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Rate of growth of polynomials with restricted zeros
ABDULLAH MIR and Q. M. DAWOOD

n
ABSTRACT. In this paper we consider for a fixed p, the class of polynomials P(2) = ag + 3. ayzy, 1 <
v=u
1 < n, of degree at most n not vanishing in the disk |z| < k,k > 0. Forany p > 0 > land 0 < r <
R < k, we investigate the dependence of || P(pz) — P(oz) ||[r on || P ||, and derive various refinements and
generalizations of some well known results.

1. INTRODUCTION
n

Let P, be the class of polynomials P(z) = a,z, of degree at most n. For P € P,,

v=0
we define

| P [l:= gl‘fglp(Z)\, | P [|r:= lrzfllgg\P(Z)L
| P(pz) = P(oz) ||lr:= ‘g‘lg%lP(pZ) — P(oz)]

and m := ‘rr|11nk|P(z)|

If P € P,, then concerning the estimate of the maximum of | P’ (z)| on the unit circle |z| = 1
and the estimate of the maximum of |P(z)| on a larger circle |z| = R > 1, we have

| P I<n] P (L.1)
and
| Pllr<R™| P . (1.2)

Inequality (1.1) is a well-known result of S. Bernstein (for reference see [15, p-508]), whereas
inequality (1.2) is a simple deduction from maximum modulus principle (see [15, p-405]).

If we restrict ourselves to the class of polynomials P € P, with P(z) # 0in|z| < 1, then
Erdos conjectured and later Lax (for reference see [15, p-562]), verified that the inequality
(1.1) can be replaced by

n
1P <5 P (1.3)

As an extension of (1.3), it was shown by Malik (for reference see [15, p-563]), that if
PeP,and P(z) #0in |z| < k, k > 1, then

n
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Bidkham and Dewan [3] obtained a generalization of inequality (1.4) and proved that if
P e P,and P(z) #0in |z| < k, k > 1, then

n(r+ k)1

P, <
I P 1< =y

I P, (1.5)
where 1 < r < k.

In the literature, there already exist various refinements and generalizations of (1.3),
(1.4) and (1.5), for example see Mir, Dewan and Singh [10]-[11], Dewan, Singh and Mir [5],
Mir, Dewan, Singh and Dar [13], Mir and Dar [12], Govil and Nyuydinkong [9], Gardner,
Govil and Weems [6]-[7],Gardner, Govil and Musukula[8],etc.

In this paper, we denote by P, ,, 1 < p < n, the linear space of all polynomials of the

form P(z) = ap + ). a,z, of degree at most n. Note that P, = P,. Aziz and Shah
v=p

[2] improved as well as extended the inequalities (1.3), (1.4) and (1.5) by showing that if

PeP,,and P(z) #0in|z| <k, k> 0,thenfor0 <r < R<k,

RHY(RM 4 k)it
A gl Lo L (YT (L6)
(kﬂ + rﬂ)u

More recently Aziz and Aliya [1] besides proving some other results, also calculated
the growth of || P(pz) — P(z) ||g where p > 1, 0 < r < R < k and proved the following
interesting generalization of inequality (1.6).

Theorem 1.1. If P € P, , and P(z) # 0in |z| < k, k > 0, then for every p > 1 and
0<r<R<k

RA(p" — 1) (RF 4 ki 21
| P(pz) - P(2) lr < ”(LPMH)(NMM) (1P, —m). (17)

Note 1: If we divide both sides of (1.7) by p — 1 and let p — 1, we get (1.6).
As a refinement of Theorem (1.1), Mir and Dar [12] proved the following result by involv-
ing some of the coefficients of the polynomial P(z).

Theorem 1.2. If P € P, ,,and P(z) # 0in |z| <k, k > 0, then forevery p > 1,0 <r < R <k
and 0 < X <1,

(I
HP@w—J%@Rs<ﬂt—n( 7o) Tl )
Rt ot 4 (221 ) el (ke LRy + k2 R)
p lao]—Am
R a _
T ries v A

X exrpi n ™ d¢ ( I P f)\m>. (1.8)

J gl 4 Bt (R GH 4 K21Q) + kpt!

Note 2: If we divide both sides of (1.8) by p — 1, let p — 1 and take A = 1, we get a
result of Chanam and Dewan [4, Theorem (2.4)].
2. MAIN RESULTS

In this paper, we shall prove the following result which generalises and refines the
bounds of Theorems (1.1) and (1.2). More precisely, we prove
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Theorem 2.3. If P € P, ,and P(z) # 0in |z| <k, k > 0, then foreveryp >0 > 1,0 <r <
R<k 0<A<1landn > 2, wehave,

(pu_gu> ‘ \ilﬂ Lhtl Ry + RH+1
|| P(pz) _P(UZ) ||R§ ( H_gh la,| >
R#+1 + krtl + (zn_gn> |a0‘_u)\m (k#+1R}L + kQﬂR)
R 14 lau] k“""lgﬂ_l + M
n__ .n |a0\7)\m
x | (p" = a™)exp n/ ds
grtl o e Rl (i gn o j206) 4 ot
(1Pl =xm) = [RIP©) - @O [ L2227 | o)
n n—2 ’

where here and throughout Q(z) = 2" P(1/%).

Remark 2.1. To show that Theorem (2.3) is, in general, an improvement and generalisa-
tion of Theorem (1.1), we first prove that

gt lay] +1 +1
{(;_gn)'ao;mku Ri + R }

Ri+1 4 fp+1 4 (P”*U“) la (ku—i—lRu + kQHR)

pr—o™ | Jag|—Am

gutl 4 8 lal o] (b igr + ko) +
R RH 4 kHq2—1
Tk 4k [T“ kﬂ} ’

(2.10)

Since, we have that

pH— ok

(2.11)

3=

holds forall p > ¢ > 1 and 1 < p < n, by considering the first derivative test for the
function ¢(t) = nt* — pt™, where t > 1.
Also, it is easy to see that for R < k, the function

e vl LAY LU e

ao]

R B e T )

S(z) =

is a non-decreasing function of z, hence by using (2.11), we get

(p”—o“) Iaul k“‘HR“ 4+ Rutl

=™ ) Tao-xm

Ru+1 4 fpt1 4 (pu_au) \ab\\m (krt1RE + k20 R)

pr—ao™ ) lao|

(ﬁ) | \I(lu| k/l,—'rlR/l, 4 R/H—l
apg|— m

< .
Rr+1 4 futl 4 <7)7'““' (krT1Rk 4 k21 R)

lao]

2.12)
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Since R < k, if we put ¢ = R in (3.21) of Lemma (3.3), we have

(e
Rut1 4 font1 4 (g) %(WHRM 4 k2mR)  Re AR :
Combining (2.12) and (2.13), we get
(5257 paeasakt R 4 R LR 019
Ru+1 4 fnt1 4 <Z::Z:>|aol‘a%(ku+1]%p + k24 R) - RE 4+ .
and Lemma (3.3) gives
emp{n/R %\aol\a%k”ﬂw’l + M dg} - (R/t—s—le)ﬁ' (2.15)
J ot 4 %‘aol‘aﬁ(kwlgu + k2u¢) + fptl rH 4 kn

On combining inequalities (2.14) and (2.15), we get (2.10). The following generalisation
and refinement of Theorem (1.1) is obtained by using (2.10) in Theorem (2.3).

Theorem 2.4. If P € P, , and P(z) # 0in |z| < k, k > 0, then for every p > >1,0 <r <
R<k,0<A<landn>2,

| P(p2) = Plo2) [l <2 = ") (RN : k”) “ { 21 _m}

Py rH 4 kH

R“‘R|P’(O)|—R”—1\Q’(O)\‘ oot ot
- Ri ko - - (216)

ui x

Since for p > o > 1, P

is increasing in z > 0, the expression

RM B pn — g pn72 _ O.n72
P/ _ pn—=11/ ’ _
R BP0 - B <o>|< . —7

is non-negative. Thus for polynomials of degree n > 2, Theorem (2.4) generalises and
sharpens the bound obtained in Theorem (1.1). It is easy to see that for ¢ = 1, the R.H.S.
of (2.9) is less than or equal to the R.H.S. of (1.8). Hence, for n > 2 and ¢ = 1, Theorem
(2.3) provides a refinement of Theorem (1.2) as well.

3. LEMMAS

For the proof of Theorem (2.3) we need the following lemmas.

Lemma 3.1. Let P € P, , and P(z) does not vanish in |z| < k, where k > 1 then for every
p>0>1,0<A<1, n>2and|z| =1,

n

pr—oa"”
|P(pz) — P(oz))| S(“‘%(P)){ I Pl —)\m}

PO =1QO)| (o —gn pp2 o2 -
- 1+ 11(p) n n-2 ’ (3.17)
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where
(p“ - U“) L
n—gn —Am
— fptl p" — o™/ Jag|
v1(e) (p" —a“) kT
pr — o/ ag| — Am

The above Lemma is due to Mir, Imtiaz and Dawood [14].

Lemma3.2. fP€ P, ,and P(z) #0in |z| <k, k> 1, then for 0 < X <1,
Lt
eyl (3.18)
|ao| = Am ~ p

The above result is due to Mir and Dar [[12], inequality (2.6)].

Lemma 3.3. If P € P, , and P(z) # 0in |2| < k, k > 0, then for 0 < r < R < k and
0<A<1,

R

p o laul Ertlon—1 o cn TR NN
exp{n/ n Jao|—Am dg} < (R;y (3.19)

Proof. The above Lemma is due to Mir and Dar [12], however for the sake of completeness
we give the brief outlines of its proof. Since P(z) # 01in |z| < k, k > 0, the polynomial
T(z) = P(sz) #0in |z| < %, f > 1, where 0 < ¢ < k. Hence applying inequality (3.18) of
Lemma (3.2) to T'(z), we get

aule" kye_n
—Fr (=) < - 3.20
|a0|f)\m( ) T (320)
where m = ‘ I‘mn IT(2)| = | rlnln |P(s2)| = |Ir|11n|P( 2)]-
Now inequality (3.20) becomes
my laulk”
Ll P T
( ) |a0| —m ’
which is equivalent to
© lau| +1 p—1
(&) w4 o o (3.21)

< .
g;,b-‘rl (%) |au‘ ku—‘,—lg;t kng) + kptl GH + kH
Integrating both sides of (3.21) with respect to ¢ from r to R, where 0 < r < R < k, we get

R wY _laul +1_p—1 R
TL/ (n) |a0|:‘)\mku ST de < n/ §M_1 d
S gptl (%) el (gt icn 4 g2ug) 4 el TS SR

Ss
lao|—X

which is equivalent to

/R (&) et + o R 4 R
exrp ds » < (7> )
chtl 4 (M) \aul (k.y—&-lgu + k20¢) 4 krtl kH 4 rr

laol—

T3

which proves Lemma (3.3) completely. O
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Lemma 3.4. If P € P, ,and P(z) # 0in |z| < k, k > 0, then for 0 < r < R < k and
0< A<,

P (e
| Pl > exp —n/ ) Teol = at\ | P s
tHt1 +k“+1 + (%) lau| (ku+1ty+k2pt)

|ag|—Am

r

R (ﬁ) lay k“+1t“_1—|—t”
_ _ n ) lag|—Am
1—exp n dt ym. (3.22)
" )

el 1 4 (E) |a0|rf,‘\*m(k“+lt” 4 k2ut

+

n

The above result is due to Mir and Dar [[12], Corollary 1].

4. PROOF OF THE THEOREM

Proof of Theorem 2.3. Since P € P, , and P(z) # 0in |2| < k,k > 0, the polynomial
F(z) = P(Rz) has no zeros in |z| < k/R,k/R > 1. Now applying inequality (3.17) of
Lemma 3.1 to the polynomial F(z), we have for every p > o > 1 and n > 2,

1
—c lapl _
ot ) el o/ e 1+1}

K —_oh lap|
ﬁ)mmﬁm(k/m“““

> [(p"—o")( | F | —)\m> . ‘|F/(O)|_ |Hl(0)|’<pn;0n - pn—ni;n— >]7

where m = min |F(2)| = min |P(Rz)| = min|P(z)| and H(z) = 2"F(1/Z).
Jmin |F(z)| = min |P(Rz)| = min|P() and H(z) = " F(1]7)

| Fpz) — F(o2) ||I<

1+ (k:/R)MH{ (

This gives

H—ot lay| +1 +1
{(Z?Lgn) |a0|7)\mku RM+RM }
| P(Rpz) — P(Roz) ||<

T OREAL 4 putl 4 (z:—a#) lay] (kr+1RH + k24 R)

—o” ) |lag]|—Am
n_ g n—2__ __n—2
<p”—o”><||P|R —m>—\RP’<o>|—R”1|Q’<o>||<’“’ s )] (4.23)

foreveryp>o >1land0 < R < k.
Now if 0 < r < R < k, then by using (3.22) of Lemma 3.4 in (4.23), we obtain

pt—a” lal p+1 pp pn+1
{(p”o’") \a0|7/\mk R+ R

Rit1 4 fontl 4 (gﬁ:z:) laol‘“j\m(kuﬂptu + k21R)

R ) _daul  pptiop 4 cptl
% [(pn_an)exp{n/ (”)\ao\—/\m de
r )

gp,—&-l +ku+1 + (g) laul (k‘/"'"'l(“ _|_]<;2u§

X

I P(pz) = P(o2) ||r<

n ) lag]—Am

n__ -n n—2 _ n—2
Pr_ _‘RPIO _Rn—l /0‘ p o _p o
><<|| H m> PO) - B Q)| 2= — |

which is (2.9) and this completes the proof of Theorem (2.3). O
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