
CREAT. MATH. INFORM.
Volume 26 (2017), No. 1,
Pages 95 - 104

Online version at https://creative-mathematics.cunbm.utcluj.ro/

Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X

DOI: https://doi.org/10.37193/CMI.2017.01.13

Coincidence and periodic point results in a modular metric
space endowed with a graph and applications

ANANTACHAI PADCHAROEN1, POOM KUMAM1,2 and DHANANJAY GOPAL3

ABSTRACT. In this paper, we present some results on the existence of coincidence and periodic point of F -
contractive mappings in the framework of modular metric spaces endowed with a graph. We also present an
application to partial differential equations in order to support the theoretical results.

1. INTRODUCTION

In 2007, by using the language of graph theory, Jachymski [12] introduced the concept
of a G-contraction on a metric space endowed with a graph and proved a fixed point
theorem which extends the results of Ran and Reurings [20]. In 2012, Wardowski [23]
introduced the concept of an F -contraction and proved a fixed point theorem which gen-
eralizes Banach contraction principle in many ways. These two results have become of
recent interest of many authors (see [3, 4, 9, 10, 11, 17, 18, 19, 21] and references therein).

On the other hand, Chistyakov [8] introduced the notion of modular metric space
and gave some fundamental results on this topic, whereas in [2] the authors introduced
the analogue of the Banach contraction principle theorem in modular metric spaces and
described some important aspects and applications of fixed points of mappings in this
framework.

Following this direction of research, in this paper, we establish some coincidence and
periodic point theorems concerning F -contractive mappings in modular metric space en-
dowed with a graph. Our main result is a generalization of Gopal et al [11] theorem and
others. We also give an application of our main results to establish the existence of solu-
tion for a nonhomogenuous linear parabolic partial differential equation.

Consistent with Chistyakov [8] and Abdou [2], we begin with some basic definitions
and results which will be used in the sequel.

Throughout the article N, R+,R+ and R will denote the set of natural numbers, non-
negative real numbers, positive real numbers and real numbers, respectively.

Let X be a nonempty set. Throughout this paper, for a function ω : (0,∞)×X ×X →
[0,∞], we write

ωλ(x, y) = ω(λ, x, y)

for all λ > 0 and x, y ∈ X.

Definition 1.1. [8, 2] Let X be a nonempty set. A function ω : (0,∞)×X ×X → [0,∞] is
said to be a metric modular on X if, for all x, y, z ∈ X , the following conditions hold:

(i) ωλ(x, y) = 0, for all λ > 0, if and only if x = y,
(ii) ωλ(x, y) = ωλ(y, x), for all λ > 0,
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(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y), for all λ, µ > 0.

If, instead of (i) we have only the condition (i
′
)

ωλ(x, x) = 0 for all λ > 0, x ∈ X,
then ω is said to be a pseudomodular (metric) on X. A modular metric ω on X is said to
be regular if the following weaker version of (i) is satisfied:
x = y if and only if ωλ(x, y) = 0 for some λ > 0.

Note that for a metric (pseudo)modular ω on a set X, and any x, y ∈ X, the function
λ 7→ ωλ(x, y) is nonincreasing on (0,∞). Indeed, if 0 < µ < λ, then

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y).

Note that every modular metric is regular but the converse may not necessarily be true.

Example 1.1. Let X = R and w defined by wλ(x, y) = ∞ if λ < 1, and wλ(x, y) = |x − y|
if λ ≥ 1. It is easy to verify that w is a regular modular metric but not a modular metric.

Definition 1.2. [8, 2] Let Xω be a (pseudo)modular on X. Fix x0 ∈ X. The two sets

Xω = Xω(x0) = {x ∈ X : ωλ(x, x0)→ 0 as λ→∞}
and

X∗ω = X∗ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x, x0) <∞}
are said to be modular spaces (around x0).

Definition 1.3. [2] Let Xω be a modular metric space.
(i) The sequence (xn)n∈N in Xω is said to be ω-convergent to x ∈ Xω if and only if

ωλ(xn, x)→ 0, as n→∞ for some λ > 0.
(ii) The sequence (xn)n∈N in Xω is said to be ω-Cauchy if ωλ(xm, xn) → 0, as m,n →
∞ for some λ > 0.

(iii) A subset C of Xω is said to be ω-complete if any ω-Cauchy sequence in C is a
convergent sequence and its limit is in C.

(iv) A subset C of Xω is said to be ω-bounded if, for some λ > 0, we have
δω(C) = sup{ωλ(x, y);x, y ∈ C} <∞.

Definition 1.4. [18] Let Xω be a modular metric space and C is a nonempty subset of Xω .
The sequence (xn)n∈N in C is said to satisfy ∆M -condition if

lim
m,n→∞

ωm−(n+1)(xn, xm) = 0, for (m,n ∈ N, m ≥ n)

implies lim
m,n→∞

ωλ(xn, xm) = 0 for all λ > 0.

Following Wardowski [23], we denote by F the family of all functions F : R+ → R
satisfying the following conditions:

(F1) F is strictly increasing on R+,
(F2) for every sequence {sn} in R+, we have lim

n→∞
sn = 0 if and only if

lim
n→∞

F (sn) = −∞,

(F3) there exists a number k ∈ (0, 1) such that lim
s→0+

skF (s) = 0.

Example 1.2. The following functions F : R+ → R belongs to F :
(i) F (s) = ln s, with s > 0,

(ii) F (s) = ln s+ s, with s > 0.
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Let (X,ω) be a modular metric space and D be a nonempty subset of Xω. Let ∆ denote
the diagonal of the Cartesian product D ×D. Let Gω be a directed graph (digraph) such
that the set V (Gω) of its vertices coincides with D, and the set E(Gω) of its edges contains
all loops, i.e., E(Gω) ⊇ ∆. We assume Gω simple graph (opposite of multigraph), so we
can identify Gω with the pair (V (Gω), E(Gω)). Our graph theory notations and terminol-
ogy are standard and can be found in all graph theory books, like [6] and [14]. Moreover,
we may treat Gω as a weighted graph (see [14], p. 309) by assigning to each edge the dis-
tance between its vertices. By G−1ω we denote the reverse of a graph Gω, i.e., the graph
obtained from Gω by reversing the direction of edges. Thus we have

E(G−1ω ) = {(y, x)|(x, y) ∈ E(Gω)}.
A digraph Gω is an oriented graph if whenever (u, v) ∈ E(Gω), then (v, u) /∈ E(Gω).

The letter G̃ω denotes the undirected graph obtained from Gω by ignoring the direction
of edges. Actually, it will be more convenient for us to treat G̃ω as a directed graph for
which the set of its edges is symmetric. Under this convention,

E(G̃ω) = E(Gω) ∪ E(G−1ω ).

We call (V ′, E′) a subgraph of Gω if V ′ ⊆ V (Gω), E′ ⊆ E(Gω), and for any edge (x, y) ∈
E′, x, y ∈ V ′.

If x and y are vertices in a graphGω, then a (directed) path inGω from x to y of lengthN
is a sequence (xi)

i=N
i=1 of N + 1 vertices such that x0 = x, xN = y and (xn−1, xn) ∈ E(Gω)

for i = 1, . . . , N. A graph Gω is connected if there is a directed path between any two
vertices. Gω is weakly connected if G̃ω is connected. IfGω is such thatE(Gω) is symmetric
and x is a vertex in Gω, then the subgraph Gω[x] consisting of all edges and vertices which
are contained in some path beginning at x is called the component of Gω containing x. In
this case V (Gω[x]) = [x]Gω

, where [x]Gω
is the equivalence class of the following relation

R defined on V (Gω) by the rule: yRz if there is a (directed) path inGω from y to z. Clearly
Gω[x] is connected.

2. PERIODIC POINT RESULTS

Throughout this section we assume that (X,ω) is a modular metric space, D be a
nonempty subset of Xω and G := {Gω is a directed graph with V (Gω) = D and ∆ ⊆
E(Gω)}.

Definition 2.5. [12, 3] The pair (D,Gω) has Property (A) if for any sequence {xn}n∈N in
D, with xn → x as n→∞ and (xn, xn+1) ∈ E(Gω), then (xn, x) ∈ E(Gω), for all n.

Definition 2.6. Let F ∈ F and Gω ∈ G. A mapping T : D → D is said to be F -Gω-
contraction with respect to R : D → D if

(i) (Rx,Ry) ∈ E(Gω) ⇒ (Tx, Ty) ∈ E(Gω) for all x, y ∈ D, i. e., T preserves edges
w.r.t. R,

(ii) there exists a number τ > 0 such that

ω1(Tx, Ty) > 0⇒ τ + F (ω1(Tx, Ty)) ≤ F (ω1(Rx,Ry))

for all x, y ∈ D with (Rx,Ry) ∈ E(Gω).

Example 2.3. Let F ∈ F be arbitrary. Then every F -contractive mapping w.r.t. R is an
F -Gω-contraction w.r.t. R for the graph Gω given by V (Gω) = D and E(Gω) = D ×D.

We denote by C(T,R) := {x ∈ D : Tx = Rx} the set of all coincidence points of two
self-mappings T and R, defined on D.
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Now, we state our first theorem which generalises the main theorem of Gopal et al. [11]
for regular modular metric spaces.

Theorem 2.1. Let (X,ω) be a regular modular metric space with a graph Gω. Assume that D =
V (Gω) is a nonempty ω-bounded subset of Xω and the pair (D,Gω) has property (A) and also
satisfy ∆M -condition. LetR, T : D → D be two self mappings satisfying the following conditions:

(i) there exists x0 ∈ D such that (Rx0, Tx0) ∈ E(Gω),
(ii) T is an F -Gω-contraction w.r.t R,

(iii) T (D) ⊆ R(D),
(iii) R(D) is ω complete.
Then C(R, T ) 6= ∅.

Proof. Let x0 ∈ D such that (Rx0, Tx0) ∈ E(Gω), since T (D) ⊆ R(D), then there exists a
point x1 ∈ D such that Rx1 = Tx0. From (i), we have (Rx0, Rx1) ∈ E(Gω), and since T
preserves edges w.r.t. R, we get (Tx0, Tx1) ∈ E(Gω). By continuing this process, having
chosen xn in D, we obtain xn+1 in D such that

(Rxn, Rxx+1) = (Txn−1, Txn) for every n ∈ N.
Let κn = ω1(Rxn, Rxn+1) for all n ∈ N∪ {0}. If there exists n0 ∈ N∪ {0} such that Rxn0 =
Rxn0+1, then Txn0

= Rxn0+1 implies that Txn0+1 = Rxn0+1 that is xn0+1 ∈ C(T,R).
Now, we assume Rxn 6= Rxn+1 for any n ∈ N ∪ {0}. Since T is an F -Gω-contraction w.r.t
R on E(Gω), then we have

F (κn) = F (ω1(Rxn, Rxn+1))
= F (ω1(Txn−1, Txn))
≤ F (ω1(Rxn−1, Rxn))− τ
= F (ω1(Txn−2, Txn−1))− τ
≤ F (ω1(Rxn−2, Rxn−1))− 2τ

...
≤ F (ω1(Rx1, Rx2))− (n− 1)τ
= F (κ1)− (n− 1)τ.

Thus,
F (κn) ≤ F (κ1)− (n− 1)τ. (2.1)

By letting n → ∞ in (2.1) and since D is ω-bounded, we have lim
n→∞

F (κn) = −∞. Thus,

lim
n→∞

κn = 0, by (F2). Now, by (F3), there exists k ∈ (0, 1) such that lim
n→∞

κknF (κn) = 0.

Note that
κknF (κn)− κknF (κ1) ≤ κkn(F (κ1)− (n− 1)τ)− κknF (κ1)

= −κkn(n− 1)τ ≤ 0.
(2.2)

Therefore, by letting n→∞ in (2.2), we obtain lim
n→∞

(n−1)κkn = 0.Consequently lim
n→∞

nκkn =

0. Thus, there exists n1 ∈ N such that nκkn ≤ 1 for all n ≥ n1, i.e. κn ≤ 1/n1/k for all n ≥ n1.
Now, for integers m > n ≥ 1, we have

ωm−(n+1)(Rxn, Rxm) ≤ ω1(Rxn, Rxn+1) + ω1(Rxn+1, Rxn+2) + · · ·+ ω1(Rxm−1, Rxm)

<
∞∑
i=n

κi

≤
∞∑
i=n

1

i
1
k

<∞.

Since w satisfies ∆M -condition, we have

lim
m,n→∞

w1(xn, xm) = 0.
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This shows that {Rxn}n∈N is a ω-Cauchy sequence in R(D). Since R(D) is ω-complete
then there exists u ∈ R(D) such that lim

n→∞
Rxn = u. Let v ∈ D be such that Rv = u. By

property (A), we have (Rxn, u = Rv) ∈ E(Gω) for all n, and hence by (ii), we get

F (ω1(Rxn, T v)) = F (ω1(Txn−1, T v))
≤ F (ω1(Rxn−1, Rv))− τ.

Since lim
n→∞

ω1(Rxn−1, Rv) = 0, then by (F2), we have lim
n→∞

F (ω1(Rxn−1, Rv)) = −∞.
Hence lim

n→∞
F (ω1(Rxn, T v)) = −∞, which implies that lim

n→∞
ω1(Rxn, T v) = 0, and since

ω is regular, we have Rv = u = lim
n→∞

Rxn = Tv i.e. v ∈ C(R, T ).

�

3. PERIODIC POINT RESULTS

In this section we prove some periodic point results for self mappings on a modular
metric space endowed with a graph.

Definition 3.7. [13] Let (X,ω) be a modular metric space and T : D → D be a mapping.
Then T is said to have the property (P) if Fix(Tn) = Fix(T ) for every n ∈ N where
Fix(T ) := {x ∈ D : Tx = x}.

Again, let (X,ω) be a modular metric space and T : D → D be a mapping. The set
O(x) = {x, Tx, T 2x, . . . , Tnx, . . .} is called the orbit of x under T.

Definition 3.8. A mapping T : D → D is called strong orbitally Gω-continuous at x if

lim
n→∞

Tnx = x∗ and (Tnx, Tn+1x) ∈ E(Gω)⇒ lim
n→∞

Tn+1x = Tx∗.

A mapping T is called strongly Gω-orbitally continuous on D if T is strongly orbitally
Gω-continuous for all x ∈ D.

We denote DT := {x ∈ D : (x, Tx) ∈ E(Gω) or (Tx, x) ∈ E(Gω)}.

Definition 3.9. Let (X,ω) be a modular metric space. A mapping T : D → D is called an
F -Gω graphic contraction if

(i) T preserves edges, i.e. (x, y) ∈ E(Gω)⇒ (Tx, Ty) ∈ E(Gω),
(ii) there exists a number τ > 0 such that

ω1(Tx, T 2x) > 0⇒ τ + F (ω1(Tx, T 2x)) ≤ F (ω1(x, Tx)) (3.3)

for all x ∈ DT and F ∈ F .

Remark 3.1. If we consider F (s) = ln s for all s > 0, then Definition 3.9 reduces to Gω-
graphic contractive given in [9].

Before stating the theorem of this section, we give the following lemma without proof.

Lemma 3.1. Let (X,ω) be a modular metric space endowed with a graph Gω . Let T : D → D be
a Gω-graphic contractive. Then T is a G−1ω -graphic contractive too.

Theorem 3.2. Let (X,w) be a regular modular metric space with a graph Gω. Assume that
D = V (Gω) is w complete, ω-bounded (nonempty) subset of Xω and the pair (D,Gω) satisfy
∆M -condition. Suppose that T : D → D is an F -Gω-graphic contraction satisfying the following
condition:

(∗) (x, Tx) ∈ E(Gω) or (Tx, x) ∈ E(Gω) for all x ∈ D.
Then T has the property (P) provided that T is strongly Gω-orbitally continuous on D.
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Proof. Let x0 be an arbitrary point in D. Define a sequence {xn}n∈N in D such that xn+1 =
Txn for all n ∈ N ∪ {0} and denote κn = ω1(xn, xn+1) for all n ∈ N ∪ {0}. If there exists
n0 ∈ N ∪ {0} for which xn0+1 = xn0

, then Txn0
= xn0

and the proof is finished. Then, we
assume that xn+1 6= xn, for all n ∈ N ∪ {0}.

Since (x0, Tx0) ∈ E(Gω) (or (Tx0, x0) ∈ E(Gω)) and T preserves edges, thus we get

(Tx0, T (Tx0)) = (x1, x2) = (x1, Tx1) ∈ E(Gω)⇒ (Tx1, T (Tx1)) = (x2, x3) ∈ E(Gω).

By this process, we get that (Tnx0, T
n+1x0) = (xn, xn+1) ∈ E(Gω) for all n ∈ N ∪ {0}.

Now using (3.3), we get

F (κn) = F (ω1(xn, xn+1))
= F (ω1(Txn−1, T

2xn−1))
≤ F (ω1(xn−1, Txn−1))− τ
= F (ω1(Txn−2, T

2xn−2))− τ
≤ F (ω1(xn−2, Txn−2)− 2τ

...
= F (ω1(Tx0, T

2x1))− (n− 1)τ
≤ F (ω1(x0, x1))− nτ
= F (κ0)− nτ

for every n ∈ N ∪ {0}. Therefore, proceeding as in the proof of Theorem 2.1, we get
that {Tnx0}n∈N is ω-Cauchy sequence. Since {Tnx0 : n ∈ N} ⊆ O(x0) ⊆ D and D is
ω-complete, therefore {xn} ω-converges to some x∗ ∈ D. Since T is strongly orbitally Gω-
continuous on D, then x∗ = lim

n→∞
Tnx0 = T ( lim

n→∞
Tn−1x0) = Tx∗. Thus T has a fixed

point and Fix(Tn) = Fix(T ) is true for n = 1. Now assume that n > 1 and assume that
z ∈ Fix(Tn) but z 6∈ Fix(T ), then ω1(z, Tz) = s > 0. By (∗), we have (z, Tz) ∈ E(Gω) or
(Tz, z) ∈ E(Gω). If we assume (z, Tz) ∈ E(Gω), by (3.3), we get

F (s) = F (ω1(z, Tz))
= F (ω1(T (Tn−1z), T 2(Tn−1z)))
≤ F (ω1(Tn−1z, Tnz))− τ
≤ F (ω1(Tn−2z, Tn−1z))− 2τ

...
≤ F (ω1(z, Tz))− nτ.

Thus F (s) ≤ lim
n→∞

[F (ω1(z, Tz)) − nτ ] = −∞ and hence F (s) = −∞, which is a con-

tradiction until ω1(z, Tz)) = 0 and by the regularity of ω, we get that z = Tz. Hence,
Fix(Tn) = Fix(T ) for all n ∈ N.

�

4. EXISTENCE OF SOLUTION FOR A NONHOMOGENEOUS LINEAR PARABOLIC PARTIAL
DIFFERENTIAL EQUATION

In this section, following the idea in [7], we discuss the application of coincidence
(fixed) point techniques to the solution of the non-homogeneous linear parabolic partial
differential equation satisfying a given initial condition.
More precisely, we consider the following initial value problem{

ut(x, t) = uxx(x, t) +H(x, t, u(x, t), ux(x, t)), −∞ < x <∞, 0 < t ≤ T
u(x, 0) = ϕ(x) ≥ 0, −∞ < x <∞, (4.4)
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where H is continuous and ϕ is assumed to be continuously differentiable and such
that ϕ and ϕ′ are bounded.

By a solution of the problem (4.4), we mean a function u ≡ u(x, t) defined on R × I ,
where I := [0, T ], satisfying the following conditions:

(i) u, ut, ux, uxx ∈ C(R× I). { C(R× I) denote the space of all continuous real valued
functions },

(ii) u and ux are bounded in R× I,
(iii) ut(x, t) = uxx(x, t) +H(x, t, u(x, t), ux(x, t)) for all (x, t) ∈ R× I,
(iv) u(x, 0) = ϕ(x) for all x ∈ R.
It is important to note that the initial value problem (4.4) is equivalent to the following

integral equation

u(x, t) =

∫ ∞
−∞

k(x− ξ, t)ϕ(ξ)dξ+

∫ t

0

∫ ∞
−∞

k(x− ξ, t− τ)H(ξ, τ, u(ξ, τ), ux(ξ, τ))dξdτ (4.5)

for all x ∈ R and 0 < t ≤ T , where

k(x, t) :=
1√
4πt

e−
x2

4t .

The problem (4.4) admits a solution if and only if the corresponding integral equation
(4.5) has a solution.

Let
Ω := {u(x, t);u, ux ∈ C(R× I) and ‖u‖ <∞},

where
‖u‖ := sup

x∈R,t∈I
|u(x, t)|+ sup

x∈R,t∈I
|ux(x, t)|.

Obviously, the function ω : R+ × Ω× Ω→ R+ given by

ωλ(u, v) :=
1

λ
‖u− v‖ =

1

λ
d(u, v)

is a metric modular on Ω. Clearly, the set Ωω is a complete modular metric space indepen-
dent of generators.

Theorem 4.3. Consider the problem (4.4) and assume the followings:
(i) for c > 0 with |s| < c and |p| < c, the function F (x, t, s, p) is uniformly Hölder continu-

ous in x and t for each compact subset of R× I,
(ii) there exists a constant cH ≤ (T + 2π−

1
2T

1
2 )−1 ≤ q, where q ∈ (0, 1) such that

0 ≤ 1
λ [H(x, t, s2, p2)−H(x, t, s1, p1)]

≤ cH

[
s2 − s1 + p2 − p1

λ

]
for all (s1, p1), (s2, p2) ∈ R× R with s1 ≤ s2 and p1 ≤ p2,

(iii) H is bounded for bounded s and p.
Then the problem (4.4) admits a solution.

Proof. It is well known that u ∈ Ωω is a solution (4.4) iff u ∈ Ωω is a solution integral
equation (4.5).

Consider the graph G with V (G) = D = Ωω and E(G) = {(u, v) ∈ D × D : u(x, t) ≤
v(x, t) and ux(x, t) ≤ vx(x, t) at each (x, t) ∈ R× I}. Clearly E(G) is a partial ordered and
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(D,E(G)) satisfy property (A).
Also, define a mapping Λ : Ωω → Ωω by

(Λu)(x, t) :=

∫ ∞
−∞

k(x− ξ, t)ϕ(ξ)dξ +

∫ t

0

∫ ∞
−∞

k(x− ξ, t− τ)H(ξ, τ, u(ξ, τ), ux(ξ, τ))dξdτ

for all (x, t) ∈ R× I . Then, finding solution of problem (4.5) is equivalent to the ensuring
the existence of fixed point of Λ.

Since (u, v) ∈ E(G), (ux, vx) ∈ E(G) and hence (Λu,Λv) ∈ E(G), (Λux,Λvx) ∈ E(G).
Thus, from the definition of Λ and by (ii) we have

1
λ |(Λv)(x, t)− (Λu)(x, t)|

≤ 1
λ

∫ t

0

∫ ∞
−∞

k(x− ξ, t− τ)|H(ξ, τ, v(ξ, τ), vx(ξ, τ))−H(ξ, τ, u(ξ, τ), ux(ξ, τ))|dξdτ

≤
∫ t

0

∫ ∞
−∞

k(x− ξ, t− τ)cH

[
1

λ
|
(
v(ξ, τ)− u(ξ, τ) + vx(ξ, τ)− ux(ξ, τ)

)
|
]
dξdτ

≤ cHωλ(u, v)T. (4.6)

Similarly, we have

1
λ |(Λv)x(x, t)− (Λu)x(x, t)| ≤ cHωλ(u, v)

∫ t

0

∫ ∞
−∞
|kx(x− ξ, t− τ)|dξdτ

≤ 2π−
1
2T

1
2 cHωλ(u, v). (4.7)

Therefore, from (4.6) and (4.7) we have

ωλ(Λu,Λv) ≤ (T + 2π−
1
2T

1
2 )cHωλ(u, v)

i.e.
ωλ(Λu,Λv) ≤ qωλ(u, v), q ∈ (0, 1)

i.e.
d(Λu,Λv) ≤ e−τd(u, v), τ > 0

Now, by passing to logarithms, we can write this as

ln(d(Λu,Λv)) ≤ ln(e−τd(u, v))

τ + ln(d(Λu,Λv)) ≤ ln(d(u, v))

Now, from example 1.2(i) and taking T = Λ and R = I (identity map), we deduce that
the operator T satisfies all the hypothesis of Theorem 2.1.
Therefore, as an application of Theorem 2.1, we conclude the existence of u∗ ∈ Ωω such
that u∗ = Λu∗ and so u∗ is a solution of the problem 4.4. �

CONCLUSION

Taking into account its interesting applications, obtaining fixed point results in modu-
lar metric spaces has received considerable attention in recent years. In this connection,
the main aim of this paper was to present some results on the existence of coincidence and
periodic point of F -contractive mappings in the framework of modular metric spaces en-
dowed with a graph. We also applied the obtained results to partial differential equation.
The new concepts lead to further investigations and applications.

For instance, using the recent ideas in the literature [22, 5], it is possible to extend our
results to the case of coupled as well as higher dimensional fixed points.
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