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A note on the convergence of Mann iteration

ŞTEFAN MĂRUŞTER

ABSTRACT. The main result in this note slightly generalizes Theorem 3.4 in [Şt. Măruster and I. A. Rus,
Kannan contractions and strongly demicontractive mappings, Creat. Math. Inform., 24 (2015), No. 3, 171–180]. We
also significantly improve its proof. Both results in the paper are based on the concepts of demicontractivity
and quasi-expansivity and involve relatively weak conditions that guarantee the convergence of Krasnoselskij
method (the same conditions are not sufficient for the convergence of Picard iteration).

Thus, our note is a satisfactory answer to the following question: if for a given mapping some specific
conditions for the convergence of Picard iteration are not satisfied (and presumptively the Picard iteration fails
to converge), what are the conditions which still ensure the convergence of the Mann iteration?

Let C be a closed convex subset of a real Hilbert space H with scalar product 〈·, ·〉 and
norm ‖ · ‖, and let T : C → C be a (nonlinear) mapping. Recall that T is said to be (a, k)-
strongly demicontractive [6] if the set of fixed points of T is nonempty, i. e., Fix(T ) 6= ∅,
and

‖Tx− p‖2 ≤ a‖x− p‖2 + k‖x− Tx‖2, ∀x ∈ C, p ∈ Fix(T ), (1.1)

where a ∈ (0, 1), k ≥ 0. If a = 1, from (1.1) we obtain the weaker condition of demicon-
tractivity [4]. The inequality (1.1) is equivalent to

〈x− Tx, x− p〉 ≥ 1− a
2
‖x− p‖2 + 1− k

2
‖x− Tx‖2. (1.2)

If T is strongly demicontractive then the set of fixed points in C is a singleton. In this case,
the requirement that (1.1) (or (1.2)) to be satisfied for all p in Fix(T ) is superfluous.

The demicontractivity (or even the strongly demicontractivity) together with demi-
closedness at zero and some restrictions on control sequence ensure the weak convergence
of the Mann iteration [5, 4]. Obviously, in finite dimensional spaces these conditions are
sufficient. In order to get strong convergence, some additional conditions are needed.

Recall that the Mann iteration is defined by

xn+1 = (1− tn)xn + tnT (xn), (1.3)

where {tn} is the control sequence and we have usually tn ∈ (0, 1).
In the case of a constant control sequence, tn = t, n = 0, 1, ..., it is used the term

Krasnoselskij or Krasnoselskij-Mann iteration for the iterative process obtained from (1.3). In
fact, the Krasnoselskij iteration is a particular Picard iteration with the iteration function
Tt = (1− t)I + tT , where I is the identity mapping.

Remark 1.1. In his original paper [3], Krasnoselskij considered a still more particular case,
xn+1 = (T (xn) + xn)/2, i.e., the Mann iteration with tn = 1/2, n = 0, 1, .... Supposing
that T is non-expansive (‖T (x)−T (y)‖ ≤ ‖x− y‖) he proved that the generated sequence
converges to some fixed point of T . It is mentioned that, in the same condition, the Picard
iteration is not necessarily convergent.
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In [7] a condition of expansive type, called quasi-expansive, was proposed in order to get
convergence in norm of the Mann iteration. A mapping T is said to be β-quasi-expansive if

‖x− p‖ ≤ β‖x− T (x)‖, x ∈ C,
where 0 < β < 1. It is easy to see that this implies

‖x− p‖ ≤ β

1− β
‖T (x)− p‖,

which motivates the term quasi-expansive. Note that the strongly demicontractivity and
the quasi-expansivity are not contradictory.

The two conditions (strongly demicontractivity and quasi-expansivity) together with
some restrictions on constants a, k, β and on the control parameter t ensure the conver-
gence in norm of the Krasnoselskij method.

Theorem 3.4 [7] is one of the first results in which the quasi-expansivity is used.

Theorem 1.1. ([7], Theorem 3.4). Suppose that T : C → C is (a, k)-strongly demicontractive
with a, k ∈ [0.1, 1) and β-quasi-expansive with β = (1− k)/1.8. Then

‖Ttx− Tty‖ ≤ δ(‖x− Ttx‖ − ‖y − Tty‖), ∀x, y ∈ C,
where δ = 0.43588985..., t ∈ (t1, t2) ∩ (0, 1) and t1, t2 are the roots of the polynomial

P (t) = (1− δ2)t2 − [1− k + (1− α)β2]t+ β2. (1.4)

The theorem bellow is a slight generalization of Theorem 3.4 [7]. We also present a
significantly improved proof of it.

Theorem 1.2. Let T : C → C be an (a, k)-strongly demicontractive and β-quasi-expansive map-
ping. Let δ be such that 0 < δ < 0.5 and suppose that a, k satisfy the conditions a, k ∈ (0, 1) and
β = (1 − k)/(2

√
1− δ2). Then the sequence {xn} given by the Krasnoselskij iteration method

converges to the unique fixed point p of T , provided that t ∈ (t1, t2)∩ (0, 1) and t1, t2 are the roots
of the polynomial

P (t) = (1− δ2)t2 − [1− k + (1− a)β2]t+ β2.

Proof. Using the notation d = 1− k + (1− a)β2 we have

d2 − 4(1− δ2)β2 = d2 − (1− k)2 > 0,

which shows that P has two distinct real roots t1, t2. The lowest root, say t1, is

t1 =
d−

√
d2 − (1− k)2
2(1− δ2)

.

Obvious, t1 > 0. We will show that t1 < 1. Using the fact that a, k ∈ (0, 1) and δ < 0.5, we
have

(1− a)β2 =
(1− a)(1− k)2

4(1− δ2)
<

1

4(1− δ2)
< 1− 2δ2 < 1 + k − 2δ2 = 2(1− δ2)− 1 + k.

Thus
d− 2(1− δ2) = 1− k + (1− a)β2 − 2(1− δ2) < 0 <

√
d2 − (1− k)2,

and
d−

√
d2 − (1− k)2 < 2(1− δ2).

Therefore 0 < t1 < 1 and (t1, t2) ∩ [0, 1] 6= ∅. For t ∈ (t1, t2) ∩ [0, 1], we have P (t) < 0,
which implies

(1− t+ ta)β2 + t2 − t+ tk

t2
< δ2.
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Now, using (1.2), we have

‖Ttx− p‖2 = ‖x− p− t(x− Tx)‖2
= ‖x− p‖2 − 2t〈x− Tx, x− p〉+ t2‖x− Tx‖2
≤ ‖x− p‖2 − t(1− a)‖x− p‖2 − t(1− k)‖x− Tx‖2 + t2‖x− Tx‖2
= (1− t+ ta)‖x− p‖2 + (t2 − t+ tk)‖x− Tx‖2.

Then, taking into account that ‖x−p‖ ≤ β‖x−Tx‖ and ‖x−Tx‖ = ‖x−Ttx‖/t we obtain

‖Ttx− p‖2 ≤
(1− t+ ta)β2 + t2 − t+ tk

t2
‖x− Ttx‖2.

Therefore, for t ∈ (t1, t2) ∩ (0, 1) it results

‖Ttx− p‖ ≤ δ‖x− Ttx‖, ∀x ∈ C.
Finally we have

‖Ttx− Tty‖ ≤ ‖Ttx− p‖+ ‖Tty − p‖ ≤ δ(‖x− Ttx‖+ ‖y − Tty‖), ∀x, y ∈ C.
That is Tt is a Kannan contraction. �

Remark 1.2. For the sake of simplicity, we considered here a particular case of Mann
iteration with constant control sequence, tn = t, i.e., the Krasnoselskij method, but we can
obtain the same result in the general case of Mann iteration.

The real function in the example below fulfils the conditions of Theorem 1.1

Example 1.1. Let f : [−0.375, 0.375]→ [−0.375, 0.375] be given by f(x) = 1.5x3− 1.2x, for
all x ∈ [−0.375, 0.375]. We can take δ = 0.49. Then, the function f is strongly demicontrac-
tive with p = 0, a = 0.9, k = 0.12 and quasi-expansive with β = (1 − k)/(2

√
(1 − δ2)) =

0.504.... The two roots of P are t1 = 0.455... and t2 = 0.736....
Therefore, for any t ∈ (0.455..., 0.736...) and x0 ∈ [−0.375, 0.375], the Krasnoselskij

iteration associated to f converges to 0.

For the function f in Example 1.1, in Table 1 it is shown the number of iterations needed
to obtain a precision of 10−15 for various initial values of x0 ∈ [−0.375, 0.375] and param-
eter t ∈ (t1, t2).

The symbol ”?” in the last column shows that the Picard iteration does not converge in
all those cases.

x0/t t1 0.5 0.6 0.7 t2 1
-0.375 5 13 28 53 69 ?
-0.3 5 13 28 53 69 ?
-0,2 5 14 28 53 68 ?
-0.1 5 13 28 52 67 ?
0.1 5 13 28 52 67 ?
0.2 5 14 28 53 68 ?
0.3 5 13 28 53 69 ?
0.375 5 13 28 53 69 ?

TABLE 1. The behavior of Krasnoselskij method for various values of x0 and t.

Note that the interval (t1, t2) defined in Theorem 1.2 does not cover all the good values
of t. In our example the interval of t for which the Krasnoselskij iteration converges is
actually (0, 2/2.2 = 0.90909...).
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For t in this interval, the graph of Tt is situated in the area limited by the first bisectrix
and the second bisectrix of the coordinates axes, which explains the behavior of Kras-
noselskij method.

Remark 1.3. Theorem 1.2 gives a satisfactory answer to the following question:

If, for a given mapping some specific conditions for the convergence of Picard iteration
are not satisfied (and presumptively the Picard iteration fails to converge), what are the
conditions which ensure instead the convergence of the Krasnoselskij iteration?

The function f in Example 1.1 is not a Berinde-Almost-Contraction, see [1] and [2],
since it can be simply checked that f it is not a graphic contraction (orbital contraction)
and, therefore, f is not a Banach, Kannan, Ciric-Reich-Rus, Chatterjea, Zamfirescu con-
traction etc. (see [8]), too.

Thus the convergence theorems concerning these kind of contractions cannot be ap-
plied for Picard iteration.

Various numerical experiments that we have performed but which are not presented
here show that, indeed, the Picard iteration does not converge for f in Example 1.1. In-
stead, the Krasnoselskij iteration, with the mentioned condition on the control parameter,
can be successfully applied.
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