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Multiplicity of positive solutions for second order
Sturm-Liouville boundary value problems

K. R. PRASAD1, N. SREEDHAR2 and L. T. WESEN3

ABSTRACT. In this paper, we develop criteria for the existence of multiple positive solutions for second order
Sturm-Liouville boundary value problem,

u′′ + k2u+ f(t, u) = 0, 0 ≤ t ≤ 1,

au(0)− bu′(0) = 0 and cu(1) + du′(1) = 0,

where k ∈
(
0,
π

2

)
is a constant, by an application of Avery–Henderson fixed point theorem.

1. INTRODUCTION

The existence of positive solutions of the boundary value problems have been studied
by many researchers due to the importance in both theory and applications. In recent
years, there is an increasing interest shown in establishing the existence of positive solu-
tions for second order Neumann and Sturm-Liouville boundary value problems associ-
ated with ordinary differential equations by applying various techniques. These type of
problems arise in modeling of different areas of applied mathematics, physics and biolog-
ical sciences.

By using the fixed point theorems in cones, Jiang and Liu [7], Sun and Li [13], Sun,
Li and Cheng [14], Li and Jiang [9], Yao [23], Chu, Sun and Chen [3], Wang, Cui and
Zhang [21], Sun, Cho and O’Regan [12], Wang and Zhang [22], Li, Cong, Li and Lv [8]
and Henderson and Kosmatov [4] have studied the existence of positive solutions for
second order Neumann boundary value problems.

Tian and Ge [16, 17] considered the general Sturm-Liouville problems and established
the existence of positive solutions for second order Sturm-Liouville boundary value prob-
lem with a p-Laplacian by using critical point theory. For the back ground, results and
some recent contributions, we refer [1, 5, 6, 10, 11, 15, 18, 19, 20].

Motivated by the papers mentioned above, in this paper, we establish the existence of
even number of positive solutions for second order differential equations of the form,

u′′ + k2u+ f(t, u) = 0, 0 ≤ t ≤ 1, (1.1)

satisfying the Sturm-Liouville boundary conditions,

au(0)− bu′(0) = 0 and cu(1) + du′(1) = 0, (1.2)

where k ∈
(
0,
π

2

)
is a constant, a, b, c and d are positive constants such that k2 ≤ ac

bd
and

f : [0, 1] × R+ → R+ is a continuous function, by an application of Avery–Henderson
fixed point theorem.

Received: 28.02.2016. In revised form: 06.05.2016. Accepted: 13.05.2016
2010 Mathematics Subject Classification. 34B15.
Key words and phrases. Green’s function, boundary value problem, positive solution, cone.
Corresponding author: N. Sreedhar; sreedharnamburi@rediffmail.com

215



216 K. R. Prasad, N. Sreedhar and L. T. Wesen

The rest of the paper is organized as follows. In Section 2, we construct the Green’s
function for the homogeneous problem corresponding to (1.1)-(1.2) and estimate bounds
for the Green’s function. In Section 3, we establish a criteria for the existence of at least
two positive solutions for the boundary value problem (1.1)-(1.2) by using an Avery-
Henderson fixed point theorem [2]. And then, we establish the existence of at least 2n
positive solutions to the boundary value problem (1.1)-(1.2) for an arbitrary positive inte-
ger n. Finally as an application, we give an example to illustrate our result.

2. GREEN’S FUNCTION AND BOUNDS

In this section, we construct the Green’s function for the homogeneous problem corre-
sponding to (1.1)-(1.2) and estimate bounds for the Green’s function.

Let G(t, s) be the Green’s function for the homogeneous problem,

−(u′′ + k2u) = 0, 0 ≤ t ≤ 1, (2.3)

satisfying the boundary conditions (1.2).

Lemma 2.1. Let d = k(ac − bdk2) sin k + k2(ad + bc) cos k 6= 0. Then the Green’s function
G(t, s) for the boundary value problem (2.3), (1.2) is given by

G(t, s) =


1

d
(a sin kt+ bk cos kt)(c sin k(1− s) + dk cos k(1− s)), t ≤ s,

1

d
(a sin ks+ bk cos ks)(c sin k(1− t) + dk cos k(1− t)), s ≤ t.

(2.4)

Lemma 2.2. The Green’s function G(t, s) satisfies the following inequalities:

(i) G(t, s) > 0, for all t, s ∈ (0, 1),
(ii) G(t, s) ≤MG(s, s), for all (t, s) ∈ [0, 1]× [0, 1],

(iii)
1

M
G(s, s) ≤ G(t, s), for all (t, s) ∈ [0, 1]× [0, 1],

where M = max

{
a+ bk

bk cos k
,
c+ dk

dk cos k

}
.

Proof. (i) Since k2 ≤ ac

bd
, the Green’s function G(t, s) is positive for all t, s ∈ (0, 1).

(ii) Let t ≤ s. Then

G(t, s)

G(s, s)
=
a sin kt+ bk cos kt

a sin ks+ bk cos ks
≤ a+ bk

bk cos k
.

Let s ≤ t. Then

G(t, s)

G(s, s)
=
c sin k(1− t) + dk cos k(1− t)
c sin k(1− s) + dk cos k(1− s)

≤ c+ dk

dk cos k
.

Therefore,

G(t, s) ≤MG(s, s), for all (t, s) ∈ [0, 1]× [0, 1],

where M = max

{
a+ bk

bk cos k
,
c+ dk

dk cos k

}
.

(iii) We can prove the inequality (iii) as in (ii). �
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3. MULTIPLE POSITIVE SOLUTIONS

In this section, we establish the existence of at least two positive solutions for the
boundary value problem (1.1)-(1.2) by using an Avery-Henderson functional fixed point
theorem. And then, we establish the existence of at least 2n positive solutions to the
boundary value problem (1.1)-(1.2) for an arbitrary positive integer n.

Let B be a real Banach space. A nonempty closed convex set P ⊂ B is called a cone, if
it satisfies the following two conditions:

(i) y ∈ P, λ ≥ 0 implies λy ∈ P , and
(ii) y ∈ P and −y ∈ P implies y = 0.

Let ψ be a nonnegative continuous functional on a cone P of the real Banach space B.
Then for a positive real number c′, we define the sets

P (ψ, c′) = {y ∈ P : ψ(y) < c′}
and

Pa′ = {y ∈ P : ‖y‖ < a′}.
In obtaining multiple positive solutions of the boundary value problem (1.1)-(1.2), the

following Avery-Henderson functional fixed point theorem will be the fundamental tool.

Theorem 3.1. [2] Let P be a cone in a real Banach space B. Suppose α and γ are increasing,
nonnegative continuous functionals on P and θ is nonnegative continuous functional on P with
θ(0) = 0 such that, for some positive numbers c′ and k, γ(y) ≤ θ(y) ≤ α(y) and ‖y‖ ≤ kγ(y),
for all y ∈ P (γ, c′). Suppose that there exist positive numbers a′ and b′ with a′ < b′ < c′ such
that θ(λy) ≤ λθ(y), for all 0 ≤ λ ≤ 1 and y ∈ ∂P (θ, b′). Further, let T : P (γ, c′) → P be a
completely continuous operator such that
(B1) γ(Ty) > c′, for all y ∈ ∂P (γ, c′),
(B2) θ(Ty) < b′, for all y ∈ ∂P (θ, b′),
(B3) P (α, a′) 6= ∅ and α(Ty) > a′, for all y ∈ ∂P (α, a′).
Then, T has at least two fixed points y1, y2 ∈ P (γ, c′) such that
a′ < α(y1) with θ(y1) < b′ and b′ < θ(y2) with γ(y2) < c′.

Let B = {u : u ∈ C[0, 1]} be the Banach space equipped with the norm

‖u‖ = max
t∈[0,1]

|u(t)|.

Define the cone P ⊂ B by

P = {u ∈ B : u(t) ≥ 0 on [0, 1] and min
t∈[0,1]

u(t) ≥ m‖u‖},

where m =
1

M2
.

Define the nonnegative, increasing, continuous functionals γ, θ and α on the cone P by

γ(u) = min
t∈[0,1]

u(t), θ(u) = max
t∈[0,1]

u(t) and α(u) = max
t∈[0,1]

u(t).

We observe that for any u ∈ P ,

γ(u) ≤ θ(u) = α(u) (3.5)

and
‖u‖ ≤ 1

m
min
t∈[0,1]

u(t) =
1

m
γ(u) ≤ 1

m
θ(u) =

1

m
α(u). (3.6)

Define

L =

∫ 1

0

G(s, s)ds.
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Theorem 3.2. Suppose there exist real numbers a′, b′ and c′ with 0 < a′ < b′ < c′ such that f
satisfies the following conditions:

(D1) f(t, u) >
Mc′

L
, for t ∈ [0, 1] and u ∈ [c′,

c′

m
],

(D2) f(t, u) <
b′

ML
, for t ∈ [0, 1] and u ∈ [0,

b′

m
],

(D3) f(t, u) >
Ma′

L
, for t ∈ [0, 1] and u ∈ [a′,

a′

m
].

Then the boundary value problem (1.1)-(1.2) has at least two positive solutions u1 and u2 such
that

a′ < max
t∈[0,1]

u1(t) with max
t∈[0,1]

u1(t) < b′,

b′ < max
t∈[0,1]

u2(t) with min
t∈[0,1]

u2(t) < c′.

Proof. Define the operator T : P → B by

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds. (3.7)

It is obvious that a fixed point of T is the solution of the boundary value problem (1.1)-
(1.2). We seek two fixed points u1, u2 ∈ P of T . First, we show that T : P → P . Let u ∈ P .
From Lemma 2.2, we have Tu(t) ≥ 0 on [0, 1] and also,

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds

≤M
∫ 1

0

G(s, s)f(s, u(s))ds

so that

‖Tu‖ ≤M
∫ 1

0

G(s, s)f(s, u(s))ds.

Next, if u ∈ P , then we have

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds

≥ 1

M

∫ 1

0

G(s, s)f(s, u(s))ds

≥ 1

M2
‖Tu‖ = m‖Tu‖.

Hence Tu ∈ P and so T : P → P . Moreover, T is completely continuous. From (3.5)

and (3.6), for each u ∈ P , we have γ(u) ≤ θ(u) = α(u) and ‖u‖ ≤ 1

m
γ(u). Also, for any

0 ≤ λ ≤ 1 and u ∈ P , we have θ(λu) = maxt∈[0,1](λu)(t) = λmaxt∈[0,1] u(t) = λθ(u).
It is clear that θ(0) = 0. We now show that the remaining conditions of Theorem 3.1 are
satisfied.
Firstly, we shall verify that condition (B1) of Theorem 3.1 is satisfied. Since u ∈ ∂P (γ, c′),
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from (3.6) we have that c′ = mint∈[0,1] u(t) ≤ ‖u‖ ≤
c′

m
. Then

γ(Tu) = min
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s))ds

≥ 1

M

∫ 1

0

G(s, s)f(s, u(s))ds

>
c′

L

∫ 1

0

G(s, s)ds = c′,

using hypothesis (D1).
Now we shall show that condition (B2) of Theorem 3.1 is satisfied. Since u ∈ ∂P (θ, b′),

from (3.6) we have that 0 ≤ u(t) ≤ ‖u‖ ≤ b′

m
, for [0, 1]. Thus

θ(Tu) = max
t∈[0,1)]

∫ 1

0

G(t, s)f(s, u(s))ds

≤M
∫ 1

0

G(s, s)f(s, u(s))ds

<
b′

L

∫ 1

0

G(s, s)ds = b′,

by hypothesis (D2).
Finally, using hypothesis (D3), we shall show that condition (B3) of Theorem 3.1 is sat-
isfied. Since 0 ∈ P and a′ > 0, P (α, a′) 6= ∅. Since u ∈ ∂P (α, a′), a′ = maxt∈[0,1] u(t) ≤

‖u‖ ≤ a′

m
, for t ∈ [0, 1]. Therefore,

α(Tu) = max
t∈[0,1]

∫ 1

0

G(t, s)f(s, u(s))ds

≥ 1

M

∫ 1

0

G(s, s)f(s, u(s))ds

>
a′

L

∫ 1

0

G(s, s)ds = a′.

Thus, all the conditions of Theorem 3.1 are satisfied and so there exist at least two positive
solutions u1, u2 ∈ P (γ, c′) for the boundary value problem (1.1)-(1.2). This completes the
proof of the theorem. �

Theorem 3.3. Let n be an arbitrary positive integer. Assume that there exist numbers ar(r =
1, 2, · · ·, n + 1) and bs(s = 1, 2, · · ·, n) with 0 < a1 < b1 < a2 < b2 < · · · < an < bn < an+1

such that

f(t, u) >
Mar
L

, for t ∈ [0, 1] and u ∈ [ar,
ar
m

], r = 1, 2, · · ·, n+ 1, (3.8)

f(t, u) <
bs
ML

, for t ∈ [0, 1] and u ∈ [0,
bs
m
], s = 1, 2, · · ·, n. (3.9)

Then the boundary value problem (1.1)-(1.2) has at least 2n positive solutions in P an+1
.

Proof. We use induction on n. For n = 1, we know from (3.8) and (3.9) that T : P a2 →
Pa2 , then, it follows from Avery-Henderson fixed point theorem that the boundary value
problem (1.1)-(1.2) has at least two positive solutions in P a2 . Next, we assume that this
conclusion holds for n = l. In order to prove this conclusion holds for n = l + 1. We
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suppose that there exist numbers ar(r = 1, 2, · · ·, l + 2) and bs(s = 1, 2, · · ·, l + 1) with
0 < a1 < b1 < a2 < b2 < · · · < al+1 < bl+1 < al+2 such that

f(t, u) >
Mar
L

, for t ∈ [0, 1] and u ∈ [ar,
ar
m

], r = 1, 2, · · ·, l + 2, (3.10)

f(t, u) <
bs
ML

, for t ∈ [0, 1] and u ∈ [0,
bs
m
], s = 1, 2, · · ·, l + 1. (3.11)

By assumption, the BVP (1.1)-(1.2) has at least 2l positive solutions ui(i = 1, 2, · · ·, 2l) in
P al+1

. At the same time, it follows from Theorem 3.2, (3.10) and (3.11) that the boundary
value problem (1.1)-(1.2) has at least two positive solutions u1, u2 in P al+2

such that al+1 <
α(u1) with θ(u1) < bl+1 and bl+1 < θ(u2) with γ(u2) < al+2. Obviously u1 and u2 are
different from ui(i = 1, 2, · · ·, 2l). Therefore, the boundary value problem (1.1)-(1.2) has
at least 2l + 2 positive solutions in P al+2

, which shows that the conclusion holds for n =
l + 1. �

Example 3.1. Let us consider an example to illustrate the usage of the Theorem 3.2. Now,
consider the following problem,

u′′ + k2u+ f(t, u) = 0, 0 ≤ t ≤ 1, (3.12)

subject to the boundary conditions,

2u(0)− u′(0) = 0 and 3u(1) + 2u′(1) = 0, (3.13)

where

f(t, u) =
10(u+ 1)5

73(u2 + 99)
.

The Green’s function G(t, s) for the homogeneous problem,

−(u′′ + k2u) = 0, 0 ≤ t ≤ 1,

satisfying the boundary conditions (3.13) is given by

G(t, s) =


(2 sin kt+ k cos kt)(3 sin k(1− s) + 2k cos k(1− s))

5.7002669
, t ≤ s,

(2 sin ks+ k cos ks)(3 sin k(1− t) + 2k cos k(1− t))
5.7002669

, s ≤ t.

By algebraic computations, we get

M = 2.015478827, m = 0.03975348409, L = 0.3977489636.

Clearly f is continuous and increasing on [0,∞). If we choose a′ = 0.0001, b′ = 0.01
and c′ = 150 then 0 < a′ < b′ < c′ and f satisfies

(i) f(t, u) > 1891.448861 =
Mc′

L
, for t ∈ [0, 1] and u ∈ [150, 3773.25418],

(ii) f(t, u) < 0.0042462538 =
b′

ML
, for t ∈ [0, 1] and u ∈ [0, 0.2515502786],

(iii) f(t, u) > 0.0013843920 =
Ma′

L
, for t ∈ [0, 1] and u ∈ [0.0001, 0.002515502].

Then all the conditions of Theorem 3.2 are satisfied. Thus by Theorem 3.2, the bound-
ary value problem (3.12)-(3.13) has at least two positive solutions u1 and u2 satisfying

0.0001 < max
t∈[0,1]

u1(t) with max
t∈[0,1]

u1(t) < 0.01,
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0.01 < max
t∈[0,1]

u2(t) with min
t∈[0,1]

u2(t) < 150.
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