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A subclass of meromorphic functions defined by a certain
integral operator on Hilbert space

ARZU AKGÜL

ABSTRACT. In the present paper, we introduce and investigate a new class of meromorphic functions asso-
ciated with an integral operator, by using Hilbert space operator. For this class, we obtain coefficient inequality,
extreme points, radius of close-to-convex, starlikeness and convexity, Hadamard product and integral means
inequality.

1. INTRODUCTION

Let Σ denote the class of meromorphic functions in the punctured unit disc

U∗ = {z ∈ C : 0 < |z| < 1} = U\ {0} ,

of the form

f(z) =
1

z
+

∞∑
n=1

anz
n (1.1)

which are analytic in U∗.
Denote by f ∗ g the Hadamard product(or convolution) of the functions f and g; that

is, if f is given by (1.1) and g is defined by

g(z) =
1

z
+

∞∑
n=1

bnz
n, then (f ∗ g)(z) :=

1

z
+

∞∑
n=1

anbnz
n.

Various subclasses of Σ were introduced and studied by many authors. In recent years,
some subclass of meromorphic functions associated with several families of integral op-
erators and derivate operators were introduced and investigated (see for example [1],
[2], [9], [11], [19] and see also [4] and [20]). Lashin [19] defined an integral operator
P γµ : Σ→ Σ

P γµ = P γµ f(z) =
µγ

Γ(γ)

1

zµ+1

∫ z

0

tµ
(

log
z

t

)γ−1
f(t)dt, µ > 0, γ > 0; z ∈ U∗

where Γ is the familiar Gamma function. Using the integral representation of the Gamma
and Beta functions, it is easy to see that

P γµ f(z) =
1

z
+

∞∑
n=1

(
µ

n+ µ+ 1

)γ
anz

n =
1

z
+

∞∑
n=1

L(n, µ, γ)anz
n (1.2)

where

L(n, µ, γ) =

(
µ

n+ µ+ 1

)γ
.
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Remark 1.1. The integral operator P γµ was studied by Atshan and Mohammed [6] for
analytic functions. For analytic functionf if we take µ = 1 in the equality (1.2), then we
obtain the Libera integral operator given by

P γ1 f(z) = z +

∞∑
n=1

2

n+ 1
anz

n.

Libera integral operator is generalized as Bernardi integral operator given by Bernardi
[7]. Gupta and Sharma [15] introduced certain differential inequalities for the integral op-
erator P γµ . In [20] Piejko and Sokol considered a multipleer transformation and some
subclasses of the class of meromorphic functions which was defined by means of the
Hadamard product and by using the operator P γµ , introduced by N. E. Cho, O. S.: Khown
and H. M. Srivastava [10].

Let H be a Hilbert space on the complex field and L(H) denote the algebra of all
bounded linear operators on H . For a complex-valued function f analytic in a domain
E of the complex plain containing the spectrum σ(A) of the bounded linear operator A,
let f(A) denote the operator on H defined by the Riesz-Dunford integral [11]

f(A) =
1

2πi

∫
C

(zI −A)−1f(z)dz,

where I is the identity operator on H and C is a positively oriented simple closed rec-
tifiable closed contour containing the spectrum σ(A) in the interior domain [11]. The
operator f(A) can also be defined by the following series

f(A) =

∞∑
n=0

f (n)(0)

n!
An

which converges in the norm topology. The class of all functions f ∈ Σ with an ≥ 0 is
denoted by Σp. Analytically a function f ∈ Σ given by (1.1) is said to be meromorphically
starlike of order α if it satisfies the following

R

(
−zf

′
(z)

f(z)

)
> α, (z ∈ U)

for some α(0 ≤ α < 1). We say that f is in the class
∑∗
p(α) of such functions.

The object of the present paper is to investigate the following subclass of Σp associated
with the integral operator P γµ f(z).

Definition 1.1. For 0 ≤ β < 1 and 0 ≤ ξ < 1, a function f ∈ Σp given by the equation
(1.1) is in the class Mp(ξ, β,A) if

<
(

A(P γµ f(A))′

(β − 1)P γµ f(A) + βA(P γµ f(A))′

)
> ξ (1.3)

where P γµ is given by equation (1.2).

Remark 1.2. Kavitha et all [18] considered the generalized subclass of meromorphic func-
tions Mp(α, λ): For 0 ≤ α < 1 and 0 ≤ λ < 1, a function f ∈ Σp given by the equation
(1.1) is in the class Mp(α, λ) if and only if

<
(

zf(z)′

(λ− 1)f(z) + λz(f(z))′

)
> α. (1.4)

Remark 1.3. For a function f ∈ Σp given by the equation (1.1) if we take the generalized
Dziok Srivastava operator instead of the operator P γµ , then the class is Mp(α, λ) consid-
ered by Rosy et all [21].
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Lemma 1.1. Let w = u+ iv. Then R(w) > α⇔ |w − 1| < |w + 1− 2α|.

By applying Lemma 1.1 we obtain an equivalent definition of Definition 1.1.

Definition 1.2. For 0 ≤ β < 1 and 0 ≤ ξ < 1, a function f ∈ Σp given by (1.1) is in the
class Mp(ξ, β,A) if the following inequality is satisfied∥∥A(P γµ f(A))′ − {(β − 1)P γµ f(A) + βA(P γµ f(A))′}

∥∥
<

∥∥A(P γµ f(A))′ + (1− 2ξ){(β − 1)P γµ f(A) + βA(P γµ f(A))′}
∥∥

for all operators A with ‖A‖ < 1 and A 6= Θ (Θ is the zero operator on H).

In the present paper, we obtain coefficient estimates, radii of starlikeness and convexity
for the functions in the class Mp(ξ, β,A).

2. COEFFICIENT BOUNDS

Theorem 2.1. A function f ∈ Σp given by (1.1) is in the class Mp(ξ, β,A) for all proper con-
traction T with A 6= Θ if and only if

∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)an ≤ 1− ξ. (2.5)

The result is sharp for the function

f(z) =
1

z
+

1− ξ
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

zn (n ≥ 1) . (2.6)

Proof. Assume that (2.5) holds. Then we have∥∥A(P γµ f(A))′ − {(β − 1)P γµ f(A) + βA(P γµ f(A))′}
∥∥

−
∥∥A(P γµ f(A))′ + (1− 2ξ){(β − 1)P γµ f(A) + βA(P γµ f(A))′}

∥∥
=

∥∥∥∥∥
∞∑
n=1

(n+ 1)(1− β)L(n, µ, γ)anA
n

∥∥∥∥∥
−

∥∥∥∥∥2(1− ξ)A−1 −
∞∑
n=1

[n+ (1− 2ξ)(β − 1 + βn)]L(n, µ, γ)anA
n

∥∥∥∥∥
≤

∞∑
n=1

(n+ 1)(1− β)L(n, µ, γ)an ‖A‖n − 2(1− ξ)
∥∥A−1∥∥

+

∞∑
n=1

[n+ (1− 2ξ)(β − 1 + βn)]L(n, µ, γ)an ‖A‖n

= 2

∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)an ‖A‖n − 2(1− ξ)
∥∥A−1∥∥

≤ 2(1− ξ)− 2(1− ξ) = 0. (by using (2.5))

Thus f ∈ Σp is in the class Mp(ξ, β,A). Conversely, suppose that f ∈Mp(ξ, β,A) that is,∥∥A(P γµ f(A))′ − {(β − 1)P γµ f(A) + βA(P γµ f(A))′}
∥∥

<
∥∥A(P γµ f(A))′ + (1− 2ξ){(β − 1)P γµ f(A) + βA(P γµ f(A))′}

∥∥ .
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and from last inequality, it is obtained that∥∥∥∥∥
∞∑
n=1

(n+ 1)(1− β)L(n, µ, γ)anA
n+1

∥∥∥∥∥
<

∥∥∥∥∥2(1− ξ)−
∞∑
n=1

[n+ (1− 2ξ)(β − 1 + βn)]L(n, µ, γ)anA
n+1

∥∥∥∥∥ .
Selecting A = rI (0 < r < 1) in above inequality, we have

∞∑
n=1

(n+ 1)(1− β)L(n, µ, γ)anr
n+1

2(1− ξ)−
∞∑
n=1

[n+ (1− 2ξ)(β − 1 + βn)]L(n, µ, γ)anrn+1

< 1.

As r → 1−, (2.5) is obtained. �

Remark 2.4. For β = 0, we get

<
(−A(P γµ f(A))′

P γµ f(A)

)
> ξ (2.7)

and hence P γµ f(A) is in the class
∑∗
p(ξ) if and only if

∞∑
n=1

(n+ ξ)L(n, µ, γ)an ≤ 1− ξ. (2.8)

Remark 2.5. If we take the function f ∈ Σp given by (1.1) for z ∈ U∗ and for β = 0, then
we obtain the generalized result given by Kavitha el all [18].

Corollary 2.1. If a function f ∈ Σp given by (1.1) is in the class Mp(ξ, β,A), then

an ≤
1− ξ

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)
(n ≥ 1) .

The result is sharp for the function f of the form (2.6).

Remark 2.6. If P γµ f(A) ∈
∑∗
p(γ), then

an ≤
1− ξ

(n+ ξ)L(n, µ, γ)
(n ≥ 1) .

Remark 2.7. If we take the function f ∈ Σp given by (1.1) for z ∈ U∗ and for β = 0 in
(2.1), then we obtain the generalized corollary given by Kavitha el all [18].

Theorem 2.2. The class Mp(ξ, β,A) is closed under convex combinations.

Proof. Let the functions

f(z) =
1

z
+

∞∑
n=1

anz
n and g(z) =

1

z
+

∞∑
n=1

bnz
n

be in the class Mp(ξ, β,A). Then, by Theorem 2.1, we have
∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)an ≤ 1− ξ
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and
∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)bn ≤ 1− ξ.

For 0 ≤ τ ≤ 1, we define the function h as

h(z) = τf(z) + (1− τ)g(z) and we get h(z) =
1

z
+

∞∑
n=1

[τan + (1− τ)bn] zn.

Now, we obtain
∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ) [τan + (1− τ)bn]

= τ

∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)an + (1− τ)

∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)bn

≤ τ(1− ξ) + (1− τ)(1− ξ) = (1− ξ). So, h ∈Mp(ξ, β, T ).

�

3. EXTREME POINTS

Theorem 3.3. If

f0(z) =
1

z
and

fn(z) =
1

z
+

1− ξ
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

zn (n = 1, 2, . . .) , (3.9)

then f ∈Mp(ξ, β,A) if and only if it can be represented in the form

f(z) =

∞∑
n=0

δnfn(z)

(
δn ≥ 0,

∞∑
n=0

δn = 1

)
.

Proof. Assume that f(z) =
∑∞
n=0 δnfn(z), (δn ≥ 0, n = 0, 1, 2, . . . ;

∑∞
n=0 δn = 1). Then,

we have

f(z) =
∞∑
n=0

δnfn(z) = δ0f0(z) +

∞∑
n=1

δnfn(z) =
1

z
+

∞∑
n=1

δn
1− ξ

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)
zn.

Therefore,
∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)δn
1− ξ

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)
= (1− ξ)

∞∑
n=1

δn

= (1− ξ)(1− δ0) ≤ (1− ξ).
Hence, by Theorem 2.1, f ∈Mp(ξ, β,A). Conversely, suppose that f ∈Mp(ξ, β,A). Since,
by Corollary 2.2,

an ≤
1− ξ

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)
(n ≥ 1) ,

setting

δn =
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

1− ξ
an (n ≥ 1)

and δ0 = 1−
∑∞
n=1 δn, we obtainf(z) = δ0f0(z) +

∑∞
n=1 δnfn(z). �
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4. RADII OF STARLIKENESS AND CONVEXITY

We now find the radii of meromorphically close-to-convexity, starlikeness and convex-
ity for functions f in the class Mp(ξ, β,A).

Theorem 4.4. Let f ∈Mp(ξ, β,A). Then f is meromorphically close-to-convex of order δ (0 ≤ δ < 1)
in the disk |z| < r1, where

r1 = inf
n

[
(1− δ) [n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

n (1− ξ)

] 1
n+1

(n ≥ 1) .

The result is sharp for the extremal function f given by equation (1.1).

Proof. It is sufficient to show that ∥∥∥∥∥f
′
(A)

A−2
+ 1

∥∥∥∥∥ < 1− δ. (4.10)

By Theorem 2.1, we have
∞∑
n=1

[n+ξ−ξβ(n+1)]L(n,µ,γ)
1−ξ an ≤ 1. So, the inequality∥∥∥∥∥f

′
(A)

A−2
+ 1

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
n=1

nanA
n+1

∥∥∥∥∥ ≤
∞∑
n=1

nan ‖A‖n+1
< 1− δ

holds true if
n ‖A‖n+1

1− δ
≤ [n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

1− ξ
.

Then, inequality (4.10) holds true if

‖A‖n+1 ≤ (1− δ) [n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

n (1− ξ)
(n ≥ 1) ,

which yields the close-to-convexity of the family and completes the proof. �

Theorem 4.5. Let f ∈ Mp(ξ, β,A). Then f is meromorphically starlike of order δ (0 ≤ δ < 1)
in the disk |z| < r2, where

r2 = inf
n

[(
1− δ

n+ 2− δ

)
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

1− ξ

] 1
n+1

(n ≥ 1) .

The result is sharp for the extremal function f given by (2.6).

Proof. By using the technique employed in the proof of Theorem 4.4, we can show that∥∥∥∥∥Af
′
(A)

f(A)
+ 1

∥∥∥∥∥ < 1− δ, for |z| < r2.

�

Theorem 4.6. Let f ∈ Mp(ξ, β,A). Then f is meromorphically convex of order δ (0 ≤ δ < 1)
in the disk |z| < r3, where

r3 = inf
n

[(
1− δ

n+ 2− δ

)
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

n (1− ξ)

] 1
n+1

(n ≥ 1) .

The result is sharp for the extremal function f given by

fn(z) =
1

z
+

n (1− ξ)
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

zn (n ≥ 1) .
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Proof. By using the technique employed in the proof of Theorem (4.4), we can show that∥∥∥∥∥Af
′′
(A)

f ′(A)
+ 2

∥∥∥∥∥ < 1− δ,

for |z| < r3 and prove that the assertion of the theorem is true. �

5. HADAMARD PRODUCT

Theorem 5.7. For functions f, g ∈ Σp defined by equation (1.1) let f, g ∈Mp(ξ, β,A). Then the
Hadamard product f ∗ g ∈Mp(ρ, β,A), where

ρ ≤ 1− (1− ξ)2(n+ 1)(1− β)

(1− ξ)2(1− β(n+ 1)) + [n+ ξ − ξβ(n+ 1)]
2
L(n, µ, γ)

Proof. Under the hypothesis, it follows from Theorem(2.1) we have
∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

1− ξ
an ≤ 1 (5.11)

and
∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

1− ξ
bn ≤ 1. (5.12)

We need to find the largest ρ such that
∞∑
n=1

[n+ ρ− ρβ(n+ 1)]L(n, µ, γ)

1− ρ
anbn ≤ 1.

From inequalities(5.11) and (5.12) we find, by means of the Cauchy-Schwarz inequality,
that

∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

1− ξ
√
anbn ≤ 1. (5.13)

Thus it is enough to show that

[n+ ρ− ρβ(n+ 1)]L(n, µ, γ)

1− ρ
anbn ≤

[n+ ξ − ξδ(n+ 1)]L(n, µ, γ)

1− ξ
√
anbn.

That is, √
anbn ≤

(1− ρ) [n+ ξ − ξβ(n+ 1)]

(1− ξ) [n+ ρ− ρβ(n+ 1)]
. (5.14)

On the other hand, from equation(5.3) we have√
anbn ≤

1− ξ
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

. (5.15)

Therefore in view of equations (5.14) and (5.15) it is enough to show that

1− ξ
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

≤ (1− ρ) [n+ ξ − ξβ(n+ 1)]

(1− ξ) [n+ ρ− ρβ(n+ 1)]

which simplifies to

ρ ≤ [n+ ξ − ξβ(n+ 1)]
2
L(n, µ, γ)− n(1− ξ)2

[n+ ξ − ξβ(n+ 1)]
2
L(n, µ, γ) + (1− ξ)2 [1− β(n+ 1)]

= φ(n).

A simple computation shows that φ(n + 1) − φ(n) > 0 for all n. This means that F (n) is
increasing and φ(n) ≥ φ(1). Using this, the result follows �
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Theorem 5.8. For functions f, g ∈ Σp defined by (1.1) let f, g ∈Mp(ξ, β,A). Then the function

k(z) = 1
z +

∞∑
n=1

(a2n + b2n)zn is in the class Mp(ξ, β,A) and

ρ ≤ 1− 2(1− ξ)2L(n, µ, γ) [1− β(n+ 1) + n]

{[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)}2 + 2(1− ξ)2L(n, µ, γ) [1− β(n+ 1)]

Proof. Since f, g ∈Mp(ξ, β,A) we have

∞∑
n=1

{
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)an

1− ξ

}2

≤ 1 (5.16)

and

∞∑
n=1

{
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)bn

1− ξ

}2

≤ 1 (5.17)

combining the inequalities (5.16) and (5.17),we get

∞∑
n=1

1

2

{
[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

1− ξ

}2

(a2n + b2n) ≤ 1,

But, we need to find the largest ρ such that

∞∑
n=1

[n+ ρ− ρβ(n+ 1)]L(n, µ, γ)

1− ρ
(a2n + b2n) ≤ 1. (5.18)

The inequality (5.18) would hold if

[n+ ρ− ρβ(n+ 1)]L(n, µ, γ)

1− ρ
≤ 1

2

{
[n+ ρ− ρβ(n+ 1)]L(n, µ, γ)

1− ρ

}2

.

Then we have

ρ ≤ {[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)}2 − 2n(1− ξ)2L(n, µ, γ)

{[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)}2 + 2(1− ξ)2L(n, µ, γ) [1− β(n+ 1)]

= 1− 2(1− ξ)2L(n, µ, γ) [1− β(n+ 1) + n]

{[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)}2 + 2(1− ξ)2L(n, µ, γ) [1− β(n+ 1)]
= φ(n)

A simple computation shows that φ(n + 1) − φ(n) > 0 for all n. This means that F (n) is
increasing and φ(n) ≥ φ(1). Using this, we get

ρ = 1− 2(1− ξ)2L(n, µ, γ) [1− β(n+ 1) + n]

{[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)}2 + 2(1− ξ)2L(n, µ, γ) [1− β(n+ 1)]
.

�

6. INTEGRAL OPERATORS

In this section, we consider integral transforms of functions in the class Mp(ξ, β,A) of
the type considered by Goel and Sohi [16].
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Theorem 6.9. Let the function f ∈ Σp given by (1.1) be in the class Mp(ξ, β,A) . Then the
integral operator

F (z) = c

∫ z

0

ucf(uz)du, 0 < u ≤ 1 0 < c <∞

is in Mp(ρ, β,A) where

ρ = 1− (1− ξ)(1 + 2β) + c

(1 + ξ − 2ξβ)(c+ 2) + (1− ξ)(1− 2β)
.

The result is sharp for the function

f(z) =
1

z
+

(1− ξ)(µ+ 2)

(1 + ξ − 2ξβ)µ
z.

Proof. Let f ∈ Σp given by (1.1) be in the class Mp(ξ, β,A). Then

F (z) = c

∫ 1

0

ucf (uz) du =
1

z
+

∞∑
n=1

c

c+ n+ 1
anz

n

We have to show that
∞∑
n=1

c [n+ ρ− ρβ(n+ 1)]L(n, µ, γ)

(1− ρ)(c+ n+ 1)
an ≤ 1. (6.19)

Since f ∈Mp(ξ, β,A) we have
∞∑
n=1

[n+ ξ − ξβ(n+ 1)]L(n, µ, γ)

1− ξ
an ≤ 1.

The inequality (6.19) satisfied if

c [n+ ρ− ρβ(n+ 1)]

(1− ρ)(c+ n+ 1)
≤ [n+ ξ − ξβ(n+ 1)]

1− ξ
.

Then we get

ρ ≤ [n+ ξ − ξβ(n+ 1)](n+ c+ 1)− (1− ξ)cn
[n+ ξ − ξβ(n+ 1)](n+ c+ 1) + c(1− ξ)(1− β(n+ 1))

= 1− (1− ξ)[1 + β(n+ 1)] + cn

[n+ ξ − ξβ(n+ 1)](n+ c+ 1) + (1− ξ)[1− β(n+ 1)]
(6.20)

By a simple computation, we can show that the function

φ(n) = 1− (1− ξ)[1 + β(n+ 1)] + cn

[n+ ξ − ξβ(n+ 1)](n+ c+ 1) + (1− ξ)[1− β(n+ 1)]

is an increasing function of n(n ≥ 1) and φ(n) ≥ φ(1). Using this, we obtain the desired
result. �

Remark 6.8. If we let the function f ∈ Σp given by (1.1) is in the class
∑∗
p(γ), then the

integral operator F (z) = c
∫ z
0
ucf(uz)du 0 < u ≤ 1 0 < c <∞ is in

∑∗
p(γ), where

ρ =
(2ξ)(c+ 1) + 2

(1 + ξ)(c+ 2) + 2
.

The result is sharp for the function

f(z) =
1

z
+

(1− ξ)(µ+ 2)

(1 + ξ)µ
z.
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Remark 6.9. If we let the function f ∈ Σp given by (1.1) is in the class
∑∗
p(γ) for β = 0,

then we obtain the result given by Kavitha et all [18].
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