CREAT. MATH. INFORM. Volume **26** (2017), No. 1, Pages 89 - 94 Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2017.01.12

On a new operator on filter generalized topological spaces

SHYAMAPADA MODAK and AHMAD AL-OMARI

ABSTRACT. The purpose of this paper is to introduce the notion of $\psi_{\mathcal{F}}$ operator induced by a given filter \mathcal{F} and a generalized topology μ , and to investigate some properties of this operator. We shall further discuss some characterizations of this operator with the help of \mathcal{F} -codeness and \mathcal{F} -compatibility.

1. INTRODUCTION

Let X be a nonempty set and let $\wp(X)$ be the power set of X. Then $\mu \subseteq \wp(X)$ is called a generalized topology (briefly GT) [2] on X iff $\emptyset \in \mu$ and $G_i \in \mu$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in \mu$. We call the pair (X, μ) a generalized topological space (briefly GTS) on X. A GT μ is said to be a quasi-topology [4] on X if M, $N \in \mu$ implies $M \cap N \in \mu$.

A *filter* \mathcal{F} (not containing the empty set) on X is a nonempty family $\mathcal{F} \subseteq \wp(X)$ satisfying the following conditions:

(1) $A \subset B, A \in \mathcal{F}$ implies $B \in \mathcal{F}$.

(2) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$.

Let (X, μ) be a GTS and \mathcal{F} be a filter on X, then (X, μ, \mathcal{F}) is called a *filter generalized topological space* (briefly FGTS).

In [1], Al-Omari and Modak introduced an operator $\Omega : \wp(X) \to \wp(X)$ by using a GT μ with a filter \mathcal{F} . They also defined an operator $c^{\Omega} : \wp(X) \to \wp(X)$ by using the operator Ω (i. e., for $A \subset X$, $c^{\Omega}(A) = A \cup \Omega(A)$), which is monotone, enlarging and idempotent. They showed that the operator c^{Ω} induces another generalized topology μ^{Ω} satisfying $\mu \subset \mu^{\Omega}$. Some properties of operators Ω and c^{Ω} were investigated in [1].

The purpose of this paper is to introduce another operator $\psi_{\mathcal{F}}$ and investigate some of its properties.

2. Preliminaries

Let (X, μ, \mathcal{F}) be a FGTS. A mapping $\Omega : \wp(X) \to \wp(X)$ is defined as follows: $\Omega(A) \subseteq X$ by $x \in \Omega(A)$ if and only if $x \in M \in \mu$ imply $A \cap U \in \mathcal{F}$. If $\mathcal{M}_{\mu} = \bigcup \{M : M \in \mu\}$ and $x \notin \mathcal{M}_{\mu}$ then by definition $x \in \Omega(A)$.

The mapping is called the local function associated with the filter \mathcal{F} and generalized topology μ .

Proposition 2.1. [1] Let μ be a GT on a set X, F, J filters on X and A, B be subsets of X. The following properties hold:

(1) If $A \subseteq B$, then $\Omega(A) \subseteq \Omega(B)$,

(2) If $\mathcal{J} \subseteq \mathcal{F}$, then $\Omega(A)(\mathcal{J}) \subseteq \Omega(A)(\mathcal{F})$,

(3) $\Omega(A) = c_{\mu}(\Omega(A)) \subseteq c_{\mu}(A)$ (where c_{μ} denotes the closure operator of (X, μ)),

(4) $\Omega(A) \cup \Omega(B) \subseteq \Omega(A \cup B)$,

Corresponding author: Shyamapada Modak; spmodak2000@yahoo.co.in

Received: 15.06.2016. In revised form: 15.11.2016. Accepted: 29.11.2016 2010 Mathematics Subject Classification. 54A05, 54C10.

Key words and phrases. GTS, FGTS, F-codense, F-compatible.

(5) Ω(Ω(A)) ⊆ Ω(A).
(6) Ω(A) is a μ-closed set.

Proposition 2.2. [1] Let (X, μ, \mathcal{F}) be a FGTS. If $M \in \mu$, $M \cap A \notin \mathcal{F}$ imply $M \cap \Omega(A) = \emptyset$. Hence $\Omega(A) = X \setminus \mathcal{M}_{\mu}$ if $A \notin \mathcal{F}$.

Lemma 2.1. [1] Let (X, μ, \mathcal{F}) be a FGTS. $\Omega(X) = X$ if and only if $\mu \setminus \{\emptyset\} \subseteq \mathcal{F}$.

Corollary 2.1. Let (X, μ) be a quasi-topological space with a filter \mathcal{F} . Then $\mu \setminus \{\emptyset\} \subseteq \mathcal{F}$ if and only if $U \subseteq \Omega(U)$, for $U \in \mu$.

Proof. Suppose $\mu \setminus \{\emptyset\} \subseteq \mathcal{F}$. Then for $U \in \mu$ and $x \in U$, any $U_x \in \mu(x)$, $U \cap U_x \in \mu$. This implies that $U \cap U_x \in \mathcal{F}$, and so $x \in \Omega(U)$.

Conversely suppose that $U \subseteq \Omega(U)$. Then for $x \in U \subseteq \Omega(U)$, $U_x \cap U \in \mathcal{F}$, where $U_x \in \mu(x)$. Therefore, $U \in \mathcal{F}$.

3. $\psi_{\mathcal{F}}$ operator

Let \mathcal{F} be a filter on a space (X, μ) , an operator $\psi_{\mathcal{F}} : \wp(X) \to \wp(X)$ is defined as follows: for every $A \in \wp(X), \ \psi_{\mathcal{F}}(A) = \{x \in X : \text{there exits } M \in \mu \text{ such that } M \setminus A \notin \mathcal{F}\}.$

Before discussing the properties of $\psi_{\mathcal{F}}$ operator, we shall give an Example to illustrate the difference between the two operators:

Example 3.1. Let $X = \{a, b, c\}$, a GT $\mu = \{\emptyset, \{a, c\}\}$ and $\mathcal{F} = \{\{a, b\}, X\}$. Then $\Omega(\{b, c\}) = \emptyset$, but $\psi_{\mathcal{F}}(\{b, c\}) = X \setminus \Omega(X \setminus \{b, c\}) = X \setminus \Omega(\{a\}) = X \setminus \emptyset = X$.

The following theorem gives a characterization of the function $\psi_{\mathcal{F}}$.

Theorem 3.1. Let (X, μ, \mathcal{F}) be a FGTS. Then $\psi_{\mathcal{F}}(A) = X \setminus \Omega(X \setminus A)$.

Proof. Suppose $x \in X \setminus \Omega(X \setminus A)$. Then $x \notin \Omega(X \setminus A)$ and so there exists $M \in \mu$ containing x such that $M \cap (X \setminus A) \notin \mathcal{F}$ which implies that $M \setminus A \notin \mathcal{F}$. Therefore, $X \setminus \Omega(X \setminus A) \subset \{x \in X : \text{there exists } M \in \mu(x) \text{ such that } M \setminus A \notin \mathcal{F} \}$.

Conversely, assume that $y \in \psi_{\mathcal{F}}(A)$. Then there exists $M \in \mu$ containing y such that $M \setminus A \notin \mathcal{F}$. Since $M \setminus A \notin \mathcal{F}$, $M \cap (X \setminus A) \notin \mathcal{F}$ which implies that $y \notin \Omega(X \setminus A)$. Therefore $y \in X \setminus \Omega(X \setminus A)$. Thus $\psi_{\mathcal{F}}(A) = X \setminus \Omega(X \setminus A)$.

Theorem 3.2. Let (X, μ) be a space with a filter \mathcal{F} and $A, B \subset X$. Then the following hold:

(1) ψ_F(A) is μ-open.
 (2) Ω(A) = X \ ψ_F(X \ A).
 (3) If A ⊂ B, then ψ_F(A) ⊂ ψ_F(B).
 (4) ψ_F(A ∩ B) ⊂ ψ_F(A) ∩ ψ_F(B).
 (5) If U ∈ μ^Ω, then U ⊂ ψ_F(U).
 (6) ψ_F(A) ⊂ ψ_F(ψ_F(A)).
 (7) ψ_F(A) = ψ_F(ψ_F(A)) if and only if Ω(X \ A) = Ω(Ω(X \ A)).
 (8) A ∩ ψ_F(A) = i^Ω_µ(A) (where i^Ω_µ denotes the interior operator of (X, μ^Ω)).
 (9) ψ_F(X) = X or M_µ.
 (10) For X \ K ∉ F, ψ_F(K) = M_µ.
 (11) ψ_F(Ø) = M_µ \ Ω(X).

Proof. (1) Proof is obvious from Proposition 2.1.

(2) Obvious from definition of $\psi_{\mathcal{F}}$.

90

(3) Proof is obvious from Proposition 2.1.(4) Obvious from (3).

(5) If $U \in \mu^{\Omega}$, then $X \setminus U$ is μ^{Ω} -closed. Therefore $\Omega(X \setminus U) \subset X \setminus U$ which implies that $X \setminus (X \setminus U) \subset X \setminus \Omega(X \setminus U)$ and so $U \subset \psi_{\mathcal{F}}(U)$.

(6) Obvious from the fact that $\psi_{\mathcal{F}}(A) \in \mu^{\Omega}$.

(7) Suppose $\Omega(X \setminus A) = \Omega(\Omega(X \setminus A))$. Then $\psi_{\mathcal{F}}(A) = X \setminus \Omega(X \setminus A)$ implies that $\psi_{\mathcal{F}}(\psi_{\mathcal{F}}(A)) = X \setminus \Omega(X \setminus \psi_{\mathcal{F}}(A)) = X \setminus \Omega(\Omega(X \setminus A)) = X \setminus \Omega(X \setminus A) = \psi_{\mathcal{F}}(A)$.

Conversely, $\psi_{\mathcal{F}}(A) = \psi_{\mathcal{F}}(\psi_{\mathcal{F}}(A))$ implies that $X \setminus \Omega(X \setminus A) = X \setminus \Omega(X \setminus \psi_{\mathcal{F}}(A)) = X \setminus \Omega(\Omega(X \setminus A))$. Therefore, $\Omega(X \setminus A) = \Omega(\Omega(X \setminus A))$.

(8) Let $x \in A \cap \psi_{\mathcal{F}}(A)$. Then $x \in A$ and $x \in \psi_{\mathcal{F}}(A)$. Since $x \in \psi_{\mathcal{F}}(A)$, there exists $M_x \in \mu$ containing x such that $M_x \setminus A \notin \mathcal{F}$. Therefore, $x \in M_x \setminus (M_x \setminus A) \subset A$. Since $\beta = \{V \setminus F : V \text{ is a } \mu\text{-open set of } (X,\mu), F \notin \mathcal{F}\}$ is a basis for μ^{Ω} (see [1]) and $M_x \setminus (M_x \setminus A) \in \beta, x \in i_{\mu}^{\Omega}(A)$, where $i_{\mu}^{\Omega}(A)$ is the interior operator in (X,μ^{Ω}) . Conversely, assume that $x \in i_{\mu}^{\Omega}(A)$. Then there exists a μ -open set M_x containing x and $F \in \mathcal{F}$ such that $x \in M_x \setminus F \subset A$. Now $M_x \setminus F \subset A$ implies that $M_x \setminus A \subset F$ which turn implies that $M_x \setminus A \notin \mathcal{F}$ and so $x \in \psi_{\mathcal{F}}(A)$. Therefore $x \in A \cap \psi_{\mathcal{F}}(A)$. Hence $A \cap \psi_{\mathcal{F}}(A) = i_{\mu}^{\Omega}(A)$.

(9) Since $\emptyset \notin \mathcal{F}$ by Proposition 2.2 we have $\Omega(\emptyset) = X \setminus \mathcal{M}_{\mu}$. If μ is strong, then $\mathcal{M}_{\mu} = X$, and $\psi_{\mathcal{F}}(X) = X \setminus \Omega(\emptyset) = X \setminus (X \setminus \mathcal{M}_{\mu}) = X$. Otherwise $\psi_{\mathcal{F}}(X) = X \setminus \Omega(\emptyset) = X \setminus (X \setminus \mathcal{M}_{\mu}) = \mathcal{M}_{\mu}$.

(10) For $X \setminus K \notin \mathcal{F}$, by Proposition 2.2 $\psi_{\mathcal{F}}(K) = X \setminus \Omega(X \setminus K) = X \setminus (X \setminus \mathcal{M}_{\mu}) = \mathcal{M}_{\mu}$.

(11) By Theorem 3.1 $\psi_{\mathcal{F}}(\emptyset) = X \setminus \Omega(X) = (\mathcal{M}_{\mu} \cup (X \setminus \mathcal{M}_{\mu})) \setminus \Omega(X) = (\mathcal{M}_{\mu} \setminus \Omega(X)) \cup ((X \setminus \mathcal{M}_{\mu}) \setminus \Omega(X)) = \mathcal{M}_{\mu} \setminus \Omega(X)$, since $\Omega(X)$ is μ -closed by Proposition 2.1 and $X \setminus \mathcal{M}_{\mu}$ is the smallest μ -closed set contained in every μ -closed set.

Theorem 3.3. Let (X, μ) be a quasi-topological space and \mathcal{F} be a filter on X. If $A, B \subset X$, then $\psi_{\mathcal{F}}(A \cap B) = \psi_{\mathcal{F}}(A) \cap \psi_{\mathcal{F}}(B)$.

Proof. Let $x \in \psi_{\mathcal{F}}(A) \cap \psi_{\mathcal{F}}(B)$. Then there exist μ -open sets U and V containing x such that $U \setminus A \notin \mathcal{F}$ and $U \setminus B \notin \mathcal{F}$. If $G = U \cap V$, then G is a μ -open set containing x such that $G \setminus A \notin \mathcal{F}$ and $G \setminus B \notin \mathcal{F}$. Now $G \setminus (A \cap B) = (G \setminus A) \cup (G \setminus B) \notin \mathcal{F}$ and so $x \in \psi_{\mathcal{F}}(A \cap B)$.

Theorem 3.4. Let (X, μ, \mathcal{F}) be a FGTS. If $\sigma = \{A \subset X : A \subset \psi_{\mathcal{F}}(A)\}$, then σ is called a generalized topology on X and $\sigma = \mu^{\Omega}$.

Proof. Let $A \in \sigma$. Then $A \subset \psi_{\mathcal{F}}(A) = X \setminus \Omega(X \setminus A)$ which implies that $\Omega(X \setminus A) \subset (X \setminus A)$. Therefore, $X \setminus A$ is μ^{Ω} -closed and so A is μ^{Ω} -open. Therefore, $\sigma \subset \mu^{\Omega}$.

Conversely, $A \in \mu^{\Omega}$ and $x \in A$. Then there exists $M \in \mu$ and $F \notin \mathcal{F}$ such that $x \in M \setminus F \subset A$. Now $M \setminus F \subset A$ implies that $M \setminus A \subset F$ which in turn implies $M \setminus A \notin \mathcal{F}$ and so $x \in \psi_{\mathcal{F}}(A)$. Therefore, $\mu^{\Omega} \subset \sigma$. Hence $\sigma = \mu^{\Omega}$. Since μ^{Ω} is generalized topology [1], it follows that σ is a generalized topology.

Theorem 3.5. Let (X, μ, \mathcal{F}) be a GFTS and $A \subset X$. Then the following statement hold.

(1) $\psi_{\mathcal{F}}(A) = \bigcup \{ U \in \mu : U \setminus A \notin \mathcal{F} \}.$

(2) $\psi_{\mathcal{F}}(A) = \bigcup \{ U \in \mu : (U \setminus A) \cup (A \setminus U) \notin \mathcal{F} \}$, if A is μ -open.

Proof. (1). Follows immediately from the definition of $\psi_{\mathcal{F}}$.

(2). Denote $\cup \{U \in \mu : (U \setminus A) \cup (A \setminus U) \notin \mathcal{F}\}$ by A_1 . Then $A_1 \subset \psi_{\mathcal{F}}(A)$ for every $A \subset X$. Assume $A \in \mu$ and $x \in \psi_{\mathcal{F}}(A)$. Then there exists $M \in \mu$ such that $x \in M$ and $M \setminus A \notin \mathcal{F}$. If $M \cup A = U$, then $U \in \mu$ and $x \in U$. Now $(U \setminus A) \cup (A \setminus U) = (M \setminus A) \cup \emptyset = M \setminus A$ implies $(U \setminus A) \cup (A \setminus U) \notin \mathcal{F}$ and so $x \in A_1$. Hence $\psi_{\mathcal{F}}(A) = A_1$.

Theorem 3.6. Let (X, μ) be a quasi-topological space with a filter \mathcal{F} . Then the following statements are equivalent:

(1) $\mu \setminus \{\emptyset\} \subseteq \mathcal{F}$.

- (2) $\psi_{\mathcal{F}}(\emptyset) = \emptyset$.
- (3) If $A \subseteq X$ is μ -closed, then $\psi_{\mathcal{F}}(A) \setminus A = \emptyset$.
- (4) If $A \subseteq X$, then $i_{\mu}(c_{\mu}(A)) = \psi_{\mathcal{F}}(i_{\mu}(c_{\mu}(A)))$ (where i_{μ} denotes the interior operator of (X, μ)).
- (5) If $A = i_{\mu}(c_{\mu}(A))$, then $A = \psi_{\mathcal{F}}(A)$.
- (6) If $U \in \mu$, then $\psi_{\mathcal{F}}(U) \subseteq i_{\mu}(c_{\mu}(U)) \subseteq \Omega(U)$.

Proof. (1) \Rightarrow (2). $\psi_{\mathcal{F}}(\emptyset) = \bigcup \{U \in \mu : U \setminus \emptyset = U \notin \mathcal{F}\} = \emptyset$, since $\mu \setminus \{\emptyset\} \subset \mathcal{F}$. (2) \Rightarrow (3). Suppose $A \subseteq X$ is μ -closed. If $x \in \psi_{\mathcal{F}}(A) \setminus A$, there exists a $U_x \in \mu$ containing x such that $U_x \setminus A \notin \mathcal{F}$. But $U_x \setminus A \notin \mu$ implies that $U_x \setminus A \in \{U : U \notin \mathcal{F}\}$ and so $\psi_{\mathcal{F}}(\phi) \neq \emptyset$, a contradiction. Therefore, $\psi_{\mathcal{F}}(A) \setminus A = \emptyset$.

(3) \Rightarrow (4). Since $i_{\mu}(c_{\mu}(A)) \in \mu$ for every subset A of X, by Theorem 3.2(5), $i_{\mu}(c_{\mu}(A)) \subseteq \psi_{\mathcal{F}}(i_{\mu}(c_{\mu}(A)))$. By (3) $\psi_{\mathcal{F}}(c_{\mu}(A)) \subseteq c_{\mu}(A)$ and so $\psi_{\mathcal{F}}(c_{\mu}(A)) = i_{\mu}(\psi_{\mathcal{F}}(c_{\mu}(A))) \subseteq i_{\mu}(c_{\mu}(A))$. By Theorem 3.1, $\psi_{\mathcal{F}}(i_{\mu}(c_{\mu}(A)) \subseteq \psi_{\mathcal{F}}(c_{\mu}(A)) \subseteq i_{\mu}(c_{\mu}(A))$ and so $i_{\mu}(c_{\mu}(A)) = \psi_{\mathcal{F}}(i_{\mu}(c_{\mu}(A)))$.

(4) \Rightarrow (5). Let $A = i_{\mu}(c_{\mu}(A))$. Then $A = i_{\mu}(c_{\mu}(A))$ and so $\psi_{\mathcal{F}}(A) = \psi_{\mathcal{F}}(i_{\mu}(c_{\mu}(A))) = i_{\mu}(c_{\mu}(A)) = A$.

(5) \Rightarrow (6). Let $U \in \mu$. Then $\psi_{\mathcal{F}}(i_{\mu}(c_{\mu}(i_{\mu}(c_{\mu}(U))))) = \psi_{\mathcal{F}}(i_{\mu}(c_{\mu}(U))) = i_{\mu}(c_{\mu}(U))$. Implies that $\psi_{\mathcal{F}}(U) \subseteq i_{\mu}(c_{\mu}(U))$, since $\psi_{\mathcal{F}}(U) \subseteq \psi_{\mathcal{F}}(i_{\mu}(c_{\mu}(U)))$.

Again $i_{\mu}(c_{\mu}(U)) \subseteq c_{\mu}(U) \subseteq c_{\mu}(\Omega(U)) = \Omega(U)$. (6) \Rightarrow (1). Proof is obvious from $U \subseteq \psi_{\mathcal{F}}(U)$ and the Corollary 2.1.

Theorem 3.7. Let (X, μ, \mathcal{F}) be a GFTS. Then for $A \subseteq X$, $i_{\mu}(A) \subseteq \psi_{\mathcal{F}}(A)$

Proof. Let $x \in i_{\mu}(A)$, then there exists $M \in \mu$ containing x such that $M \subseteq A$. This implies that $M \setminus A = \emptyset \notin \mathcal{F}$ and hence by definition of $\psi_{\mathcal{F}}(A)$, $x \in \psi_{\mathcal{F}}(A)$.

The revers inclusion of the above theorem may be not hold as shown in the next example:

Example 3.2. Let $X = \{a, b, c\}$, a GT $\mu = \{\emptyset, \{a, c\}\}$ and $\mathcal{F} = \{\{a, b\}, X\}$. Then $\psi_{\mathcal{F}}(\{a\}) = X \setminus \Omega(X \setminus \{a\}) = X \setminus \Omega(\{b, c\}) = X \setminus \emptyset = X$ and $i_{\mu}(\{a\}) = \emptyset$. Therefore, $i_{\mu}(A) \neq \psi_{\mathcal{F}}(A)$.

Definition 3.1. Let (X, μ, \mathcal{F}) be a GFTS. We say the μ is \mathcal{F} -compatible with a filter \mathcal{F} , denoted $\mu \sim \mathcal{F}$, if the following holds for every $A \subseteq X$, if for every $x \in A$ there exists $M \in \mu(x)$ such that $M \cap A \notin \mathcal{F}$, then $A \notin \mathcal{F}$.

Theorem 3.8. Let (X, μ, \mathcal{F}) be a GFTS. Then the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ hold.

92

- (1) $\mu \sim \mathcal{F}$;
- (2) If a subset A of X has a cover of μ-open sets each of whose intersection with A is not in F, then A ∉ F;
- (3) For every $A \subseteq X$, $A \cap \Omega(A) = \emptyset$ implies that $A \notin \mathcal{F}$;
- (4) For every $A \subseteq X$, $A \setminus \Omega(A) \notin \mathcal{F}$.

Proof. (1) \Rightarrow (2): The proof is obvious.

(2) \Rightarrow (3): Let $A \subseteq X$ and $x \in A$. Then $x \notin \Omega(A)$ and there exists $V_x \in \mu(x)$ such that $V_x \cap A \notin \mathcal{F}$. Therefore, we have $A \subseteq \bigcup \{V_x : x \in A\}$ and $V_x \in \mu(x)$ and by (2) $A \notin \mathcal{F}$.

(3) \Rightarrow (4): For any $A \subseteq X$, $A \setminus \Omega(A) \subseteq A$ and $(A \setminus \Omega(A)) \cap \Omega(A \setminus \Omega(A)) \subseteq (A \setminus \Omega(A)) \cap \Omega(A) = \emptyset$. By (3), $A \setminus \Omega(A) \notin \mathcal{F}$.

Theorem 3.9. Let (X, μ, \mathcal{F}) be a GFTS. If μ is \mathcal{F} -compatible with \mathcal{F} . If for every $A \subseteq X$, $A \cap \Omega(A) = \emptyset$ implies that $\Omega(A) = X \setminus \mathcal{M}_{\mu}$, then $\Omega(A \setminus \Omega(A)) = X \setminus \mathcal{M}_{\mu}$.

Proof. First, we show that (1) holds if μ is \mathcal{F} -compatible with \mathcal{F} . Let A be any subset of X and $A \cap \Omega(A) = \emptyset$. By Theorem 3.8, $A \notin \mathcal{F}$ and by Proposition 2.1, $\Omega(A) = X \setminus \mathcal{M}_{\mu}$.

Assume that for every $A \subseteq X$, $A \cap \Omega(A) = \emptyset$ implies that $\Omega(A) = X \setminus \mathcal{M}_{\mu}$. Let $B = A \setminus \Omega(A)$, then

$$B \cap \Omega(B) = (A \setminus \Omega(A)) \cap \Omega(A \setminus \Omega(A))$$
$$= (A \cap (X \setminus \Omega(A))) \cap (A \cap \Omega(X \setminus \Omega(A)))$$
$$\subseteq [A \cap (X \setminus \Omega(A))] \cap [\Omega(A) \cap (\Omega(X \setminus \Omega(A)))] = \emptyset.$$

By (1), we have $\Omega(B) = X \setminus \mathcal{M}_{\mu}$. Hence $\Omega(A \setminus \Omega(A)) = X \setminus \mathcal{M}_{\mu}$.

Theorem 3.10. Let (X, μ, \mathcal{F}) be a GFTS. Then $\mu \sim \mathcal{F}$ if and only if $\psi_{\mathcal{F}}(A) \setminus A \notin \mathcal{F}$ for every $A \subseteq X$.

Proof. Necessity. Assume $\mu \sim \mathcal{F}$ and let $A \subseteq X$. Observe that $x \in \psi_{\mathcal{F}}(A) \setminus A$ if and only if $x \notin A$ and $x \notin \Omega(X \setminus A)$ if and only if $x \notin A$ and there exists $U_x \in \mu(x)$ such that $U_x \setminus A \notin \mathcal{F}$ if and only if there exists $U_x \in \mu(x)$ such that $x \in U_x \setminus A \notin \mathcal{F}$. Now, for each $x \in \psi_{\mathcal{F}}(A) \setminus A$ and $U_x \in \mu(x)$, $U_x \cap (\psi_{\mathcal{F}}(A) \setminus A) \notin \mathcal{F}$ by heredity and hence $\psi_{\mathcal{F}}(A) \setminus A \notin \mathcal{F}$.

Sufficiency. Let $A \subseteq X$ and assume that for each $x \in A$ there exists $U_x \in \mu(x)$ such that $U_x \cap A \notin \mathcal{F}$. Observe that $\psi_{\mathcal{F}}(X \setminus A) \setminus (X \setminus A) = A \setminus \Omega(A) = \{x \in X : \text{there exists } U_x \in \mu(x) \text{ such that } x \in U_x \cap A \notin \mathcal{F}\}$. Thus we have $A \subseteq \psi_{\mathcal{F}}(X \setminus A) \setminus (X \setminus A) \notin \mathcal{F}$ and hence $A \notin \mathcal{F}$ by heredity of \mathcal{F} .

Theorem 3.11. Let (X, μ, \mathcal{F}) be a GFTS with $\mu \sim \mathcal{F}$, $A \subseteq X$. If N is a nonempty μ -open subset of $\Omega(A) \cap \psi_{\mathcal{F}}(A)$, then $N \setminus A \notin \mathcal{F}$ and $N \cap A \in \mathcal{F}$.

Proof. If $N \subseteq \Omega(A) \cap \psi_{\mathcal{F}}(A)$, then $N \setminus A \subseteq \psi_{\mathcal{F}}(A) \setminus A \notin \mathcal{F}$ by Theorem 3.10 and hence $N \setminus A \notin \mathcal{F}$ by heredity. Since $N \in \mu \setminus \{\emptyset\}$ and $N \subseteq \Omega(A)$, we have $N \cap A \in \mathcal{F}$ by the Definition of $\Omega(A)$.

We shall say that a filter \mathcal{F} is \mathcal{F} -codense if and only if $\mu \setminus \{\emptyset\} \subseteq \mathcal{F}$.

Lemma 3.2. Let μ be a GT in X and \mathcal{F} a filter on X. $\psi_{\mathcal{F}}(\emptyset) = \emptyset$ if and only if a filter \mathcal{F} is \mathcal{F} -codense.

Proof. Since $\psi_{\mathcal{F}}(\emptyset) = X \setminus \Omega(X)$, $\psi_{\mathcal{F}}(\emptyset) = \emptyset$ if and only if $X = \Omega(X)$ and hence by Lemma 2.1 $\psi_{\mathcal{F}}(\emptyset) = \emptyset$ if and only if a filter \mathcal{F} is \mathcal{F} -codense.

Proposition 3.3. Let μ be a *GT* in *X* and \mathcal{F} a filter on *X*. Then the following are equivalent.

- (1) \mathcal{F} is \mathcal{F} -codense.
- (2) $\Omega(\mathcal{M}_{\mu}) = X.$
- (3) $\psi_{\mathcal{F}}(X \setminus \mathcal{M}_{\mu}) = \emptyset.$

Proof. (1) \Leftrightarrow (2). Suppose $x \in X$ and $x \notin \Omega(\mathcal{M}_{\mu})$. Then there exists $M \in \mu$ such that $x \in M$ and $M \cap \mathcal{M}_{\mu} \notin \mathcal{F}$ which implies that $M \notin \mathcal{F}$ and hence $M = \emptyset$ since \mathcal{F} is \mathcal{F} codense which is a contradiction. Therefore, $x \in \Omega(\mathcal{M}_{\mu})$. Hence $\Omega(\mathcal{M}_{\mu}) = X$. Conversely,
suppose $M \in \mu \setminus \{\emptyset\}$ and $M \notin \mathcal{F}, M \in \mu$. If $M \neq \emptyset$, then there exists $x \in M$ and hence $x \in \Omega(\mathcal{M}_{\mu})$ which implies that $M \cap \mathcal{M}_{\mu} = M \in \mathcal{F}$, a contradiction. Therefore, $\mu \setminus \{\emptyset\} \subseteq \mathcal{F}$.

(2) \Leftrightarrow (3). It is obvious from $\psi_{\mathcal{F}}(X \setminus \mathcal{M}_{\mu}) = X \setminus \Omega(X \setminus (X \setminus \mathcal{M}_{\mu})) = X \setminus \Omega(\mathcal{M}_{\mu})$. Hence (2) and (3) are equivalent.

Acknowledgement. Authors are thankful to the referees for their valuable comments.

REFERENCES

- [1] Al-omari, A. and Modak, S., Filter on generalized topological spaces, Scientia Magna, 9 (2013), 62–71
- [2] Cásászár, Á., Generalized open sets, Acta Math. Hungar, 75 (1997), No. 1-2, 65-87
- [3] Cásászár, Á., Generalized topology, generalized continuity, Acta Math. Hungar, 96 (2002), 351–357
- [4] Cásászár, Á., Remarks on quasi-topologies, Acta Math. Hungar, 119 (2008), No. 1-2, 197-200

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GOUR BANGA P. O. MOKDUMPUR, 732 103 MALDA, INDIA Email address: spmodak2000@yahoo.co.in

DEPARTMENT OF MATHEMATICS AL AL-BAYT UNIVERSITY P.O. BOX 130095, MAFRAQ 25113, JORDAN *Email address*: omarimutahl@yahoo.com