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On a new operator on filter generalized topological spaces

SHYAMAPADA MODAK and AHMAD AL-OMARI

ABSTRACT. The purpose of this paper is to introduce the notion of ψF operator induced by a given filter F
and a generalized topology µ, and to investigate some properties of this operator. We shall further discuss some
characterizations of this operator with the help of F -codeness and F -compatibility.

1. INTRODUCTION

Let X be a nonempty set and let ℘(X) be the power set of X . Then µ ⊆ ℘(X) is called
a generalized topology (briefly GT) [2] on X iff ∅ ∈ µ and Gi ∈ µ for i ∈ I 6= ∅ implies
G = ∪i∈IGi ∈ µ. We call the pair (X,µ) a generalized topological space (briefly GTS) on X .
A GT µ is said to be a quasi-topology [4] on X if M, N ∈ µ implies M ∩N ∈ µ.
A filter F (not containing the empty set) on X is a nonempty family F⊆ ℘(X) satisfying
the following conditions:

(1) A ⊂ B, A ∈ F implies B ∈ F .
(2) A, B ∈ F implies A ∩B ∈ F .

Let (X,µ) be a GTS and F be a filter on X , then (X,µ,F) is called a filter generalized
topological space (briefly FGTS).
In [1], Al-Omari and Modak introduced an operator Ω : ℘(X) → ℘(X) by using a GT µ
with a filter F . They also defined an operator cΩ : ℘(X)→ ℘(X) by using the operator Ω
(i. e., forA ⊂ X, cΩ(A) = A∪Ω(A)), which is monotone, enlarging and idempotent. They
showed that the operator cΩ induces another generalized topology µΩ satisfying µ ⊂ µΩ.
Some properties of operators Ω and cΩ were investigated in [1].

The purpose of this paper is to introduce another operator ψF and investigate some of
its properties.

2. PRELIMINARIES

Let (X,µ,F) be a FGTS. A mapping Ω : ℘(X)→ ℘(X) is defined as follows: Ω(A) ⊆ X
by x ∈ Ω(A) if and only if x ∈ M ∈ µ imply A ∩ U ∈ F . IfMµ = ∪{M : M ∈ µ} and
x /∈Mµ then by definition x ∈ Ω(A).
The mapping is called the local function associated with the filterF and generalized topol-
ogy µ.
Proposition 2.1. [1] Let µ be a GT on a set X , F , J filters on X and A, B be subsets of X . The
following properties hold:

(1) If A ⊆ B, then Ω(A) ⊆ Ω(B),
(2) If J ⊆ F , then Ω(A)(J ) ⊆ Ω(A)(F),
(3) Ω(A) = cµ(Ω(A)) ⊆ cµ(A) (where cµ denotes the closure operator of (X,µ) ),
(4) Ω(A) ∪ Ω(B) ⊆ Ω(A ∪B),
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(5) Ω(Ω(A)) ⊆ Ω(A).
(6) Ω(A) is a µ-closed set.

Proposition 2.2. [1] Let (X,µ,F) be a FGTS. If M ∈ µ, M ∩ A /∈ F imply M ∩ Ω(A) = ∅.
Hence Ω(A) = X \Mµ if A /∈ F .

Lemma 2.1. [1] Let (X,µ,F) be a FGTS. Ω(X) = X if and only if µ \ {∅} ⊆ F .

Corollary 2.1. Let (X,µ) be a quasi-topological space with a filter F . Then µ \ {∅} ⊆ F if and
only if U ⊆ Ω(U), for U ∈ µ.

Proof. Suppose µ \ {∅} ⊆ F . Then for U ∈ µ and x ∈ U , any Ux ∈ µ(x), U ∩ Ux ∈ µ. This
implies that U ∩ Ux ∈ F , and so x ∈ Ω(U).
Conversely suppose thatU ⊆ Ω(U). Then for x ∈ U ⊆ Ω(U),Ux∩U ∈ F , whereUx ∈ µ(x).
Therefore, U ∈ F . �

3. ψF operator

Let F be a filter on a space (X,µ), an operator ψF : ℘(X)→ ℘(X) is defined as follows:
for every A ∈ ℘(X), ψF (A) = {x ∈ X : there exits M ∈ µ such that M \A /∈ F}.

Before discussing the properties of ψF operator, we shall give an Example to illustrate
the difference between the two operators:

Example 3.1. LetX = {a, b, c}, a GT µ = {∅, {a, c}} and F = {{a, b}, X}. Then Ω({b, c}) =
∅, but ψF ({b, c}) = X \ Ω(X \ {b, c}) = X \ Ω({a}) = X \ ∅ = X .

The following theorem gives a characterization of the function ψF .

Theorem 3.1. Let (X,µ,F) be a FGTS. Then ψF (A) = X \ Ω(X \A).

Proof. Suppose x ∈ X \Ω(X \A). Then x /∈ Ω(X \A) and so there existsM ∈ µ containing
x such that M ∩ (X \ A) /∈ F which implies that M \ A /∈ F . Therefore, X \ Ω(X \ A) ⊂
{x ∈ X : there exists M ∈ µ(x) such that M \A /∈ F}.
Conversely, assume that y ∈ ψF (A). Then there exists M ∈ µ containing y such that
M \A /∈ F . Since M \A /∈ F , M ∩ (X \A) /∈ F which implies that y /∈ Ω(X \A). Therefore
y ∈ X \ Ω(X \A). Thus ψF (A) = X \ Ω(X \A). �

Theorem 3.2. Let (X,µ) be a space with a filter F and A,B ⊂ X . Then the following hold:
(1) ψF (A) is µ-open.
(2) Ω(A) = X \ ψF (X \A).
(3) If A ⊂ B, then ψF (A) ⊂ ψF (B).
(4) ψF (A ∩B) ⊂ ψF (A) ∩ ψF (B).
(5) If U ∈ µΩ, then U ⊂ ψF (U).
(6) ψF (A) ⊂ ψF (ψF (A)).
(7) ψF (A) = ψF (ψF (A)) if and only if Ω(X \A) = Ω(Ω(X \A)).
(8) A ∩ ψF (A) = iΩµ (A) ( where iΩµ denotes the interior operator of (X,µΩ)).
(9) ψF (X) = X orMµ.

(10) For X \K /∈ F , ψF (K) =Mµ.
(11) ψF (∅) =Mµ \ Ω(X).

Proof. (1) Proof is obvious from Proposition 2.1.

(2) Obvious from definition of ψF .
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(3) Proof is obvious from Proposition 2.1.
(4) Obvious from (3).

(5) If U ∈ µΩ, then X \ U is µΩ-closed. Therefore Ω(X \ U) ⊂ X \ U which implies that
X \ (X \ U) ⊂ X \ Ω(X \ U) and so U ⊂ ψF (U).

(6) Obvious from the fact that ψF (A) ∈ µΩ.

(7) Suppose Ω(X \ A) = Ω(Ω(X \ A)). Then ψF (A) = X \ Ω(X \ A) implies that
ψF (ψF (A)) = X \ Ω(X \ ψF (A)) = X \ Ω(Ω(X \A)) = X \ Ω(X \A) = ψF (A).

Conversely, ψF (A) = ψF (ψF (A)) implies that X \ Ω(X \ A) = X \ Ω(X \ ψF (A)) =
X \ Ω(Ω(X \A)). Therefore, Ω(X \A) = Ω(Ω(X \A)).

(8) Let x ∈ A ∩ ψF (A). Then x ∈ A and x ∈ ψF (A). Since x ∈ ψF (A), there ex-
ists Mx ∈ µ containing x such that Mx \ A /∈ F . Therefore, x ∈ Mx \ (Mx \ A) ⊂ A.
Since β = {V \ F : V is a µ-open set of (X,µ), F /∈ F} is a basis for µΩ (see [1]) and
Mx \ (Mx \A) ∈ β, x ∈ iΩµ (A), where iΩµ (A) is the interior operator in (X,µΩ). Conversely,
assume that x ∈ iΩµ (A). Then there exists a µ-open set Mx containing x and F ∈ F such
that x ∈ Mx \ F ⊂ A. Now Mx \ F ⊂ A implies that Mx \ A ⊂ F which turn implies that
Mx \A /∈ F and so x ∈ ψF (A). Therefore x ∈ A ∩ ψF (A). Hence A ∩ ψF (A) = iΩµ (A).

(9) Since ∅ /∈ F by Proposition 2.2 we have Ω(∅) = X \ Mµ. If µ is strong, then
Mµ = X , and ψF (X) = X \ Ω(∅) = X \ (X \Mµ) = X . Otherwise ψF (X) = X \ Ω(∅) =
X \ (X \Mµ) =Mµ.

(10) For X \K /∈ F , by Proposition 2.2 ψF (K) = X \Ω(X \K) = X \ (X \Mµ) =Mµ.

(11) By Theorem 3.1 ψF (∅) = X \ Ω(X) = (Mµ ∪ (X \Mµ)) \ Ω(X) = (Mµ \ Ω(X)) ∪
((X \Mµ) \ Ω(X)) =Mµ \ Ω(X), since Ω(X) is µ-closed by Proposition 2.1 and X \Mµ

is the smallest µ-closed set contained in every µ-closed set. �

Theorem 3.3. Let (X,µ) be a quasi-topological space and F be a filter on X . If A, B ⊂ X , then
ψF (A ∩B) = ψF (A) ∩ ψF (B).

Proof. Letx ∈ ψF (A) ∩ ψF (B) . Then there exist µ-open sets U and V containing x such
that U \ A /∈ F and U \ B /∈ F . If G = U ∩ V , then G is a µ-open set containing x such
that G \ A /∈ F and G \ B /∈ F . Now G \ (A ∩ B) = (G \ A) ∪ (G \ B) /∈ F and so
x ∈ ψF (A ∩B). �

Theorem 3.4. Let (X,µ,F) be a FGTS. If σ = {A ⊂ X : A ⊂ ψF (A)}, then σ is called a
generalized topology on X and σ = µΩ.

Proof. LetA ∈ σ. ThenA ⊂ ψF (A) = X \Ω(X \A) which implies that Ω(X \A) ⊂ (X \A).
Therefore, X \A is µΩ-closed and so A is µΩ-open. Therefore, σ ⊂ µΩ.

Conversely, A ∈ µΩ and x ∈ A. Then there exists M ∈ µ and F /∈ F such that x ∈
M \ F ⊂ A. Now M \ F ⊂ A implies that M \ A ⊂ F which in turn implies M \ A /∈ F
and so x ∈ ψF (A). Therefore, µΩ ⊂ σ. Hence σ = µΩ. Since µΩ is generalized topology
[1], it follows that σ is a generalized topology. �

Theorem 3.5. Let (X,µ,F) be a GFTS and A ⊂ X . Then the following statement hold.
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(1) ψF (A) = ∪{U ∈ µ : U \A /∈ F}.
(2) ψF (A) = ∪{U ∈ µ : (U \A) ∪ (A \ U) /∈ F}, if A is µ-open.

Proof. (1). Follows immediately from the definition of ψF .

(2). Denote ∪{U ∈ µ : (U \A)∪(A\U) /∈ F} byA1. ThenA1 ⊂ ψF (A) for everyA ⊂ X .
Assume A ∈ µ and x ∈ ψF (A). Then there exists M ∈ µ such that x ∈M and M \ A /∈ F .
If M ∪ A = U , then U ∈ µ and x ∈ U . Now (U \ A) ∪ (A \ U) = (M \ A) ∪ ∅ = M \ A
implies (U \A) ∪ (A \ U) /∈ F and so x ∈ A1. Hence ψF (A) = A1. �

Theorem 3.6. Let (X,µ) be a quasi-topological space with a filter F . Then the following state-
ments are equivalent:

(1) µ \ {∅} ⊆ F .
(2) ψF (∅) = ∅.
(3) If A ⊆ X is µ-closed, then ψF (A) \A = ∅.
(4) If A ⊆ X , then iµ(cµ(A)) = ψF (iµ(cµ(A))) ( where iµ denotes the interior operator of

(X,µ) ).
(5) If A = iµ(cµ(A)), then A = ψF (A).
(6) If U ∈ µ, then ψF (U) ⊆ iµ(cµ(U)) ⊆ Ω(U).

Proof. (1)⇒ (2). ψF (∅) = ∪{U ∈ µ : U \ ∅ = U /∈ F} = ∅, since µ \ {∅} ⊂ F .
(2)⇒ (3). Suppose A ⊆ X is µ-closed. If x ∈ ψF (A) \A, there exists a Ux ∈ µ containing x
such that Ux \A /∈ F . But Ux \A /∈ µ implies that Ux \A ∈ {U : U /∈ F} and so ψF (φ) 6= ∅,
a contradiction. Therefore, ψF (A) \A = ∅.

(3)⇒ (4). Since iµ(cµ(A)) ∈ µ for every subset A of X , by Theorem 3.2(5), iµ(cµ(A)) ⊆
ψF (iµ(cµ(A))). By (3) ψF (cµ(A)) ⊆ cµ(A) and so ψF (cµ(A)) = iµ(ψF (cµ(A))) ⊆ iµ(cµ(A)).
By Theorem 3.1, ψF (iµ(cµ(A)) ⊆ ψF (cµ(A)) ⊆ iµ(cµ(A)) and so iµ(cµ(A)) = ψF (iµ(cµ(A))).

(4)⇒ (5). Let A = iµ(cµ(A)). Then A = iµ(cµ(A)) and so ψF (A) = ψF (iµ(cµ(A))) =
iµ(cµ(A)) = A.

(5)⇒(6). Let U ∈ µ. Then ψF (iµ(cµ(iµ(cµ(U))))) = ψF (iµ(cµ(U))) = iµ(cµ(U)). Implies
that ψF (U) ⊆ iµ(cµ(U)), since ψF (U) ⊆ ψF (iµ(cµ(U))).

Again iµ(cµ(U)) ⊆ cµ(U) ⊆ cµ(Ω(U)) = Ω(U).
(6)⇒ (1). Proof is obvious from U ⊆ ψF (U) and the Corollary 2.1.

�

Theorem 3.7. Let (X,µ,F) be a GFTS. Then for A ⊆ X , iµ(A) ⊆ ψF (A)

Proof. Let x ∈ iµ(A), then there exists M ∈ µ containing x such that M ⊆ A. This implies
that M \A = ∅ /∈ F and hence by definition of ψF (A), x ∈ ψF (A). �

The revers inclusion of the above theorem may be not hold as shown in the next exam-
ple:

Example 3.2. Let X = {a, b, c}, a GT µ = {∅, {a, c}} and F = {{a, b}, X}. Then ψF ({a}) =
X \ Ω(X \ {a}) = X \ Ω({b, c}) = X \ ∅ = X and iµ({a}) = ∅. Therefore, iµ(A) 6= ψF (A).

Definition 3.1. Let (X,µ,F) be a GFTS. We say the µ is F-compatible with a filter F ,
denoted µ ∼ F , if the following holds for every A ⊆ X , if for every x ∈ A there exists
M ∈ µ(x) such that M ∩A /∈ F , then A /∈ F .

Theorem 3.8. Let (X,µ,F) be a GFTS. Then the implications (1)⇒ (2)⇒ (3)⇒ (4) hold.
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(1) µ ∼ F ;
(2) If a subset A of X has a cover of µ-open sets each of whose intersection with A is not in F ,

then A /∈ F ;
(3) For every A ⊆ X , A ∩ Ω(A) = ∅ implies that A /∈ F ;
(4) For every A ⊆ X , A \ Ω(A) /∈ F .

Proof. (1)⇒ (2): The proof is obvious.

(2)⇒ (3): Let A ⊆ X and x ∈ A. Then x /∈ Ω(A) and there exists Vx ∈ µ(x) such that
Vx ∩A /∈ F . Therefore, we have A ⊆ ∪{Vx : x ∈ A} and Vx ∈ µ(x) and by (2) A /∈ F .

(3)⇒ (4): For any A ⊆ X , A \ Ω(A) ⊆ A and (A \ Ω(A)) ∩ Ω(A \ Ω(A)) ⊆ (A \ Ω(A)) ∩
Ω(A) = ∅. By (3), A \ Ω(A) /∈ F . �

Theorem 3.9. Let (X,µ,F) be a GFTS. If µ is F-compatible with F . If for every A ⊆ X ,
A ∩ Ω(A) = ∅ implies that Ω(A) = X \Mµ, then Ω(A \ Ω(A)) = X \Mµ.

Proof. First, we show that (1) holds if µ is F-compatible with F . Let A be any subset of X
and A ∩ Ω(A) = ∅. By Theorem 3.8, A /∈ F and by Proposition 2.1, Ω(A) = X \Mµ.

Assume that for every A ⊆ X , A ∩ Ω(A) = ∅ implies that Ω(A) = X \ Mµ. Let
B = A \ Ω(A), then

B ∩ Ω(B) =(A \ Ω(A)) ∩ Ω(A \ Ω(A))

=(A ∩ (X \ Ω(A))) ∩ (A ∩ Ω(X \ Ω(A)))

⊆[A ∩ (X \ Ω(A))] ∩ [Ω(A) ∩ (Ω(X \ Ω(A)))] = ∅.

By (1), we have Ω(B) = X \Mµ. Hence Ω(A \ Ω(A)) = X \Mµ. �

Theorem 3.10. Let (X,µ,F) be a GFTS. Then µ ∼ F if and only if ψF (A) \ A /∈ F for every
A ⊆ X .

Proof. Necessity. Assume µ ∼ F and let A ⊆ X . Observe that x ∈ ψF (A) \ A if and only
if x /∈ A and x /∈ Ω(X \ A) if and only if x /∈ A and there exists Ux ∈ µ(x) such that
Ux \ A /∈ F if and only if there exists Ux ∈ µ(x) such that x ∈ Ux \ A /∈ F . Now, for each
x ∈ ψF (A)\A and Ux ∈ µ(x), Ux∩ (ψF (A)\A) /∈ F by heredity and hence ψF (A)\A /∈ F
by assumption that µ ∼ F .

Sufficiency. Let A ⊆ X and assume that for each x ∈ A there exists Ux ∈ µ(x) such
that Ux ∩ A /∈ F . Observe that ψF (X \ A) \ (X \ A) = A \ Ω(A) = {x ∈ X : there exists
Ux ∈ µ(x) such that x ∈ Ux ∩ A /∈ F}. Thus we have A ⊆ ψF (X \ A) \ (X \ A) /∈ F and
hence A /∈ F by heredity of F . �

Theorem 3.11. Let (X,µ,F) be a GFTS with µ ∼ F , A ⊆ X . If N is a nonempty µ-open subset
of Ω(A) ∩ ψF (A), then N \A /∈ F and N ∩A ∈ F .

Proof. If N ⊆ Ω(A) ∩ ψF (A), then N \ A ⊆ ψF (A) \ A /∈ F by Theorem 3.10 and hence
N \ A /∈ F by heredity. Since N ∈ µ \ {∅} and N ⊆ Ω(A), we have N ∩ A ∈ F by the
Definition of Ω(A). �

We shall say that a filter F is F-codense if and only if µ \ {∅} ⊆ F .

Lemma 3.2. Let µ be a GT in X and F a filter on X . ψF (∅) = ∅ if and only if a filter F is
F-codense.
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Proof. Since ψF (∅) = X \ Ω(X), ψF (∅) = ∅ if and only if X = Ω(X) and hence by Lemma
2.1 ψF (∅) = ∅ if and only if a filter F is F-codense. �

Proposition 3.3. Let µ be a GT in X and F a filter on X . Then the following are equivalent.
(1) F is F-codense.
(2) Ω(Mµ) = X .
(3) ψF (X \Mµ) = ∅.

Proof. (1) ⇔ (2). Suppose x ∈ X and x /∈ Ω(Mµ). Then there exists M ∈ µ such that
x ∈ M and M ∩ Mµ /∈ F which implies that M /∈ F and hence M = ∅ since F is F-
codense which is a contradiction. Therefore, x ∈ Ω(Mµ). Hence Ω(Mµ) = X . Conversely,
suppose M ∈ µ \ {∅} and M /∈ F , M ∈ µ. If M 6= ∅, then there exists x ∈ M and hence
x ∈ Ω(Mµ) which implies thatM∩Mµ = M ∈ F , a contradiction. Therefore, µ\{∅} ⊆ F .

(2)⇔ (3). It is obvious from ψF (X \Mµ) = X \Ω(X \ (X \Mµ)) = X \Ω(Mµ). Hence
(2) and (3) are equivalent. �
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