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Iterative methods for a fixed point of hemicontractive-type
mapping and a solution of a variational inequality problem

TESFALEM HADUSH MECHE1, MENGISTU GOA SANGAGO1 and HABTU ZEGEYE2

ABSTRACT. In this paper, we introduce and study an iterative process for finding a common point of the
fixed point set of a Lipschitz hemicontractive-type multi-valued mapping and the solution set of a variational
inequality problem for a monotone mapping. Our results improve and extend most of the results that have been
proved for this class of nonlinear mappings.

1. INTRODUCTION

LetH be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖. LetC be a nonempty
subset of H . A mapping T : C → H is called Lipschitzian if there exists L ≥ 0 such that
||Tx − Ty|| ≤ L||x − y|| ∀x, y ∈ C. If L = 1 then T is called nonexpansive and if L ∈ [0, 1)
then T is called a contraction. A mapping T : C −→ H is called pseudocontractive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖x− Tx− (y − Ty)‖2 for all x, y ∈ C. (1.1)

We know that the class of pseudocontractive mappings is a more general class of map-
pings in the sense that it includes the class of nonexpansive and hence the class of con-
traction mappings (see, [2]).

LetCB(C) denotes the family of nonempty closed bounded subsets ofC. The Pompeiu-
Hausdorff metric ([1]) on CB(C) is defined by

D(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)},

for all A,B ∈ CB(C), where d(x,B) = inf{‖x− b‖ : b ∈ B}.
A multi-valued mapping T : C −→ CB(C) is said to be nonexpansive if

D(Tx, Ty) ≤ ‖x− y‖ ∀x, y ∈ C.
T is called k−strictly pseudocontractive if there exists k ∈ [0, 1) such that

D2(Tx, Ty) ≤ ‖x− y‖2 + k‖(x− u)− (y − v)‖2, (1.2)

for all x, y ∈ C and u ∈ Tx, v ∈ Ty. If in (1.2), k = 1, then T is called pseudocontractive.
An element x ∈ C is called a fixed point of T : C −→ C (resp., T : C −→ CB(C)) if

x = Tx (resp., x ∈ Tx). The set of fixed points of T is denoted by F (T ). We write xn ⇀ x
to indicate that the sequence {xn} converges weakly to x and xn → x to indicate that the
sequence {xn} converges strongly to x.

A multi-valued mapping T : C −→ CB(C) is said to be hemicontractive-type if F (T ) 6=
∅ and for all p ∈ F (T ), x ∈ C,

D2(Tx, Tp) ≤ ‖x− p‖2 + ‖x− u‖2, ∀u ∈ Tx. (1.3)
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T is called demicontractive if F (T ) 6= ∅, and there exists k ∈ [0, 1) such that for all p ∈
F (T ), x ∈ C

D2(Tx, Tp) ≤ ‖x− p‖2 + k‖x− u‖2, ∀u ∈ Tx. (1.4)

And T is called strongly demicontractive if F (T ) 6= ∅ and there exist α, k ∈ [0, 1) such that
for all p ∈ F (T ), x ∈ C,

D2(Tx, Tp) ≤ α‖x− p‖2 + k‖x− u‖2, ∀u ∈ Tx.
If in (1.4), k = 0, then T is said to be quasi-nonexpansive.

We note that the class of multi-valued hemicontractive-type mappings is a more gen-
eral class of mappings in the sense that it includes the class of multi-valued pseudocon-
tractive mappings T with F (T ) 6= ∅ and T (p) = {p},∀p ∈ F (T ) and the class of multi-
valued demicontractive mappings and hence the class of multi-valued quasi-nonexpansive
(see, [8, 19]).

Let T : C −→ CB(C) be a multi-valued mapping, I − T (where I is the identity
mapping on C) is said to be demiclosed at zero if {xn} ⊂ C such that xn ⇀ x and
limn→∞ d(xn, Txn) = 0 implies x ∈ Tx.

Many authors have extended the existence and approximation of fixed points for single-
valued mappings to multi-valued mappings; see, for example, [6, 10, 14, 15] and the ref-
erences therein. Recently, Woldeamanual et al. [19] considered the problem of finding
a common point of fixed points of a finite family of hemicontractive-type multi-valued
mappings and they introduced the following iterative algorithm: zn = (1− γn)xn + γnwn, wn ∈ Tnyn,

yn = (1− βn)xn + βnun, un ∈ Tnxn,
xn+1 = αnw + (1− αn)zn, ∀n ≥ 1,

where Tn := Tn(modN)+1 and {αn}, {βn}, {γn} ⊂ (0, 1) satisfying certain conditions. Then,
they proved that the sequence {xn} converges strongly to some point p in ∩Ni=1F (Ti) near-
est to w.
A mapping A : C −→ H is called η- strongly monotone if there exists a positive real
number η such that

〈Ax−Ay, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ C.
A is called α-inverse strongly monotone if there exists a positive real number α such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.
Note that every α-inverse strongly monotone mapping is 1

α -Lipschitz mapping. How-
ever, the converse may not hold.
A mapping A : C −→ H is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.
Clearly, the class of monotone mappings includes the class of α-inverse strongly mono-
tone and the class of η−strongly monotone mappings and the inclusion is proper.

Let C be a nonempty, closed and convex subset of a real Hilbert space H and let A :
C −→ H be a nonlinear mapping. The classical variational inequality problem is the
problem of finding u ∈ C such that

〈v − u,Au〉 ≥ 0 for all v ∈ C. (1.5)

The set of solutions of the variational inequality problem (1.5) is denoted by V I(C,A).
Variational inequality theory, which was first introduced by Stampacchia [13] in 1964,

emerged as an interesting and fascinating branch of applicable mathematics with a wide
range of applications in economics, industry, network analysis, optimizations, pure and
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applied sciences etc. In recent years, much attention has been given to developing effi-
cient iterative methods for treating solution problems of variational inequalities [3, 21, 25]
and the references therein. The classical variational inequality is equivalent to a fixed
point problem. This alternative equivalent formulation has played a major role in finding
solutions of varational inequalities using iterative algorithms.

Recently, finding a common element of the fixed point set of nonexpansive mapping
and the solution set of variational inequality problem has been considered by many au-
thors; see, for example [4, 5, 16, 11, 24] and the references therein. We describe some of
them as follows:

In 2004, Iiduka et al. [3] considered the following iterative algorithm:{
x0 = x ∈ C,
xn+1 = αnx+ (1− αn)TPC(xn − λnAxn), ∀n ≥ 0.

where T : C −→ C is a nonexpansive mapping, A : C −→ H is a α−inverse strongly
monotone mapping, {αn} is a sequence in (0, 1), and {λn} is a sequence in (0, 2α). Then,
they proved that the sequence {xn} strongly converges to some point z ∈ F (T )∩V I(C,A).

In 2006, Nadezhkina and Takahashi [9] introduced the following iterative algorithm for
finding an element of F (T )∩V I(C,A) under the assumptions thatC is a nonempty, closed
convex subset of a real Hilbert space H , A is a monotone and L−Lipschitz mapping of C
into H and T is a nonexpansive mapping of C into itself: x0 = x ∈ C,

yn = PC(xn − λnAxn),
xn+1 = αnxn + (1− αn)TPC(xn − λnAyn), ∀n ≥ 0.

(1.6)

where {λn} ⊂ (0, 1
L ) and {αn} ⊂ [c, d] for some c, d ∈ (0, 1). They proved that the se-

quence {xn}, {yn} generated by (1.6) converge weakly to the same point z ∈ F (T ) ∩
V I(C,A), where z = limn→∞ PF (T )∩V I(C,A)xn.

In this paper, inspired by the papers surveyed above, we introduce an iterative algo-
rithm for finding a common element of the solution set of a variational inequality problem
(1.5) and the fixed point set of a hemicontractive-type mapping. Strong convergence theo-
rem is established in the framework of Hilbert spaces. The results presented in this paper
improve and extend the corresponding results announced by Iiduka et al. [3], Nadezhkina
and Takahashi [9], Zegeye and Shahzad [25] and some other results in this direction.

2. PRELIMINARIES

Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let A be a
monotone mapping fromC intoH . Then, in the context of variational inequality problem,
it is easy to see that

u ∈ V I(C,A) if and only if u = PC(u− λAu), ∀λ > 0.

So, to find a solution of a classical variational inequality problem, we shall use projection
mappings. Now, we describe some properties of projection mappings: For every point
x ∈ H , there exists a unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

PC is called the metric projection of H onto C. The metric projection PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H,
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which implies that PC is nonexpansive mapping. It is also characterized by the following
properties (see, e.g., [17]):

z = PCx ∈ C if and only if 〈x− z, z − y〉 ≥ 0, for all x ∈ H, y ∈ C, (2.7)

and

‖y − PCx‖2 ≤ ‖x− y‖2 − ‖x− PCx‖2, for all x ∈ H, y ∈ C. (2.8)

Let C be a bounded, closed and convex subset of a real Hilbert space H and let A be
continuous monotone mapping of C into H . Then, V I(C,A) is nonempty (see, [18, 22]).

A multi-valued mapping A : H −→ 2H is called monotone if for all x, y ∈ H , 〈x −
y, u − v〉 ≥ 0 for all u ∈ Ax and v ∈ Ay holds. A is called maximal if its graph G(A)
is not properly contained in the graph of any other monotone mapping. Equivalently, a
monotone mapping A is maximal if and only if, for (x, u) ∈ H ×H , 〈x− y, u− v〉 ≥ 0, for
every (y, v) ∈ G(A) implies u ∈ Ax. The normal cone to C at x ∈ C, denoted by NCx, is
given by

NCx = {z ∈ H : 〈x− y, z〉 ≥ 0, ∀y ∈ C}.
Let A be continuous monotone mapping of C into H . Then, the mapping B : H −→ 2H

define by

Bv =

{
Av +NCv, if v ∈ C,
∅, if v 6∈ C

is maximal monotone and 0 ∈ Bv if and only if v ∈ V I(C,A) (see, e.g., [12]).

We need the following lemmas for the proof of our main result.

Lemma 2.1. [23] Let H be a real Hilbert space. Then for all xi ∈ H and αi ∈ [0, 1] for i =
1, 2, · · · , n such that α1 + α2 + · · ·+ αn = 1 the following equality holds:

‖α1x1 + α2x2 + · · ·+ αnxn‖2 =

n∑
i=1

αi‖xi‖2 −
∑

1≤i,j≤n

αiαj‖xi − xj‖2.

Lemma 2.2. Let H be a real Hilbert space. Then, for any given x, y ∈ H , we have the following
inequality:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Lemma 2.3. [10] Let (X, d) be a metric space. Let A,B ∈ CB(X) and a ∈ A. Then, for ε > 0,
there exists a point b ∈ B such that d(a, b) ≤ D(A,B) + ε.

Lemma 2.4. [20] Let {bn} be a sequence of nonnegative real numbers satisfying the following
relation:

bn+1 ≤ (1− αn)bn + αnδn, for n ≥ n0,
where {αn} ⊂ (0, 1) and δn ⊂ R satisfying the following conditions:

lim
n→∞

αn = 0,

∞∑
n=1

αn =∞, and lim sup
n→∞

δn ≤ 0.

Then, limn→∞ bn = 0.

Lemma 2.5. [7] Let {an} be a sequence of real numbers such that there exist a subsequence {ni} of
{n} such that ani

< ani+1, for all i ∈ N. Then, there exists a nondecreasing sequence {mk} ⊂ N
such that mk → ∞ and the following properties are satisfied by all (sufficiently large) numbers
k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.
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In fact, mk = max{j ≤ k : aj ≤ aj+1}.

3. MAIN RESULT

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
T : C −→ CB(C) be a Lipschitz hemicontractive-type mapping with Lipschitz constant L. Let
A : C −→ H be a d-Lipschitz monotone mapping. Assume that F = F (T ) ∩ V I(C,A) is
nonempty, closed and convex, I − T is demiclosed at zero and Tp = {p} for all p ∈ F . Let {xn}
be a sequence generated from an arbitrary x0, u ∈ C by

zn = PC(xn − γnAxn),
un = PC(xn − γnAzn),
yn = (1− λn)xn + λnvn,
xn+1 = αnu+ (1− αn)(anxn + bnwn + cnun),

(3.9)

for all n ≥ 0, where vn ∈ Txn, wn ∈ Tyn such that ‖vn − wn‖ ≤ 2D(Txn, T yn) and PC is a
metric projection from H onto C and γn ⊂ [a, b] for some a, b ∈ (0, 1d ), {an}, {bn}, {cn} ⊂ [e, f ],
and {αn} ⊂ (0, c) for some c, e, f ∈ (0, 1), satisfying the following conditions: (i) an+ bn+ cn =
1; (ii) limn→∞ αn = 0,

∑
αn = ∞; (iii) bn + cn ≤ λn ≤ λ < 1√

1+4L2+1
. Then, the sequence

{xn} is bounded.

Proof. Let p ∈ F . Then, from (2.8) and (3.9), we have

‖un − p‖2 = ‖PC(xn − γnAzn)− p‖2

≤ ‖xn − γnAzn − p‖2 − ‖xn − γnAzn − un‖2

=
〈
xn − γnAzn − p, xn − γnAzn − p

〉
−
〈
xn − γnAzn − un, xn − γnAzn − un

〉
= ‖xn − p‖2 − ‖xn − un‖2 + 2γn〈Azn, p− un〉
= ‖xn − p‖2 − ‖xn − un‖2

+ 2γn

(
〈Azn −Ap, p− zn〉+ 〈Ap, p− zn〉+ 〈Azn, zn − un〉

)
≤ ‖xn − p‖2 − 〈xn − un, xn − un〉+ 2γn〈Azn, zn − un〉,

(3.10)

which gives

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − zn‖2 − 2〈xn − zn, zn − un〉
− ‖zn − un‖2 + 2γn〈Azn, zn − un〉

= ‖xn − p‖2 − ‖xn − zn‖2 − ‖zn − un‖2

+ 2〈xn − γnAzn − zn, un − zn〉. (3.11)

And from (2.7), we get that

〈xn − γnAzn − zn, un − zn〉 = 〈xn − γnAxn − zn, un − zn〉
+ 〈γnAxn − γnAzn, un − zn〉

≤ 〈γnAxn − γnAzn, un − zn〉
≤ γnd‖xn − zn‖ × ‖un − zn‖. (3.12)
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Thus, from (3.11) and (3.12), we obtain that

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − zn‖2 − ‖zn − un‖2

+ 2γnd‖xn − zn‖ × ‖un − zn‖
≤ ‖xn − p‖2 − ‖xn − zn‖2 − ‖zn − un‖2

+ γ2nd
2‖xn − zn‖2 + ‖zn − un‖2

= ‖xn − p‖2 + (γ2nd
2 − 1)‖xn − zn‖2. (3.13)

In addition, from (3.9), Lemma 2.1 and definition of hemicontractive-type mapping, we
have that

‖yn − p‖2 = ‖(1− λn)(xn − p) + λn(vn − p)‖2

= (1− λn)‖xn − p‖2 + λn‖vn − p‖2

− λn(1− λn)‖xn − vn‖2

= (1− λn)‖xn − p‖2 + λn

(
d(vn, Tp)

)2
− λn(1− λn)‖xn − vn‖2

≤ (1− λn)‖xn − p‖2 + λnD
2(Txn, Tp)

− λn(1− λn)‖xn − vn‖2

≤ (1− λn)‖xn − p‖2 + λn

(
‖xn − p‖2 + ‖xn − vn‖2

)
− λn(1− λn)‖xn − vn‖2

= (1− λn)‖xn − p‖2 + λn‖xn − p‖2 + λn‖xn − vn‖2

− λn(1− λn)‖xn − vn‖2

= ‖xn − p‖2 + λ2n‖xn − vn‖2. (3.14)

Thus, from (3.9), Lemma 2.1, (3.13), (3.14) and definition of hemicontractive-type map-
ping, we have the following:

‖xn+1 − p‖2 = ‖αnu+ (1− αn)(anxn + bnwn + cnun)− p‖2

≤ αn‖u− p‖2 + (1− αn)
× ‖an(xn − p) + bn(wn − p) + cn(un − p)‖2

≤ αn‖u− p‖2 + (1− αn)
(
an‖xn − p‖2 + bn‖wn − p‖2

+ cn‖un − p‖2
)
− (1− αn)anbn‖wn − xn‖2

≤ αn‖u− p‖2 + (1− αn)
(
an‖xn − p‖2 + bnD

2(Tyn, Tp)

+ cn‖un − p‖2
)
− (1− αn)anbn‖wn − xn‖2

≤ αn‖u− p‖2 + (1− αn)an‖xn − p‖2 + (1− αn)bn
×
(
‖yn − p‖2 + ‖yn − wn‖2

)
+ (1− αn)cn

×
(
‖xn − p‖2 + (γ2nd

2 − 1)‖xn − zn‖2
)

− (1− αn)anbn‖wn − xn‖2,
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which gives

‖xn+1 − p‖2 ≤ αn‖u− p‖2 + (1− αn)(an + cn)‖xn − p‖2

+ (1− αn)bn
(
‖xn − p‖2 + λ2n‖xn − vn‖2

)
+ (1− αn)bn‖yn − wn‖2 + (1− αn)cn
× (γ2nd

2 − 1)‖xn − zn‖2 − (1− αn)anbn‖wn − xn‖2

= αn‖u− p‖2 + (1− αn)‖xn − p‖2 + (1− αn)bnλ2n
× ‖xn − vn‖2 + (1− αn)bn‖yn − wn‖2

+ (1− αn)cn(γ2nd2 − 1)‖xn − zn‖2

− (1− αn)anbn‖wn − xn‖2. (3.15)

Furthermore, from (3.9) and Lemma 2.1, we get that

‖yn − wn‖2 = ‖(1− λn)(xn − wn) + λn(vn − wn)‖2

= (1− λn)‖xn − wn‖2 + λn‖vn − wn‖2

− λn(1− λn)‖xn − vn‖2

≤ (1− λn)‖xn − wn‖2 + 4λnD
2(Txn, T yn)

− λn(1− λn)‖xn − vn‖2

≤ (1− λn)‖xn − wn‖2 + 4λnL
2‖xn − yn‖2

− λn(1− λn)‖xn − vn‖2

= (1− λn)‖xn − wn‖2 + 4λ3nL
2‖xn − vn‖2

− λn(1− λn)‖xn − vn‖2

= (1− λn)‖xn − wn‖2 + λn(4L
2λ2n + λn − 1)‖xn − vn‖2. (3.16)

Now, substituting (3.16) into (3.15), we obtain that

‖xn+1 − p‖2 ≤ αn‖u− p‖2 + (1− αn)‖xn − p‖2 + (1− αn)bnλ2n‖xn − vn‖2

+ (1− αn)bn
(
(1− λn)‖xn − wn‖2 − λn(1− 4L2λ2n − λn)‖xn − vn‖2

)
− (1− αn)anbn‖wn − xn‖2 + (1− αn)cn(γ2nd2 − 1)‖xn − zn‖2

= αn‖u− p‖2 + (1− αn)‖xn − p‖2

+
(
(1− αn)bnλ2n − (1− αn)bnλn(1− 4L2λ2n − λn)

)
‖xn − vn‖2

+
(
(1− αn)bn(1− λn)− (1− αn)anbn

)
‖xn − wn‖2

+ (1− αn)cn(γ2nd2 − 1)‖xn − zn‖2, (3.17)
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which gives

‖xn+1 − p‖2 ≤ αn‖u− p‖2 + (1− αn)‖xn − p‖2

− (1− αn)bnλn
(
1− 4L2λ2n − 2λn

)
‖xn − vn‖2 + (1− αn)bn

×
(
1− an − λn

)
‖xn − wn‖2 + (1− αn)cn(γ2nd2 − 1)‖xn − zn‖2

= αn‖u− p‖2 + (1− αn)‖xn − p‖2

− (1− αn)bnλn
(
1− 4L2λ2n − 2λn

)
‖xn − vn‖2

+ (1− αn)bn
(
bn + cn − λn

)
‖xn − wn‖2

+ (1− αn)cn(γ2nd2 − 1)‖xn − zn‖2. (3.18)

Now, since from the hypothesis, we have γn < 1
d and

1− 4L2λ2n − 2λn ≥ 1− 4L2λ2 − 2λ > 0 and (bn + cn)− λn ≤ 0, (3.19)

for all n ≥ 0, then inequality (3.18) implies that

‖xn+1 − p‖2 ≤ αn‖u− p‖2 + (1− αn)‖xn − p‖2 (3.20)
≤ αnmax{‖u− p‖2, ‖xn − p‖2}

+ (1− αn)max{‖u− p‖2, ‖xn − p‖2}
= max{‖u− p‖2, ‖xn − p‖2}.

Thus, by induction, we have that

‖xn+1 − p‖2 ≤ max{‖u− p‖2, ‖x0 − p‖2}, ∀n ≥ 0,

which implies that {xn} is bounded. �

Theorem 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
T : C −→ CB(C) be a Lipschitz hemicontractive-type mapping with Lipschitz constant L. Let
A : C −→ H be a d-Lipschitz monotone mapping. Assume that F = F (T ) ∩ V I(C,A) is
nonempty, closed and convex, I − T is demiclosed at zero and Tp = {p} for all p ∈ F . Let {xn}
be a sequence generated from an arbitrary x0, u ∈ C by

zn = PC(xn − γnAxn),
un = PC(xn − γnAzn),
yn = (1− λn)xn + λnvn, vn ∈ Tnxn,
xn+1 = αnu+ (1− αn)(anxn + bnwn + cnun),

(3.21)

for all n ≥ 0, where vn ∈ Txn, wn ∈ Tyn such that ‖vn − wn‖ ≤ 2D(Txn, T yn) and PC is a
metric projection from H onto C and γn ⊂ [a, b] for some a, b ∈ (0, 1d ), {an}, {bn}, {cn} ⊂ [e, f ],
and {αn} ⊂ (0, c) for some c, e, f ∈ (0, 1), satisfying the following conditions: (i) an+ bn+ cn =
1; (ii) limn→∞ αn = 0,

∑
αn = ∞; (iii) bn + cn ≤ λn ≤ λ < 1√

1+4L2+1
. Then, the sequence

{xn} converges strongly to the point x∗ = PF (u).

Proof. Clearly, from Theorem 3.1 the sequence {xn} and hence {yn}, {zn} are bounded.
Let x∗ = PF (u). Then, using (3.21), Lemma 2.2, and following the methods used to get
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(3.18) we obtain that

‖xn+1 − x∗‖2 = ‖αnu+ (1− αn)
(
anxn + bnwn + cnun

)
− x∗‖2

≤ (1− αn)‖anxn + bnwn + cnun − x∗‖2 + 2αn〈u− x∗, xn+1 − x∗〉
≤ (1− αn)an‖xn − x∗‖2 + (1− αn)bn‖wn − x∗‖2

+ (1− αn)cn‖un − x∗‖2 − (1− αn)anbn‖wn − xn‖2

− (1− αn)ancn‖un − xn‖2 + 2αn〈u− x∗, xn+1 − x∗〉

≤ (1− αn)‖xn − x∗‖2 − (1− αn)bnλn
(
1− 4L2λ2n − 2λn

)
‖xn − vn‖2

+ (1− αn)bn
(
bn + cn − λn

)
‖xn − wn‖2 − (1− αn)ancn‖un − xn‖2

+ (1− αn)cn(γ2nd2 − 1)‖xn − zn‖2 + 2αn〈u− x∗, xn+1 − x∗〉. (3.22)

This together with (3.19) implies that

‖xn+1 − x∗‖2 ≤ (1− αn)‖xn − x∗‖2 + 2αn〈u− x∗, xn+1 − x∗〉. (3.23)

Now, we consider two cases:
Case 1. Suppose that there exists n0 ∈ N such that {‖xn − x∗‖} is decreasing for all

n ≥ n0. Then, we get that, {‖xn − x∗‖} is convergent. Thus, from (3.22) and (3.19), we
have that

(1− αn)bnλn
(
1− 4L2λ2n − 2λn

)
‖xn − vn‖2 ≤ (1− αn)‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+ 2αn〈u− x∗, xn+1 − x∗〉.

Hence, from (3.19) and the fact that αn → 0 as n→∞, we have that

xn − vn → 0 as n→∞, (3.24)

and from (3.22), the fact that αn → 0 as n→∞ and γ2nd2 − 1 < 0, we also have that

un − xn → 0, zn − xn → 0 as n→∞. (3.25)

Moreover, from (3.21) and (3.24), we obtain that

‖yn − xn‖ = ‖(1− λn)xn + λnvn − xn‖ = λn‖xn − vn‖ → 0 as n→∞, (3.26)

and hence Lipschitz continuity of Tn, (3.24) and (3.26) imply that

‖wn − xn‖ ≤ ‖wn − vn‖+ ‖vn − xn‖
≤ 2L‖yn − xn‖+ ‖vn − xn‖ → 0 as n→∞. (3.27)

In addition, from the fact that αn → 0 as n→∞, (3.25) and (3.27) we have that

‖xn+1 − xn‖ = ‖αn(u− xn) + (1− αn)
(
bn(wn − xn) + cn(un − xn)

)
‖

≤ αn‖u− xn‖+ (1− αn)bn‖wn − xn‖
+ (1− αn)cn‖un − xn‖ → 0 as n→∞, (3.28)

and from (3.24) we get

d(xn, Txn) ≤ ||xn − vn|| → 0 as n→∞. (3.29)

Furthermore, from Theorem 3.1 we have that {xn+1} is a bounded sequence in H . Thus,
since Hilbert space is reflexive, we can choose a subsequence {xnj+1} of {xn+1} such that
xnj+1 ⇀ z as j →∞ and

lim sup
n→∞

〈u− x∗, xn+1 − x∗〉 = lim
j→∞
〈u− x∗, xnj+1 − x∗〉.



192 T. H. Meche, M. G. Sangago, H. Zegeye

Then, from (3.28) we have xnj
⇀ z as j → ∞. Thus, from (3.29) and demiclosedness of

I − T at zero, we obtain that

z ∈ F (T ).
Next, we show that z ∈ V I(C,A). But, since A is Lipschitz continuous and
zn − un = zn − xn + xn − un → 0 as n→∞, we have Azn −Aun → 0 as n→∞.
Thus, from (3.25), we get that unj ⇀ z and znj ⇀ z as j →∞. Let

Bv =

{
Av +NCv, if v ∈ C,
∅, if v 6∈ C. (3.30)

Then, B is maximal monotone and 0 ∈ Bv if and only if v ∈ V I(C,A). Let (v, w) ∈ G(B),
where G(B) denotes the graph of B, then we have w ∈ Bv = Av +NCv and hence
w −Av ∈ NCv. Thus, from the definition of NCv, we get that

〈v − u,w −Av〉 ≥ 0, ∀u ∈ C.
On the other hand, since un = PC(xn − γnAzn) and v ∈ C, we have that

〈xn − γnAzn − un, un − v〉 ≥ 0,

and hence 〈
v − un,

(un − xn)
γn

+Azn

〉
≥ 0.

Therefore, from w −Av ∈ NCv and unj ∈ C, we obtain the following:

〈v − unj
, w〉 ≥ 〈v − unj

, Av〉

≥ 〈v − unj , Av〉 −
〈
v − unj ,

(unj
− xnj

)

γnj

+Aznj

〉
=

〈
v − unj , Av +Aunj −Aunj

〉
−
〈
v − unj ,

(unj
− xnj

)

γnj

〉
− 〈v − unj , Aznj 〉

= 〈v − unj , Av −Aunj 〉 −
〈
v − unj ,

(unj
− xnj

)

γnj

〉
+ 〈v − unj , Aunj −Aznj 〉

≥ 〈v − unj , Aunj −Aznj 〉 −
〈
v − unj ,

(unj
− xnj

)

γnj

〉
.

This implies that 〈v − z, w〉 ≥ 0, as j → ∞. Then, maximality of B gives that 0 ∈ Bz and
hence z ∈ V I(C,A). Therefore,

z ∈ F (T ) ∩ V I(C,A).
Thus, since x∗ = PF (u), using (2.7) we obtain that

lim sup
n→∞

〈u− x∗, xn+1 − x∗〉 = lim
j→∞
〈u− x∗, xnj+1 − x∗〉.

= 〈u− x∗, z − x∗〉 ≤ 0. (3.31)

Hence, it follows from (3.23), (3.31), assumptions of {αn} and Lemma 2.4 that

‖xn − x∗‖ → 0 as n→∞ .

Consequently, xn → x∗ = PF (u).
Case 2. Suppose that there exists a subsequence {nj} of {n} such that

‖xnj − x∗‖ < ‖xnj+1 − x∗‖,
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for all j ∈ N. Then, by Lemma 2.5, there exist a nondecreasing sequence {mk} ⊂ N such
that mk →∞, and

‖xmk
− x∗‖ ≤ ‖xmk+1 − x∗‖ and ‖xk − x∗‖ ≤ ‖xmk+1 − x∗‖, (3.32)

for all k ∈ N. Thus, from (3.22), (3.19) and the fact that αn → 0, we get that

xmk
− vmk

, umk
− xmk

, zmk
− xmk

→ 0 as k →∞ .

Hence, following the method in Case 1, we obtain that

lim sup
k→∞

〈u− x∗, xmk+1 − x∗〉 ≤ 0. (3.33)

Now, from (3.23), we have that

‖xmk+1 − x∗‖2 ≤ (1− αmk
)‖xmk

− x∗‖2 + 2αmk
〈u− x∗, xmk+1 − x∗〉, (3.34)

and hence (3.32) and (3.34) imply that

αmk
‖xmk

− x∗‖2 ≤ ‖xmk
− x∗‖2 − ‖xmk+1 − x∗‖2 + 2αmk

〈u− x∗, xmk+1 − x∗〉
≤ 2αmk

〈u− x∗, xmk+1 − x∗〉.

Hence, the fact that αmk
> 0 imply that

‖xmk
− x∗‖2 ≤ 2〈u− x∗, xmk+1 − x∗〉.

Thus, using (3.33) we get that ‖xmk
−x∗‖ → 0 as k →∞. This together with (3.34) implies

that ‖xmk+1 − x∗‖ → 0 as k → ∞. Since ‖xk − x∗‖ ≤ ‖xmk+1 − x∗‖ for all k ∈ N, we get
that xk → x∗. Therefore, from the above two cases, we can conclude that {xn} converges
strongly to x∗ = PF (u). �

If, in Theorem 3.2, we assume that T with F (T ) 6= ∅ and T (p) = {p},∀p ∈ F (T ) is
pseudo-contractive multi-valued mapping. Then, we have that T is hemicontractive-type
and hence we get the following theorem.

Theorem 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
T : C −→ CB(C) be a Lipschitz pseudocontractive mapping with Lipschitz constant L. Let
A : C −→ H be a d−Lipschitz monotone mapping. Assume that F = F (T ) ∩ V I(C,A) is
nonempty, closed and convex, I − T is demiclosed at zero and Tp = {p} for all p ∈ F . Let {xn}
be a sequence generated from an arbitrary x0, u ∈ C by

zn = PC(xn − γnAxn),
un = PC(xn − γnAzn),
yn = (1− λn)xn + λnvn,
xn+1 = αnu+ (1− αn)(anxn + bnwn + cnun),

for all n ≥ 0, where vn ∈ Txn, wn ∈ Tyn such that ‖vn − wn‖ ≤ 2D(Txn, T yn) and PC is a
metric projection from H onto C and γn ⊂ [a, b] for some a, b ∈ (0, 1d ), {an}, {bn}, {cn} ⊂ [e, f ],
and {αn} ⊂ (0, c) for some c, e, f ∈ (0, 1), satisfying the following conditions: (i) an+ bn+ cn =
1; (ii) limn→∞ αn = 0,

∑
αn = ∞; (iii) bn + cn ≤ λn ≤ λ < 1√

1+4L2+1
. Then, the sequence

{xn} converges strongly to the point x∗ = PF (u).

If, in Theorem 3.2 we assume that A = 0, then we get the following corollary which is
the main result of Woldeamanual et al. [19].

Corollary 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
T : C −→ CB(C) be a Lipschitz hemicontractive-type mapping with Lipschitz constant L.
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Assume that F (T ) is nonempty, closed and convex, I − T is demiclosed at zero and Tp = {p} for
all p ∈ F (T ). Let {xn} be a sequence generated from an arbitrary x0, u ∈ C by{

yn = (1− λn)xn + λnvn,
xn+1 = αnu+ (1− αn)((1− an)xn + anwn),

for all n ≥ 0, where vn ∈ Txn, wn ∈ Tyn such that ‖vn − wn‖ ≤ 2D(Txn, T yn) and
{an} ⊂ [e, f ], and {αn} ⊂ (0, c) for some c, e, f ∈ (0, 1), satisfying the following conditions:(i)
limn→∞ αn = 0,

∑
αn = ∞; (ii) an ≤ λn ≤ λ < 1√

1+4L2+1
. Then, the sequence {xn}

converges strongly to the point x∗ = PF (T )(u).

If, in Theorem 3.2 we assume that T = I , where I is the identity mapping on C, then
we obtain the following corollary.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
A : C −→ H be a d−Lipschitz monotone mapping. Assume that V I(C,A) is nonempty. Let
{xn} be a sequence generated from an arbitrary x0, u ∈ C by zn = PC(xn − γnAxn),

un = PC(xn − γnAzn),
xn+1 = αnu+ (1− αn)((1− an)xn + anun),

for all n ≥ 0, where PC is a metric projection from H onto C and γn ⊂ [a, b] for some a, b ∈
(0, 1d ), {an} ⊂ [e, f ], and {αn} ⊂ (0, c) for some c, e, f ∈ (0, 1), satisfying the following condi-
tions: (i) limn→∞ αn = 0,

∑
αn = ∞; (ii) an ≤ λn ≤ λ < 1√

5+1
. Then, the sequence {xn}

converges strongly to the point x∗ = PV I(C,A)(u).

If, in Theorem 3.2 we assume that C = H , then we have V I(C,A) = A−1(0) and
PH = I , identity mapping on H . Hence, we have the following corollary.

Corollary 3.3. LetH be a real Hilbert space. Let T : H−→CB(H) be a Lipschitz hemicontractive-
type mapping with Lipschitz constant L. Let A : H −→ H be a d−Lipschitz monotone mapping.
Assume that F = F (T ) ∩ A−1(0) is nonempty, closed and convex, I − T is demiclosed at zero
and Tp = {p} for all p ∈ F . Let {xn} be a sequence generated from an arbitrary x0, u ∈ C by

zn = xn − γnAxn,
un = xn − γnAzn,
yn = (1− λn)xn + λnvn,
xn+1 = αnu+ (1− αn)(anxn + bnwn + cnun),

for all n ≥ 0, where vn ∈ Txn, wn ∈ Tyn such that ‖vn−wn‖ ≤ 2D(Txn, Tyn) and γn ⊂ [a, b]
for some a, b ∈ (0, 1d ), {an}, {bn}, {cn} ⊂ [e, f ], and {αn} ⊂ (0, c) for some c, e, f ∈ (0, 1),
satisfying the following conditions:(i) an + bn + cn = 1; (ii) limn→∞ αn = 0,

∑
αn = ∞;

(iii) bn + cn ≤ λn ≤ λ < 1√
1+4L2+1

. Then, the sequence {xn} converges strongly to the point
x∗ = PF (u).

If, in Corollary 3.3 we assume that T = I , identity mapping on H , we obtain the fol-
lowing corollary.

Corollary 3.4. Let H be a real Hilbert space. Let A : H −→ H be a d−Lipschitz monotone
mapping. Assume that A−1(0) is nonempty. Let {xn} be a sequence generated from an arbitrary
x0, u ∈ C by  zn = xn − γnAxn,

un = xn − γnAzn,
xn+1 = αnu+ (1− αn)((1− an)xn + anun),
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for all n ≥ 0, where γn ⊂ [a, b] for some a, b ∈ (0, 1d ), {an} ⊂ [e, f ], and {αn} ⊂ (0, c)
for some c, e, f ∈ (0, 1), satisfying the following conditions:(i) limn→∞ αn = 0,

∑
αn = ∞; (ii)

an ≤ λn ≤ λ < 1√
5+1

. Then, the sequence {xn} converges strongly to the point x∗ = PA−1(0)(u).

Remark 3.1. Theorem 3.1, 3.2 and 3.3 extends the results of Iiduka et al. [3], Nadezhkina
and Takahashi [9], Zegeye and Shahzad [25] in the sense that our scheme provides strong
convergence to a common point of solution set of a variational inequality problem for
monotone mapping and the fixed point set of a Lipschitz hemicontractive-type multi-
valued mapping.
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