)
= α

n+r(E)−s(E)

(α− 1)
s(E)−n

=
∑
ijkl

q
ijkl

(2α− 1)
k+l

α
−j−k

(α− 1)
−l

(α+ 1)
i+j

.

Let us define a function p′(α) as

p′(α) =
∑
ijkl

q
ijkl

(2α− 1)
k+l

α
−j−k

(α− 1)
n−l

(α+ 1)
i+j

. (2.8)
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Using the above remark, we can have the equivalent form of Lemma 2.2 as follows.

Lemma 2.4. Let (M,N) be a pair of matroids defined on the set E with |E| = n. Let m be an
integer such that m < n− s(E) + r(E). Then the coefficients of Q(M,N ;x, y, u, v) obey a set of
relations given by equating to zero the coefficients of αm in the polynomial p′(α).

With these preliminaries, and using the same argument as in the proof of Theorem 2.3,
it is easy the prove the following.

Lemma 2.5. Let (M,N) be a matroid pair defined on a setE with |E| = n. Let the rank functions
be r and s for M and N , respectively. For non negative integer m, let

Π
′

n,m
=

r(E)∑
i=0

n∑
j=0

s(E)∑
k=0

n∑
l=0

τ
1∑

τ=0

σ
1∑

σ=0

q
ijkl

2
τ

(−1)
n−m−j+σ

(
i+ j

σ

)(
k + l

τ

)(
n−l

m+k+j− τ− σ

)
, (2.9)

where τ1 = min{m + k + j, k + l} and σ1 = min{m + k + j − τ, i + j}. Then, for all non
negative integers m such that n − s(E) + r(E) > m the coefficients of Q(M,N, x, y, u, v) obey
the linear relations Π

′

n,m
= 0.

But, it is obvious that Equation (2.9) can be obtained from Equation (2.2) by just inter-
changing r and s, i and k, j and l. Thus, for fixed n and m, we have

Π
′

n,m
= Π

s

n,m
.

Similar to Corollary 2.1 we can use the duality property of Q to get more relations
between the coefficients.

Corollary 2.2. Let m be a nonnegative integer. Let P
n,m

be the class of all the matroid pairs
defined on E with |E| = n and whose Q-coefficients obey the linear relation Π

n,m
. Let P∗

n,m
be

the class of pairs (M
∗
, N
∗
) for all matroid pairs (M,N) ∈ Pn,m . Then P∗

n,m
is the class of all the

matroid pairs whose Q-coefficients obey the relation Π
∗

n,m
where Π

∗

n,m
is obtained from Π

n,m
by

interchanging the indices i and j, k and l in Π
n,m

.

Proof. If (M,N) ∈ P
n,m

then the duality property of Q gives that

Q(M
∗
N
∗
;x, y, u, v) = Q(M,N ; y, x, v, u).

Thus, if the coefficients of Q(M,N ;x, y, u, v) obey the relation Π
n,m

, the coefficients of
Q(M

∗
, N
∗
; , x, y, u, v) must obey the same relation, except that the index i becomes j, k

becomes l and vice versa.
�

Using Corollaries 2.1 and 2.2, we get

Π
s

1,0
= −q

0000
− 3q

0010
− q

1000
− q

0001
− 2q

1010
+ q

0101
= 0 (2.10)

Π
∗

1,0
= −q0000 − 3q0100 − q1000 − q0001 − 2q0101 + q1010 = 0. (2.11)

We suspect that we may have some kind of reduced form of the “basis” theorem of
Brylawski and Las Vergnas as follows:
Conjecture Let P

n
be the class of matroid pairs defined on E with |E| = n. Then any linear

identity which holds for all Q-polynomials in P
n

is a linear combination of the relations
{Πn,0 , ...,Πn,n−r(E)+s(E)−1

,Π
s

n,0
, ...,Π

s

n,n−r(E)+s(E)−1
,Π
∗

n,0
, ...,Π

∗

n,n−r(E)+s(E)−1
}.
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