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On a new operator on filter generalized topological spaces

SHYAMAPADA MODAK and AHMAD AL-OMARI

ABSTRACT. The purpose of this paper is to introduce the notion of ¥+ operator induced by a given filter F
and a generalized topology ., and to investigate some properties of this operator. We shall further discuss some
characterizations of this operator with the help of F-codeness and F-compatibility.

1. INTRODUCTION

Let X be a nonempty set and let p(X) be the power set of X. Then p C p(X) is called
a generalized topology (briefly GT) [2] on X iff ) € pand G; € pfori € I # () implies
G = Uie1G; € p. We call the pair (X, p) a generalized topological space (briefly GTS) on X.
A GT p is said to be a quasi-topology [4] on X if M, N € pimplies M NN € p.
A filter F (not containing the empty set) on X is a nonempty family FC p(X) satisfying
the following conditions:
(1) Ac B, A€ Fimplies B € F.
(2) A, Be Fimplies ANB € F.
Let (X, 1) be a GTS and F be a filter on X, then (X, p1, ) is called a filter generalized
topological space (briefly FGTS).
In [1], Al-Omari and Modak introduced an operator 2 : p(X) — p(X) by using a GT p
with a filter 7. They also defined an operator ¢ : p(X) — p(X) by using the operator
(i. e, for A C X, ¢ (A) = AUQ(A)), which is monotone, enlarging and idempotent. They
showed that the operator ¢’ induces another generalized topology 1 satisfying y C uf.
Some properties of operators (2 and ¢! were investigated in [1].
The purpose of this paper is to introduce another operator ¢ and investigate some of
its properties.

2. PRELIMINARIES

Let (X, 1, F) be a FGTS. A mapping 2 : p(X) — p(X) is defined as follows: Q(A4) C X
by z € Q(A)ifand onlyif x € M € pimply ANU € F. If M, = U{M : M € p} and
x ¢ M, then by definition z € Q(A).

The mapping is called the local function associated with the filter 7 and generalized topol-
08y -
Proposition 2.1. [1] Let 4 bea GT onaset X, F, J filters on X and A, B be subsets of X. The
following properties hold:
(1) If A C B, then Q(A) C Q(B),
(2) If T C F, then Q(A)(T) C QA)(F),
(3) Q(A) = c,(QUA)) C cu(A) (where c,, denotes the closure operator of (X, 1) ),
(4) Q(A)UQ(B) CQAUB)
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(5) Q(Q(A)) € QA).
(6) QUA) is a p-closed set.

Proposition 2.2. [1] Let (X, u, F) bea FGTS. If M € u, M N A ¢ F imply M N Q(A) = 0.
Hence Q(A) = X \ M, if A¢ F.

Lemma 2.1. [1] Let (X, pu, F) be a FGTS. Q(X) = X ifand only if u \ {0} C F.

Corollary 2.1. Let (X, p1) be a quasi-topological space with a filter F. Then p\ {0} C F if and
only if U C QU), for U € p.

Proof. Suppose p\ {0} C F. ThenforU € pand x € U, any U, € p(x), UNU, € p. This
implies that U N U, € F, and so = € Q(U).

Conversely suppose that U C Q(U). Thenforz € U C Q(U), U,NU € F,where U, € u(z).
Therefore, U € F. O

3. Y r operator

Let F be a filter on a space (X, 11), an operator ¢ x : p(X) — p(X) is defined as follows:
for every A € p(X), ¥r(A) = {z € X : there exits M € psuchthat M\ A ¢ F}.

Before discussing the properties of 1)+ operator, we shall give an Example to illustrate
the difference between the two operators:

Example 3.1. Let X = {a,b,c},aGT p = {0, {a,c}} and F = {{a,b}, X }. Then Q({b, c}) =
0, but pr({b,c}) = X\ QX \{b,c}) =X \Q{a}) =X \0=X.

The following theorem gives a characterization of the function .
Theorem 3.1. Let (X, p, F) bea FGTS. Then ¢r(A) = X \ Q(X \ A).

Proof. Suppose z € X \ (X \ A). Thenz ¢ Q(X \ A) and so there exists M € p containing
x such that M N (X \ A) ¢ F which implies that M \ A ¢ F. Therefore, X \ Q(X \ 4) C
{z € X : there exists M € p(x) such that M \ A ¢ F}.

Conversely, assume that y € 1r(A). Then there exists M € p containing y such that
M\A¢ F. Since M\ A¢ F, MN(X\A) ¢ Fwhichimplies thaty ¢ (X \ A). Therefore
y e X\ QUX\A). Thusr(A) =X\ QX \ A). O

Theorem 3.2. Let (X, ) be a space with a filter F and A, B C X. Then the following hold:

(1) x(A) is y-open.
(2) QA) = X\ x(X \ A).
(3) If A C B, then tx(A) C ¥5(B).
(4) vr(ANB) C Yr(A) NYr(B).
(5) IfU € 18, then U C ¢=(U).
(6) vr(A) CYr(¥r(A)).
(7) 6r(A) = Gr(br(A)) if and only iF X\ 4) = QX \ A))
(8) ANyz(A) = il(A) (where i} denotes the interior operator of (X, u?)).
9) r(X) = X or M.

(10) For X\ K ¢ F, ¢yr(K) = M,,.

(11) Yr(0) = M, \ QX).

Proof. (1) Proof is obvious from Proposition 2.1.

(2) Obvious from definition of 1) .
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(3) Proof is obvious from Proposition 2.1.
(4) Obvious from (3).

(5)If U € u, then X \ U is pu**-closed. Therefore Q(X \ U) C X \ U which implies that
X\(X\U)cX\QX\U)andsoU C ¢£(U).

(6) Obvious from the fact that 1 (A) € u.

(7) Suppose (X \ A) = QX \ A)). Then yr(4) = X \ QX \ A) implies that
Yr(Yr(A)) = X\ QUX \Pr(4) = X\ QQUX\ 4)) = X\ QX \ 4) = ¢x(A).

Conversely, ¥r(A) = Yr(¥r(A)) implies that X \ Q(X \ 4A) = X\ QX \ ¥r(4)) =
X\ QX \ A)). Therefore, Q(X \ A) = Q(QX \ 4)).

8) Letx € AnNeyxr(A). Thenx € Aand z € ¢Yx(A). Since x € r(A), there ex-
ists M, € p containing x such that M, \ A ¢ F. Therefore, x € M, \ (M, \ A) C A
Since 8 = {V \ F : Visap-opensetof (X,u),F ¢ F} is a basis for u (see [1]) and
M, \ (M, \ A) € B, x € i(A), where i§}(A) is the interior operator in (X, u?). Conversely,
assume that = € zﬁ(A) Then there exists a p-open set M, containing x and F' € F such
thatz € M, \ F' C A. Now M, \ F C A implies that M, \ A C F which turn implies that
My \A¢ Fandsox € pr(A). Therefore z € ANyr(A). Hence ANyr(A) = ZS(A)

(9) Since ) ¢ F by Proposition 2.2 we have Q(0) = X \ M,,. If u is strong, then
M, =X, and pr(X) =X\ Q0) = X\ (X \ M,) =X. Otherwise »(X) = X \ Q) =
X\ (X \ M) = M,

(10) For X \ K ¢ F, by Proposition2.2 x(K) = X \Q(X \ K) = X \ (X \M,) = M,.

(11) By Theorem 3.1 ¢ () = X \ Q(X) = (M, U (X \ M) \ Q(X) = (M, \ QX)) U
(X \ M)\ QX)) = M, \ Q(X), since Q(X) is p-closed by Proposition 2.1 and X \ M,
is the smallest p-closed set contained in every p-closed set. (]
Theorem 3.3. Let (X, ) be a quasi-topological space and F be a filter on X. If A, B C X, then
Yr(AN B) =¢r(A) NYr(B).

Proof. Letz € ¢x(A) N ¢x(B) . Then there exist u-open sets U and V containing z such
that UNA ¢ Fand U\ B ¢ F. f G = U NV, then G is a y-open set containing z such
that G\A ¢ Fand G\ B ¢ F. Now G\ (ANB) = (G\A)U(G\ B) ¢ F and so
z €Yr(ANB). ([l

Theorem 3.4. Let (X, u,F) bea FGTS. Ifo = {A C X : A C ¢r(A)}, then o is called a
generalized topology on X and o =

Proof. Let A € 0. Then A C ¥r(A) = X\ Q(X \ A) which implies that Q(X \ A) C (X\ 4).
Therefore, X \ A is u-closed and so A is f*-open. Therefore, o C pft.

Conversely, A € uf* and # € A. Then there exists M € pand F ¢ F such that z €
M\ F Cc A. Now M\ F C Aimplies that M \ A C F which in turn implies M \ A ¢ F
and so x € ¥x(A). Therefore, u* C o. Hence o = u*’. Since u* is generalized topology
[1], it follows that o is a generalized topology. O

Theorem 3.5. Let (X, u, F) bea GFTS and A C X. Then the following statement hold.
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(1) Yr(A)=U{Uecpu: U\A¢F}.
(2) vr(A)=U{U epu: (U\A)U(A\U) ¢ F},if Ais u-open.

Proof. (1). Follows immediately from the definition of ¢ .

(2). Denote U{U € p: (U\NA)U(A\U) ¢ F} by A;1. Then A; C ¢r(A) forevery A C X.
Assume A € pand x € x(A). Then there exists M € psuchthatz € M and M \ A ¢ F.
IfMUA=U,thenU € pandz € U. Now (U\ A)U(A\U)=(M\AuUuh=M\A
implies (U\ A)U(A\U) ¢ Fandsox € A;. Hence ¢z (A) = A;. O

Theorem 3.6. Let (X, i) be a quasi-topological space with a filter F. Then the following state-
ments are equivalent:
(1) p\ {0} C F.
(2) Yr(0)=0.
(3) If A C X is p-~closed, then ¢ (A) \ A = (.
(4) If A C X, then i,(c,(A)) = ¥r(i,(cu(A))) (where i, denotes the interior operator of
(X, 1) ).
(5) If A=1i,(cu(A)), then A =pr(A).
(6) IfU € p, then yx(U) Ci,(cu(U)) € Q).
Proof. (1)= 2). vx0) =U{U ep: U\ND=U ¢ F} =0,since p\ {0} C F.
(2) = (3). Suppose A C X is p-closed. If x € ¢x(A) \ A, there exists a U, € p containing =

suchthatU,\ A ¢ F.ButU, \ A ¢ pimpliesthat U, \ A € {U: U ¢ F}and so ¢x(¢) # 0,
a contradiction. Therefore, ¢ (A) \ A = 0.

(3) = (4). Since i, (c,(A)) € p for every subset A of X, by Theorem 3.2(5), i,,(c.(A)) C
Vr(in(cu(A))). By B) vr(cu(A)) € cu(A) and so r(cu(A)) = in(r(cu(A))) S in(cu(A)).
By Theorem 3.1, ¢5 (in(cu(A)) € ¥r(cu(A)) S inlcu(A)) and soiy(cu(A)) = ¥r(in(cu(A))).

@)= (5). Let A = i,(c,(A)). Then A = i,(c,(A)) and s0 tix(A) = Vr(i,(c.(A))) =
in(cu(A)) = A

(5)=(6). Let U € p. Then ¢ (iy(cu(in(cu(U))))) = ¥x(in(cu(U))) = iu(cu(U)). Implies
that ¢+(U) C i,(c,(U)), since v x(U) C Y (in(cu(U))).

Again i, (c,(U)) C c,(U) C e (QUU)) = QU).
(6)= (1). Proof is obvious from U C ¢ x(U) and the Corollary 2.1.

Theorem 3.7. Let (X, u, F) be a GFTS. Then for A C X, i, (A) C ¥r(A)

Proof. Let z € i,(A), then there exists M € p containing z such that M C A. This implies
that M \ A = 0 ¢ F and hence by definition of ¢z (A), z € ¥ x(A). O

The revers inclusion of the above theorem may be not hold as shown in the next exam-
ple:
Example 3.2. Let X = {a,b,c},aGT p = {0,{a,c}} and F = {{a,b}, X}. Then ¢ +({a}) =
X\ QUX\{a}) =X\ Q{b,c}) = X\ 0 =X and i, ({a}) = 0. Therefore, i,,(A) # Yr(A).

Definition 3.1. Let (X, u, F) be a GFTS. We say the p is F-compatible with a filter F,
denoted p ~ F, if the following holds for every A C X, if for every € A there exists
M € p(z)suchthat M N A ¢ F,then A ¢ F.

Theorem 3.8. Let (X, i, F) be a GFTS. Then the implications (1) = (2) = (3) = (4) hold.
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(1) p~F;

(2) If asubset Aof X has a cover of p-open sets each of whose intersection with A is not in F,
then A ¢ F;

(3) Forevery A C X, ANQ(A) = 0 implies that A ¢ F;

(4) Forevery AC X, A\ Q(A) ¢ F.

Proof. (1) = (2): The proof is obvious.

(2) = (3): Let A C X and z € A. Then = ¢ Q(A) and there exists V,, € u(zx) such that
Ve N A ¢ F. Therefore, we have A C U{V, : z € A} and V, € u(z) and by (2) A ¢ F.

(3)= (4): Forany A C X, A\ Q(A) C Aand (A \ Q(A)) NQ(A\ Q(A)) C (4\ QA) N
Q(A) = 0. By (3), A\ Q(A) ¢ F. O

Theorem 3.9. Let (X, u, F) be a GFTS. If p is F-compatible with F. If for every A C X,
ANQ(A) = 0 implies that Q(A) = X \ M, then Q(A\ Q(A)) = X \ M,,.

Proof. First, we show that (1) holds if i is F-compatible with F. Let A be any subset of X
and AN Q(A) = 0. By Theorem 3.8, A ¢ F and by Proposition 2.1, Q(A4) = X \ M,,.

Assume that for every A C X, AN Q(A) = 0 implies that Q(A) = X \ M. Let
B =A\Q(A), then

BNQ(B) =(A\ 9(4)) N QA 2(4))
=(AN X\ Q(A))) N (ANQX\ Q(A4)))
AN X\ QAN [2(A) N (QX\Q(A)))] = 0.

By (1), we have Q(B) = X \ M,,. Hence (A4 \ Q(A4)) = X \ M,,. O

Theorem 3.10. Let (X, pu, F) be a GFTS. Then p ~ F if and only if vz (A) \ A ¢ F for every
ACX.

Proof. Necessity. Assume p ~ F and let A C X. Observe that z € x(A) \ A if and only
ifr ¢ Aand z ¢ Q(X \ A) if and only if x ¢ A and there exists U, € u(z) such that
U, \ A ¢ F if and only if there exists U, € pu(x) such thatz € U, \ A ¢ F. Now, for each
z€Yr(A)\Aand U, € p(x), U, N (Yr(A)\ A) ¢ F by heredity and hence ¢z (A)\ A ¢ F
by assumption that p ~ F.

Sufficiency. Let A C X and assume that for each z € A there exists U, € p(x) such
that U, N A ¢ F. Observe that (X \ A) \ (X \ 4) = A\ Q(A) = {z € X : there exists
U, € u(z) such thatz € U, N A ¢ F}. Thuswehave A C (X \ A)\ (X \ A) ¢ Fand
hence A ¢ F by heredity of F. O

Theorem 3.11. Let (X, p, F) bea GFTS with p ~ F, A C X. If N is a nonempty p-open subset
of QA)NYr(A), then N\ A¢ Fand NNA e F.

Proof. If N C Q(A)N¢x(A), then N\ A C ¢r(A) \ A ¢ F by Theorem 3.10 and hence
N\ A ¢ F by heredity. Since N € p\ {0} and N C Q(A), we have N N A € F by the
Definition of 2(A). O

We shall say that a filter F is F-codense if and only if u \ {0} C F.

Lemma 3.2. Let pbe a GT in X and F a filter on X. ¢z(0) = 0 if and only if a filter F is
F-codense.
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Proof. Since Y7 (0) = X \ Q(X), v#(0) = 0 if and only if X = Q(X) and hence by Lemma
2.1 ¢x(0) = 0if and only if a filter F is F-codense. O

Proposition 3.3. Let pubea GT in X and F a filter on X. Then the following are equivalent.
(1) F is F-codense.
(2) QM,) =X.
(3) Yr(X\M,)=0.

Proof. (1) & (2). Suppose z € X and = ¢ Q(M,). Then there exists M € p such that
z € M and M N M, ¢ F which implies that M ¢ F and hence M = § since F is F-
codense which is a contradiction. Therefore, z € Q(M,,). Hence Q(M,,) = X. Conversely,
suppose M € p\ {0} and M ¢ F, M € u. If M # (), then there exists € M and hence
x € Q(M,,) which implies that M N M, = M € F, a contradiction. Therefore, 1\ {0} C F.

(2) & (3). Itis obvious from ¢ (X \ M) = X \ QX \ (X \M,)) = X\ Q(M,). Hence
(2) and (3) are equivalent. |
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