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Iterative methods for a fixed point of hemicontractive-type
mapping and a solution of a variational inequality problem

TESFALEM HADUSH MECHE!, MENGISTU GOA SANGAGO! and HABTU ZEGEYE?

ABSTRACT. In this paper, we introduce and study an iterative process for finding a common point of the
fixed point set of a Lipschitz hemicontractive-type multi-valued mapping and the solution set of a variational
inequality problem for a monotone mapping. Our results improve and extend most of the results that have been
proved for this class of nonlinear mappings.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (., .) and norm ||.||. Let C be a nonempty
subset of H. A mapping T': C — H is called Lipschitzian if there exists L > 0 such that
[Tz — Ty|| < L|jlx — y|| Vz,y € C. If L = 1 then T is called nonexpansive and if L € [0,1)
then T is called a contraction. A mapping T : C — H is called pseudocontractive if

Tz —Ty||* < ||z —y||* + ||z — Tz — (y — Ty)||* forall 2,y € C. (1.1)

We know that the class of pseudocontractive mappings is a more general class of map-
pings in the sense that it includes the class of nonexpansive and hence the class of con-
traction mappings (see, [2]).

Let CB(C) denotes the family of nonempty closed bounded subsets of C. The Pompeiu-
Hausdorff metric ([1]) on CB(C) is defined by

D(A, B) = max{sup d(z, B), sup d(y, A)},
z€A yeB

forall A, B € CB(C), where d(z, B) = inf{||z — b|| : b € B}.
A multi-valued mapping T : C — C'B(C) is said to be nonexpansive if

T is called k—strictly pseudocontractive if there exists k € [0,1) such that
D*(Tz, Ty) < |lz — yl* + kll (@ —u) — (y — )|, (12)

forallz,y € Cand u € Tx,v € Ty. If in (1.2), k = 1, then T is called pseudocontractive.
An element x € C' is called a fixed pointof T : C — C (resp., T : C — CB(()) if
x = Tx (resp., x € Tx). The set of fixed points of T is denoted by F(T'). We write z,, —
to indicate that the sequence {xz, } converges weakly to = and z,, — z to indicate that the
sequence {x,} converges strongly to .
A multi-valued mapping T' : C — CB(C) is said to be hemicontractive-type if F'(T') #
() and forallp € F(T),z € C,

D*(Tx,Tp) < ||z — p||* + ||z — ul|?, Vu € Ta. (1.3)
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T is called demicontractive if F(T') # 0, and there exists k € [0,1) such that for all p €
F(T),zeC

D*(Tx,Tp) < ||z — pl|?> + kllz — ull?, Yu € Ta. (1.4)

And T is called strongly demicontractive if (1) # () and there exist o, k € [0, 1) such that
forallpe F(T),z € C,

D*(Tx,Tp) < oz — p||? + k| — ul*, Yu € T

Ifin (1.4), k = 0, then T is said to be quasi-nonexpansive.

We note that the class of multi-valued hemicontractive-type mappings is a more gen-
eral class of mappings in the sense that it includes the class of multi-valued pseudocon-
tractive mappings 7' with F/(T') # 0 and T'(p) = {p},Vp € F(T) and the class of multi-
valued demicontractive mappings and hence the class of multi-valued quasi-nonexpansive
(see, [8, 19)).

Let T : C — CB(C) be a multi-valued mapping, I — T (where I is the identity
mapping on C) is said to be demiclosed at zero if {z,,} C C such that z, — z and
lim,, o0 d(xy, Tx,) = 0 implies z € Tx.

Many authors have extended the existence and approximation of fixed points for single-
valued mappings to multi-valued mappings; see, for example, [6, 10, 14, 15] and the ref-
erences therein. Recently, Woldeamanual et al. [19] considered the problem of finding
a common point of fixed points of a finite family of hemicontractive-type multi-valued
mappings and they introduced the following iterative algorithm:

Zn = (]- - ’Yn)xn + YnWn, Wy € Tnyn;

Yn = (1 - Bn)xn + Bnunv Up € Tnx'ru

Tyl = apw + (1 —ap)zn, Vn>1,
where T, := T, (moany+1 and {a, }, {Bn}, {1} C (0,1) satisfying certain conditions. Then,
they proved that the sequence {z,,} converges strongly to some point p in N}, F(T;) near-
est to w.
A mapping A : €' — H is called n- strongly monotone if there exists a positive real
number 7 such that

(Az — Ay,z —y) > ||z —y|*>, Va,yeC.
A is called a-inverse strongly monotone if there exists a positive real number « such that
(Az — Ay,z —y) > of| Az — Ay|]®, Va,yeC.

Note that every a-inverse strongly monotone mapping is 1 -Lipschitz mapping. How-
ever, the converse may not hold.
A mapping A : C — H is called monotone if

(Ax — Ay,z —y) >0, Va,yeC.

Clearly, the class of monotone mappings includes the class of a-inverse strongly mono-
tone and the class of n—strongly monotone mappings and the inclusion is proper.

Let C be a nonempty, closed and convex subset of a real Hilbert space H and let A :
C — H be a nonlinear mapping. The classical variational inequality problem is the
problem of finding u € C such that

(v—u,Au) > 0 forallv € C. (1.5)

The set of solutions of the variational inequality problem (1.5) is denoted by VI(C, A).
Variational inequality theory, which was first introduced by Stampacchia [13] in 1964,

emerged as an interesting and fascinating branch of applicable mathematics with a wide

range of applications in economics, industry, network analysis, optimizations, pure and
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applied sciences etc. In recent years, much attention has been given to developing effi-
cient iterative methods for treating solution problems of variational inequalities [3, 21, 25]
and the references therein. The classical variational inequality is equivalent to a fixed
point problem. This alternative equivalent formulation has played a major role in finding
solutions of varational inequalities using iterative algorithms.

Recently, finding a common element of the fixed point set of nonexpansive mapping
and the solution set of variational inequality problem has been considered by many au-
thors; see, for example [4, 5, 16, 11, 24] and the references therein. We describe some of
them as follows:

In 2004, liduka et al. [3] considered the following iterative algorithm:

To =X € C,
Tpt1 = an + (1 — an)TPe(zy — A\pAzy,), Yn > 0.

where T' : ¢ — C is a nonexpansive mapping, A : ¢ — H is a a—inverse strongly
monotone mapping, {«a, } is a sequence in (0, 1), and {\,} is a sequence in (0, 2ct). Then,
they proved that the sequence {x,, } strongly converges to some point z € F(T)NVI(C, A).

In 2006, Nadezhkina and Takahashi [9] introduced the following iterative algorithm for
finding an element of F'(T')NV I(C, A) under the assumptions that C' is a nonempty, closed
convex subset of a real Hilbert space H, A is a monotone and L—Lipschitz mapping of C
into H and T' is a nonexpansive mapping of C into itself:

xo=x € C,

Yn = Po(zn — AAzy,), (1.6)

Tnt1 = QnZp + (1 — ap)TPo(xn — M Ayn), Yn > 0.
where {\,} C (0,7) and {a,,} C [c,d] for some ¢,d € (0,1). They proved that the se-
quence {z,},{yn} generated by (1.6) converge weakly to the same point z € F(T) N
VI(C, A), where z = hmn_mo PF(T)ﬁVI(C’,A)xn-

In this paper, inspired by the papers surveyed above, we introduce an iterative algo-
rithm for finding a common element of the solution set of a variational inequality problem
(1.5) and the fixed point set of a hemicontractive-type mapping. Strong convergence theo-
rem is established in the framework of Hilbert spaces. The results presented in this paper
improve and extend the corresponding results announced by liduka et al. [3], Nadezhkina
and Takahashi [9], Zegeye and Shahzad [25] and some other results in this direction.

2. PRELIMINARIES

Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let A be a
monotone mapping from C into H. Then, in the context of variational inequality problem,
it is easy to see that

u e VI(C,A)if and only if u = Po(u — Au), VYA > 0.

So, to find a solution of a classical variational inequality problem, we shall use projection
mappings. Now, we describe some properties of projection mappings: For every point
x € H, there exists a unique nearest point in C, denoted by Pcz, such that

| = Poz| = mf{|z —yl| : y € C}.
P¢ is called the metric projection of H onto C. The metric projection P¢ satisfies

(x —y, Pcx — Pcy) > ||Pex — Pcy||2, Va,y € H,
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which implies that P¢ is nonexpansive mapping. It is also characterized by the following
properties (see, e.g., [17]):
z=Pcx e Cifandonlyif (x — 2,z —y) > 0, forallz € H,y € C, (2.7)
and
ly — Pez|* < ||z — y||* — ||l — Pox|?, forallz € H,y € C. (2.8)

Let C be a bounded, closed and convex subset of a real Hilbert space H and let A be
continuous monotone mapping of C into H. Then, VI(C, A) is nonempty (see, [18, 22]).

A multi-valued mapping A : H — 2 is called monotone if for all z,y € H, (v —
y,u —v) > 0 for all w € Az and v € Ay holds. A is called maximal if its graph G(A)
is not properly contained in the graph of any other monotone mapping. Equivalently, a
monotone mapping A is maximal if and only if, for (z,u) € H x H, (x —y,u —v) > 0, for
every (y,v) € G(A) implies u € Az. The normal cone to C' at z € C, denoted by Nc¢z, is
given by

Nex={z€H:{x—y,z) >0, YyecC}.

Let A be continuous monotone mapping of C into H. Then, the mapping B : H —» 2
define by

[ Av+ Ngw, if veC,
Bu = { 0. if veC
is maximal monotone and 0 € Bv if and only if v € VI(C, A) (see, e.g., [12]).

We need the following lemmas for the proof of our main result.

Lemma 2.1. [23] Let H be a real Hilbert space. Then for all x; € H and o; € [0,1] for i =
1,2,--- ,nsuch that a1 + g + - - - + o, = 1 the following equality holds:

n
a1y + agze + - + apz,||* = ZaiﬂxiHQ - Z aiagl| — x4
i=1 1<ij<n
Lemma 2.2. Let H be a real Hilbert space. Then, for any given x,y € H, we have the following
inequality:
lz +yl* < ll21* + 2(y, 2 + ).

Lemma 2.3. [10] Let (X, d) be a metric space. Let A,B € CB(X ) and a € A. Then, fore > 0,
there exists a point b € B such that d(a,b) < D(A, B) + ¢.

Lemma 2.4. [20] Let {b,} be a sequence of nonnegative real numbers satisfying the following
relation:

b1 < (1 — ap)by + @by, for n > ny,
where {a,,} C (0,1) and 6,, C R satisfying the following conditions:

oo
lim «, =0, E a, = oo, and limsup d,, < 0.

Then, lim,, o b, = 0.
Lemma 2.5. [7] Let {a,, } be a sequence of real numbers such that there exist a subsequence {n; } of
{n} such that a,,, < an,+1, for all i € N. Then, there exists a nondecreasing sequence {my} C N

such that my, — oo and the following properties are satisfied by all (sufficiently large) numbers
keN:

Omp < Qmp+1 0nd Gk < Q41
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In fact, mi, = max{j < k:a; < a1}

3. MAIN RESULT

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T : C — CB(C) be a Lipschitz hemicontractive-type mapping with Lipschitz constant L. Let
A : C — H be a d-Lipschitz monotone mapping. Assume that F = F(T) N VI(C,A) is
nonempty, closed and convex, I — T is demiclosed at zero and T'p = {p} for all p € F. Let {z,}
be a sequence generated from an arbitrary xo,u € C by

Zn = PC(xn - ’YnAxn)a

Up = PC(J:n - 'YnAZn)a

Yn = (1 - )\n)xn + Anvna

Tnt1 = apu + (1 — ap)(anx, + bpw, + cpuy),

(3.9)

forall n > 0, where v, € Txp,w, € Ty, such that ||v, — wy| < 2D(Txy,Tyy,) and Pc isa
metric projection from H onto C and ~,, C [a,b] for some a,b € (0, %), {an}, {bn}, {cn} C [e, f],
and {a, } C (0,¢) for some c, e, f € (0,1), satisfying the following conditions: (i) a,, + by, + ¢, =
1; (i) limy, o0 0y = 0, Y. vy = 00; (iii) by + ¢ < Ap <A < m. Then, the sequence
{x} is bounded.

Proof. Letp € F. Then, from (2.8) and (3.9), we have

Hun _pH2 = ||Po(zn — ymAzn) _pH2
< len — Az — pH2 = lzn — YAz — “nH2
= <xn - 'YnAZn — P, Tn — 'YnAzn - p>
- <$n - ’ynAZn — Un,Tn — fynAZn - un>
= |lzn =2l = 20 — unll® + 29 (Azn, p — un)
= ln =l = a0 — ual?
+ 27y ((Azn — Ap,p — zn) + (Ap,p — 2n) + (Azn, 20 — un>)
< lon *p”z —(Tn — Un, Tn — Un) + 270 (A2Zn, 2n — Un),
(3.10)
which gives
lun —plI* < lzn —plI? = 20 — 2ll® = 2(@n — 20, 20 — un)
- ||Zn - unH2 + 27n<Azna Zn — un>
= |zn —p||2 — |z — Zn||2 — [l2n — Un‘lz
+ 2(xp — YnAzn — Zn,Un — Zp)- (3.11)

And from (2.7), we get that

<xn - ')/nAxn — Zn,Un — Zn)

(Tn, — YAzp — Zn, Un — 2p)
+ (YnAzy — YnAzn, Up — 2n)

(VAT — YnAzp, U — 2n)

Vnd”xn - ZnH X lup — Zn” (3.12)

IAIA
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Thus, from (3.11) and (3.12), we obtain that

[|un

=l < lwn = pl* = llzn — 2l -

|20 — unl|®

+ 29nd|zn — zn|| X [lun — zn||
< lan =l = ll2n = zall® = 20 — unll®
+Yad? |z = 2zl + 120 — un)?
=l =l + (ad* = Dllzn — 2] (3.13)

In addition, from (3.9), Lemma 2.1 and definition of hemicontractive-type mapping, we

have that

”yn

—p|?

IN

IN

11 = An)(@n — p) + An(vn — )|
(1= A)llzn = plI* + Anllvn — pl?
= A1 = Ap) [l — UnHQ

(1= M)l = ol + Ao (40, 7))

= A1 = M) [@n — val?

(1= A)[&n = plI* + A D*(Tzy, Tp)

= A1 = A)[Jzn — Unuz

(1= Aa) 2 = oI+ A (ll2n = pI? + [ = va?)

= A1 = Ap) |7 — ”nH2

(1= A [@n = I + Anllzn = PII* + Anllzn — va|?

= A1 = Al — UnH2

lzn = pII* + A% llzn — val|®. (3.14)

Thus, from (3.9), Lemma 2.1, (3.13), (3.14) and definition of hemicontractive-type map-
ping, we have the following:

”xn-i-l

—pl?

IN

IN

IN

IN

lanu + (1 — an)(@n®n + bpwy + cpuy) — pH2
anllu—pl* + (1 — an)
X ||an (zn — p) + bn(wn — p) + cn(un — p)|1?

alu = plI? + (1 = ) (anlln = pI* + buljw, = p*
+ eallun = pI?) = (1= an)anbullw, — o,
anll = pll? + (1= an) (anlln = |2 + b D*(Tyn, Tp)
+ eallun = plI?) = (1= an)anbullwn - ool

O‘nHU_pH2 (l_an)annajn_p||2+(1_an)bn
% (llym =PI + llg = wal2) + (1 = an)en

% (low = plI? + (2d = 1) — 2a]?)

- (1 - an)anbn‘lwn - xn||27
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which gives

IN

ol = pl[* + (1 = ) (an + en)Jan — p?
+ (1= an)ba (Jln = I + X2 l2n = val?)
+ (1 - an)bn”yn - wnH2 + (1 - an)cn

ln+1 = pl”

X (’Yr%dQ = Dlzn — Zn||2 — (1 = an)anbn|w, —
= anfu _pH2 + (1= ay)|zn —p||2 +(1— an)bn)‘i

X ||xn - 'UnHQ + (1 - an)anyn - wn”2
+ (1 - an)cn('YZdQ = Dz, — Zn||2

— (1 = a)anby ||w, — 2,2

Furthermore, from (3.9) and Lemma 2.1, we get that

Hyn_wn||2 = [[(1=An)(zn —wn) + An(vn _wn)H2
= (1_)‘H)Hxn_wnH2+)‘nan_wn”2
= A1 = Ap) |7 — vn”z

< (1= )||#n — wn|? + 4N, D* (T2, Tyy)
n(1 =) |20 — ”n||2
< ( - n)|‘xn_wn“2+4)‘nl’2”$n_yn||2

An(
1-A
= A (1 =A@y — Un||2
= (1-=M)lzn - wnH2 + 4)‘2L2||mn - UnHQ
An(1=Ap)|lzn — Un”Q
1-A

= (1= 2n)llzn — wall® + Aa(AL2N + A = 1)z — va|.

Now, substituting (3.16) into (3.15), we obtain that

IN

lns1 = pII?

= anllu—pl* + (1 - an)lzn - pll?

(1= an)bn(1 = An) — (1 — an)anbn> [2n — wnl|?
(1- O‘n)cn('YndQ = 1)z, — Zn||2

anllu = pl* + (1 = an) |z, —pl* + (1 - O‘n)bn/\i”xn -
(1= )b (1= An) [ = wall? = Aa(1 = L2023 -

— (1 = an)anby||wy, — p||* + (1 - an)cn('YrQLdQ = Dllzn — Zn||2

(1= an)buA2 = (1= an)bun(l = 4L2X2 = An) ) o = vl

189

(3.15)

(3.16)

o)z = va?)

(3.17)
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which gives

IN

onllu = plI* + (1 = o) Jn — pl?
= (1= an)badn (1= 42222 = 200 ) [z = o2 + (1 = )b

|Zn+1 _pH2

% (1= an = An) o = wall® + (1 = an)ea(r2d% = 1) 2 — 202
= agllu—p|*+ 1 - an)llzn — pll?
—(1- an)bn)\n(l AL - 2An) 2n — o2
(1= )b (b + 60 = A ) = w1
+ (1= ap)en(V2d? — 1) ||z — 2a|* (3.18)
Now, since from the hypothesis, we have v, < é and
1—4L2X2 — 20, > 1 —4L*X?* =20 >0 and (b, +cn) — Ay <0, (3.19)
for all n > 0, then inequality (3.18) implies that
|zt = ol < anllu—pl* + (1 = an)llzn - pl? (3.20)
< anmax{fu —p|?, |z, — pl*}

+ (1 = ag) max{fu = p||? ||z — plI*}

max{||u — pl|*, lz. — pl*}.

Thus, by induction, we have that

@nt1 = plI* < maz{llu —pl|? [lzo — p|*}, V>0,

which implies that {x,, } is bounded. O

Theorem 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T : C — CB(C) be a Lipschitz hemicontractive-type mapping with Lipschitz constant L. Let
A : C — H be a d-Lipschitz monotone mapping. Assume that F = F(T) N VI(C,A) is
nonempty, closed and convex, I — T is demiclosed at zero and Tp = {p} forall p € F. Let {x,}
be a sequence generated from an arbitrary xo,u € C by

Zn = PC(-Tn - ’YnAxn)7

Up = PC(mn - ’YnAZn)a

Yn = (1 - An)xn + )\nvna Up € Tnmny

Tp4+1 = QU + (1 - O‘n)(anxn + bpwy, + Cnun)7

(3.21)

forall n > 0, where v,, € Txp,w, € Ty, such that ||v, — w,| < 2D(Tx,,Ty,) and Pc is a
metric projection from H onto C and ~y,, C [a, b] for some a,b € (0, %), {an}, {bn},{cn} C [e, f],
and {a, } C (0,c) for some c, e, f € (0,1), satisfying the following conditions: (i) a, + by, + ¢, =
1; (ii) limy oo, = 0, 3. @ = 00; (i) by + ¢ < Ap < A < ﬁ. Then, the sequence
{zn} converges strongly to the point ©* = Pr(u).

Proof. Clearly, from Theorem 3.1 the sequence {z, } and hence {y, }, {#,} are bounded.
Let * = Pr(u). Then, using (3.21), Lemma 2.2, and following the methods used to get
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(3.18) we obtain that

|Znetr — 2> = [loanu+ (1 —ay) (anxn + bpw, + cnun) — x*||?
< (1= ap)||an®n + bpwy, + cutin — *|)* 4 200 (u — ¥, 20 — 2F)
< (1_an)an”xn_x*HQ‘F(l_O‘n)bn”wn_x*HQ

+ (1 — an)enl|un — 55*”2 — (1 = an)anbnllw, — iEn”z
— (1 — an)ancy||un — :L‘n||2 + 20 (u — 2", Xy — xF)

(1 — an)lfen — 2|2 — (1 — an)bn)\n(l 4L 2)\n> 2 — va 12

IN

(1= )b (b + 6n = A ) [ = wall? = (1= an)ancnun = 2l
+ (1 = an)en(V2d? = D)||zn — 2al]? + 200 (u — 2%, 201 — 2*). (3.22)
This together with (3.19) implies that
lzne: — 2|1 < (1= an)llzn — 2 |* + 200 (u — 2%, 211 — 7). (3.23)

Now, we consider two cases:

Case 1. Suppose that there exists ny € N such that {||z, — z*||} is decreasing for all
n > ng. Then, we get that, {||z, — 2*||} is convergent. Thus, from (3.22) and (3.19), we
have that

(1= an)bun (1= 42232 =20 ) o — walP < (1= an)an = 22 = s — o
+ 20 (u — &, T — 7).
Hence, from (3.19) and the fact that o, — 0 as n — oo, we have that
Tn, — v, = 0asn — oo, (3.24)

and from (3.22), the fact that ,, — 0 as n — oo and v2d? — 1 < 0, we also have that

Uy — Ty — 0, 2z, —x, = 0asn — oco. (3.25)
Moreover, from (3.21) and (3.24), we obtain that
lyn — znll = [|(1 = An)@n + Anvn — 20| = Anll2n — vl = 0as n — oo, (3.26)

and hence Lipschitz continuity of T,,, (3.24) and (3.26) imply that

[wn = 2nll < flwn —vn|l + |vn — 24|
< 2L||yn — zpl| + ||on — 2n|| = 0as n — . (3.27)

In addition, from the fact that o,, — 0 as n — oo, (3.25) and (3.27) we have that

[nis =@l = llow(u=2a) + (1= a0) (ba(wn = 20) + en(un = 22))|
< anllu—an| + (1 = an)bn[[wn — |
+ (1 — an)en|lun — znl] = 0asn — oo, (3.28)
and from (3.24) we get
d(xp, Txy) < ||zn —vn|] = 0asn — oo. (3.29)

Furthermore, from Theorem 3.1 we have that {z,,+1} is a bounded sequence in H. Thus,
since Hilbert space is reflexive, we can choose a subsequence {z,, 11} of {41} such that
Tp;41 — zas j — ocoand

limsup(u — 2%, 1 — %) = lim (u — 2%, 2,41 — ).
n—o00 J—o0
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Then, from (3.28) we have x,,;, — z as j — oo. Thus, from (3.29) and demiclosedness of
I — T at zero, we obtain that

z € F(T).

Next, we show that z € VI(C, A). But, since A is Lipschitz continuous and
Zp — Up = Zp — Ty, + T, — u, — 0as n — oo, we have Az, — Au,, — 0asn — oo.
Thus, from (3.25), we get that u,,; — zand z,,; — zas j — oc. Let

Av+ New, if veC,

0, if v¢C.
Then, B is maximal monotone and 0 € Bv if and only if v € VI(C, A). Let (v, w) € G(B),
where G(B) denotes the graph of B, then we have w € Bv = Av 4+ N¢v and hence
w — Av € Neow. Thus, from the definition of Ncv, we get that

(v—u,w—Av) >0, YueC.

On the other hand, since u,, = Po(z,, — v, Az,) and v € C, we have that

Bu = (3.30)

(T — WAzp — Up,uy —v) >0,

and hence

<v—un,w+/lzn> > 0.

Tn

Therefore, from w — Av € Nov and u,,; € C, we obtain the following:

(V=tUpn,,w) > (V—uy,, Av)

> <v_ung"4v>_<U_Unj7M+Aznj>
,-Ynj
= <v—un].,Av+Aunj—Aunj>_<v_unj,M>
,YTLJ'
- <U - unj7Aan>
Up; — Tn;)
_ <v—unj,A1}—Aunj>—<U_unj’(7>

Tn;
+ U = Un,, Ay, — Azp;)
> (U= Un,, Aup, — Azy,) — <v — Un, M>
Tn;
This implies that (v — z,w) > 0, as j — oo. Then, maximality of B gives that 0 € Bz and
hence z € VI(C, A). Therefore,

2 € F(T)NVI(C, A).

Thus, since 2* = Pr(u), using (2.7) we obtain that

limsup(u — 2", 241 — ") = lim (u — 2%, 2,, 41 — 7).
n—00 J—0
= (u—2a",z—2%) <0. (3.31)

Hence, it follows from (3.23), (3.31), assumptions of {«,, } and Lemma 2.4 that
|xn — 2| = 0asn — oo

Consequently, z,, — z* = Pr(u).
Case 2. Suppose that there exists a subsequence {n;} of {n} such that

[, — 2" < l[en; 41 — "],
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for all j € N. Then, by Lemma 2.5, there exist a nondecreasing sequence {my} C N such
that m;, — oo, and

[Zm, = @[] < [2mprr — 2" and [z — 27| < [[@mr — 27|, (3.32)
for all £ € N. Thus, from (3.22), (3.19) and the fact that o,, — 0, we get that
Ty, — Uy Umy, — Ty Zmy, — Tmy, — 0ask — 0o
Hence, following the method in Case 1, we obtain that

limsup{u — z*, T, 41 — ™) < 0. (3.33)

k—o0

Now, from (3.23), we have that
Zmp+1 — I*Hz < (1= amy)lzm, — I*”Q + 20, (U — T°, Ty 11 — T7), (3.34)
and hence (3.32) and (3.34) imply that

amkamk —JJ*||2 < ||xmk _$*||2 - ||xmk+1 _x*H2+2amk<u_x*’xmk+1 —J}*>

< 2o, <U - ‘r*7xmk+1 - $*>
Hence, the fact that a,, > 0 imply that
|Tm, — o*|? < 2(u — T 41 — ).

Thus, using (3.33) we get that ||2,,, —2z*|| — 0 as k — oo. This together with (3.34) implies
that ||z, +1 — 2*|| = 0as k — oo. Since ||z, — 2*|| < ||#m,+1 — =¥ for all k € N, we get
that 2, — z*. Therefore, from the above two cases, we can conclude that {z,,} converges
strongly to z* = Pr(u).

If, in Theorem 3.2, we assume that T’ with F'(T) # ) and T'(p) = {p},Vp € F(T) is
pseudo-contractive multi-valued mapping. Then, we have that 7" is hemicontractive-type
and hence we get the following theorem.

Theorem 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T : C — CB(C) be a Lipschitz pseudocontractive mapping with Lipschitz constant L. Let
A : C — H be a d—Lipschitz monotone mapping. Assume that F = F(T)NVI(C,A) is
nonempty, closed and convex, I — T is demiclosed at zero and Tp = {p} forall p € F. Let {x,}
be a sequence generated from an arbitrary xo,u € C by

Zn = PC(IVL - '-YnAzn)a

Up = PC(xn - 'VHAZn)a

Yn = (]- - )\n)fn + )\nvn7

Tnt1 = apu + (1 — an)(anzy, + bpw, + cry),

forall n > 0, where vy, € Txy,wy, € Ty, such that ||v, — wy| < 2D(Txy,Ty,) and Pc is a
metric projection from H onto C and ~,, C [a,b] for some a,b € (0, %), {an}, {bn}, {cn} C [e, f],
and {a, } C (0,¢) for some c, e, f € (0,1), satisfying the following conditions: (i) a, + by, + ¢, =
1; (i) limy, 500 0y = 0, Y vy = 00; (iii) by + ¢ < Ap <A < m. Then, the sequence
{xn} converges strongly to the point z* = Pr(u).

If, in Theorem 3.2 we assume that A = 0, then we get the following corollary which is
the main result of Woldeamanual et al. [19].

Corollary 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T : C — CB(C) be a Lipschitz hemicontractive-type mapping with Lipschitz constant L.
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Assume that F(T') is nonempty, closed and convex, I — T is demiclosed at zero and Tp = {p} for
all p € F(T). Let {x,,} be a sequence generated from an arbitrary x¢,u € C by

Yn = (1 - An)xn + Anvrm
Tnt1 = @+ (1 — ) (1 — ap)zy + apwy),

for all n > 0, where v, € Tx,,w, € Ty, such that ||v, — w,| < 2D(Tz,,Ty,) and
{an} C [e, f], and {a,} C (0,c¢) for some c,e, f € (0, 1), satisfying the following conditions:(i)
lim, yoon = 0, S, = o0; (i) ap < Ay < A < m. Then, the sequence {z.,}
converges strongly to the point x* = Ppp)(u).

If, in Theorem 3.2 we assume that T" = I, where [ is the identity mapping on C, then
we obtain the following corollary.

Corollary 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
A : C — H be a d—Lipschitz monotone mapping. Assume that VI(C, A) is nonempty. Let
{1} be a sequence generated from an arbitrary xo,u € C by

Zn = PC(xn - ’YnAxn)7

Up = PC(xn - 'YnAzn%

Tnt1 = @+ (1 — an) (1 — ap)zpn + anuy),
for all n > 0, where Pc is a metric projection from H onto C and ~, C [a,b] for some a,b €
(0,3),{an} C [e, f], and {on,} C (0,¢) for some c,e, f € (0,1), satisfying the following condi-
tions: (i) limy, ooy, = 0, >y = 00; (ii) ap, < Ay < A< \/51“. Then, the sequence {x.,}
converges strongly to the point x* = Py (¢, a)(u).

If, in Theorem 3.2 we assume that C = H, then we have VI(C,A) = A~1(0) and
Py = I, identity mapping on H. Hence, we have the following corollary.

Corollary 3.3. Let H be a real Hilbert space. Let T': H — C B(H ) be a Lipschitz hemicontractive-
type mapping with Lipschitz constant L. Let A : H — H be a d—Lipschitz monotone mapping.
Assume that F = F(T) N A=(0) is nonempty, closed and convex, I — T is demiclosed at zero
and T'p = {p} for all p € F. Let {x,,} be a sequence generated from an arbitrary xo,u € C by

Zn = Tn — ’YnA‘rnv

Up = Tp — ’YnAZn7

Yn = (1 - An)xn + Anvnv

Tp4+1 = QU + (1 - O‘n)(an$n + bpwy, + Cnun)7

foralln > 0, where v, € Txy,, wy, € Ty, such that ||v, —w,| < 2D(Tz,,Ty,) and vy, C [a,b]
for some a,b € (0,3),{an}, {bn},{cn} C [e, f], and {an} C (0,c) for some c,e, f € (0,1),
satisfying the following conditions:(i) a, + by, + ¢, = 1; (i) limy ooy = 0, Dy, = 00;
(iii) b, —1—(ch <A <AL m. Then, the sequence {x,} converges strongly to the point
T = P]: u).

If, in Corollary 3.3 we assume that T' = I, identity mapping on H, we obtain the fol-
lowing corollary.

Corollary 3.4. Let H be a real Hilbert space. Let A : H — H be a d—Lipschitz monotone
mapping. Assume that A=*(0) is nonempty. Let {x,,} be a sequence generated from an arbitrary
xo,u € C by

Zn = Tn — P)/nAxn7

Up = Tn — 'YnAZna

Tnae1 = @+ (1 — an) (1 — ap)zpn + anuy),
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for all n > 0, where v, C [a,b] for some a,b € (0,%),{an} C [e, f], and {o,} C (0,¢)
for some c, e, f € (0,1), satisfying the following conditions:(i) lim,, .o oy, = 0, > oy, = 00; (ii)

an <A AL \/51“. Then, the sequence {x,, } converges strongly to the point x* = Py-1 o) (u).

Remark 3.1. Theorem 3.1, 3.2 and 3.3 extends the results of liduka et al. [3], Nadezhkina
and Takahashi [9], Zegeye and Shahzad [25] in the sense that our scheme provides strong
convergence to a common point of solution set of a variational inequality problem for
monotone mapping and the fixed point set of a Lipschitz hemicontractive-type multi-
valued mapping.
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