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A subclass of meromorphic functions defined by a certain
integral operator on Hilbert space

ARzZU AKGUL

ABSTRACT. In the present paper, we introduce and investigate a new class of meromorphic functions asso-
ciated with an integral operator, by using Hilbert space operator. For this class, we obtain coefficient inequality,
extreme points, radius of close-to-convex, starlikeness and convexity, Hadamard product and integral means
inequality.

1. INTRODUCTION

Let ¥ denote the class of meromorphic functions in the punctured unit disc
*={2ze€C:0< |zl <1} =U\ {0},

of the form

== + Z anz (1.1)

which are analytic in U*.

Denote by f * g the Hadamard product(or convolution) of the functions f and g; that
is, if f is given by (1.1) and g is defined by

1
9(2) f—l—sz then (f % g)(z 7+Zanbz
n=1

Various subclasses of ¥ were introduced and studied by many authors. In recent years,
some subclass of meromorphic functions associated with several families of integral op-
erators and derivate operators were introduced and investigated (see for example [1],
[2], [9], [11], [19] and see also [4] and [20]). Lashin [19] defined an integral operator
Pl:YX—X%

Py =Pif(z) =1
w = uﬂz)_p(w TS

where T' is the familiar Gamma function. Using the integral representation of the Gamma
and Beta functions, it is easy to see that

P =+ 2 (i) o = L e 0

z ’Y*l
/ tH (logg) f@®)dt,n>0,v>0;2 € U*
0

where

L Y
L(”,%’Y) = (n—i—,u—&-l) .
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Remark 1.1. The integral operator P was studied by Atshan and Mohammed [6] for
analytic functions. For analytic functionf if we take u = 1 in the equality (1.2), then we
obtain the Libera integral operator given by

— 2
P/ f(z) :z+z n+1anz”‘

n=1

Libera integral operator is generalized as Bernardi integral operator given by Bernardi
[7]. Gupta and Sharma [15] introduced certain differential inequalities for the integral op-
erator P). In [20] Piejko and Sokol considered a multipleer transformation and some
subclasses of the class of meromorphic functions which was defined by means of the
Hadamard product and by using the operator P}, introduced by N. E. Cho, O. S.: Khown
and H. M. Srivastava [10].

Let H be a Hilbert space on the complex field and L(H) denote the algebra of all
bounded linear operators on H. For a complex-valued function f analytic in a domain
E of the complex plain containing the spectrum o(A) of the bounded linear operator A,
let f(A) denote the operator on H defined by the Riesz-Dunford integral [11]

1) = 5 [ T =07 )i

where [ is the identity operator on H and C' is a positively oriented simple closed rec-
tifiable closed contour containing the spectrum o(A) in the interior domain [11]. The
operator f(A) can also be defined by the following series

©  £(n)
f(A) — Z f (O)An

n!

n=0
which converges in the norm topology. The class of all functions f € ¥ with a,, > 0 is
denoted by ¥,,. Analytically a function f € ¥ given by (1.1) is said to be meromorphically
starlike of order « if it satisfies the following

R (_zf/(z)) >a, (z€U)

f(2)
for some (0 < o < 1). We say that f is in the class ) () of such functions.

The object of the present paper is to investigate the following subclass of ¥, associated
with the integral operator P f(2).

Definition 1.1. For 0 < § < 1and 0 < £ < 1, a function f € ¥, given by the equation
(1.1) is in the class M, (&, 8, A) if

A(P])f(A)) ) S (1.3)

R
((5 —DPIf(A) + BA(PLf(A))
where P is given by equation (1.2).
Remark 1.2. Kavitha et all [18] considered the generalized subclass of meromorphic func-
tions M, (a, A): For0 < o < 1and 0 < X < 1, a function f € X, given by the equation
(1.1) is in the class Mp(a, A) if and only if
2f(2) )
R > a. 1.4

(5o 2 .

Remark 1.3. For a function f € ¥, given by the equation (1.1) if we take the generalized

Dziok Srivastava operator instead of the operator P, then the class is M, (a, \) consid-
ered by Rosy et all [21].
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Lemma 1.1. Let w = u +iv. Then R(w) > a < |w — 1| < |[w+ 1 — 2a.
By applying Lemma 1.1 we obtain an equivalent definition of Definition 1.1.

Definition 1.2. For 0 < 8 < 1and 0 < £ < 1, a function f € ¥, given by (1.1) is in the
class M, (¢, 8, A) if the following inequality is satisfied

[ AP f(A) = {(B = 1)PIf(A) + BAP (A }H
[ AP f(A) + (1= 2{(8 — )P f(A) + BA(P] f(A))}]
for all operators A with ||A|| < 1 and A # © (O is the zero operator on H).

In the present paper, we obtain coefficient estimates, radii of starlikeness and convexity
for the functions in the class M, (¢, 5, A).

2. COEFFICIENT BOUNDS

Theorem 2.1. A function f € X, given by (1.1) is in the class M, (&, 5, A) for all proper con-
traction T with A # © if and only if

Zn+€ £B(n+ 1)]L(n, p,y)an <1 —&. (2.5)

The result is sharp for the function
1 1-¢
2 [+ E—EB(n+ 1)]L(n, 1,7)
Proof. Assume that (2.5) holds. Then we have
[APYf(A)) = {(B = 1)PIf(A) + BAPLF(A)}
— AP F(A) + (1= 26){(8 = VP f(A) + BA(P] f(A))'}]

2" (n>1). (2.6)

= X+ 10 - AL py)an A
n=1
_ ZTL—F 1—25 _1+Bn)]L(n7u,7)anA”
< S+ D AL ) A"~ 201 - &) A7
n=1

+ 3 [+ (1=26)(8 = 1+ Bn)|L(n, p,7)an | A]"

n=1
00

= 2 [n+€—€B(n+ DIL(n, m,7)an A" —2(1 - ) |47}

n=1

< 2(1-¢—-21—-¢)=0. (by using (2.5))
Thus f € %, is in the class M, (¢, 8, A). Conversely, suppose that f € M, (¢, 3, A) thatis,

AP F(A)) = {(B = 1)PYf(A) + BA(P] f(A))' |
AP F(A)) + (1= 26){(8 — 1) B f(A) + BAP]f(A) '}
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and from last inequality, it is obtained that

3 (0 + 1)1~ B)L(n, . 7)a, A"
n=1
< [20=9 =Y [n+ 1 =288 1+ Bn)L(n, p,7)an A"

Selecting A = I (0 < r < 1) in above inequality, we have

2:: (n + 1)( 6)[/(”’ Ma'Y)an”mH—l

3 < 1.
21 =9) = Y+ (1=29(8 =1+ Bn)lL(n, p )anr
Asr — 17, (2.5) is obtained. O
Remark 2.4. For 3 = 0, we get
-—A(P”f@4ﬂ’>
N —=— 2.7
(") > 27
and hence P f(A) is in the class () if and only if
Zn+§ (n,p,y)a, <1-—¢€. (2.8)

Remark 2.5. If we take the function f € ¥, given by (1.1) for z € U* and for § = 0, then
we obtain the generalized result given by Kavitha el all [18].

Corollary 2.1. If a function f € ¥, given by (1.1) is in the class M, (¢, 3, A), then
1-¢

an =~ n Z 1).
TR ey B
The result is sharp for the function f of the form (2.6).
Remark 2.6. If P f(A) € 37 (), then
n < ok (n>1).

(n+&)L(n,p,v)

Remark 2.7. If we take the function f € X, given by (1.1) for z € U* and for § = 0 in
(2.1), then we obtain the generalized corollary given by Kavitha el all [18].

Theorem 2.2. The class M, (&, 8, A) is closed under convex combinations.

Proof. Let the functions

SR SR
= + ;anz" and g(z) = " + ;bnzn

be in the class M, (¢, 8, A). Then, by Theorem 2.1, we have

o0

Y ln+E—Bn+ 1)L, pYan < 1-¢

n=1
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and
o]

Y In+E— B+ VIL(n, )by < 1—&

n=1
For 0 < 7 < 1, we define the function h as

h(z) =7f(z) + (1 — 7)g(z) and we get h(z :7+ZT%+ (1—7)b,] 2"

Now, we obtain

oo

> I+ & —€B(n+ 1)]L(n, 1, 7) [ran + (1 = )by
n=1
= 7Y [n+&—EB(n+DIL(n, g, y)an + (1 —7) Zn+£ §B(n+ D)]L(n, 1, )b
n=1 n—=1
< t(1-)+A-7)1-¢& =(1-E).5S0,he M(BT).
O
3. EXTREME POINTS
Theorem 3.3. If
fo(Z) = -
and
fal) = 2+ S (=12, (3.9)

z [n+&=EBn+1)]L(n, 1,7)
then f € M,(&, B, A) if and only if it can be represented in the form

= iénfn(z) <5n >0, ian — 1> :
n=0 n=0

Proof. Assume that f(z) = > 07 0nfn(2), (6, >0,n=0,1,2,...; 377 6, = 1). Then,
we have

o 175
2ol (2) = il *;;f *;; n+¢—&Bn+ L, n7)
Therefore,
0o 1 _5 - ) I

= (1 =81 =do) < (1-9).
Hence, by Theorem 2.1, f € M, (¢, 8, A). Conversely, suppose that f € M, (¢, 5, A). Since,
by Corollary 2.2,

1-¢
“ S Y E Bt DLy "2

setting

n+&—&Bn+ HIL(n,py)
1-¢ "

and 6o =1 — > 77 | 6,, we obtainf(z) = o fo(2) + Doney Onful2). O

5 = | (n>1)
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4. RADII OF STARLIKENESS AND CONVEXITY

We now find the radii of meromorphically close-to-convexity, starlikeness and convex-
ity for functions f in the class M, (¢, 3, A).

Theorem 4.4. Let f € My(§, 5, A). Then f is meromorphically close-to-convex of order § (0 < § < 1)
in the disk |z| < r1, where

- - T
=i [ 830+ )] I
n n(1=¢)
The result is sharp for the extremal function f given by equation (1.1).
Proof. It is sufficient to show that
‘(A
fA(_Q) +1f| <14 (4.10)
By Theorem 2.1, we have ) [”JFE*Eﬁ(’lLJ_F?]L(”’“”) a, < 1. So, the inequality
n=1
f’ A S n . n
A(*2) +1f| = ZnanA i< Znan A" <1-6
n=1 n=1

holds true if
A" _ o€~ €8(n+ DIL(n, p,7)
1-0 — 1-¢
Then, inequality (4.10) holds true if
||A||TL+1 < (1 - 6) [n +&— gﬁ(n + 1)][’(”7”’7)
n(1-9)

which yields the close-to-convexity of the family and completes the proof. O

Theorem 4.5. Let f € M,(&,3, A). Then f is meromorphically starlike of order § (0 <4 < 1)
in the disk |z| < rq, where

15\ [n+&=EB(n+ V]L(n,py)] 7T
n+2-—90 1-¢
The result is sharp for the extremal function f given by (2.6).

(n>1),

(n>1).

ro = inf
n

Proof. By using the technique employed in the proof of Theorem 4.4, we can show that
Af(4)

fa !

<1-4, for |z| < ro.

O

Theorem 4.6. Let f € M,(§,5,A). Then f is meromorphically convex of order § (0 <6 < 1)
in the disk |z| < r3, where

K 1-96 >[n+§—£ﬂ(n+1)]L(n,u,v) w (n>1).

r3:12f n+2-—4§ n(l—2¢)
The result is sharp for the extremal function f given by
fn(Z)=1+ n(l—-¢) 2 (n21).

Z [n—l—f—{ﬂ(n—}-l)}L(n,u,’y)
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Proof. By using the technique employed in the proof of Theorem (4.4), we can show that

Af"(A)
+2]| <1-=4,
f'(A)
for |z| < r3 and prove that the assertion of the theorem is true. O

5. HADAMARD PRODUCT

Theorem 5.7. For functions f, g € ¥, defined by equation (1.1) let f, g € M, (&, 5, A). Then the
Hadamard product f x g € M,(p, 8, A), where
(1-&*(n+1)1-p)
(1= €)2(1 = Bn+1) + [0+ & = €B(n + 1) L(n, 1, 7)
Proof. Under the hypothesis, it follows from Theorem(2.1) we have

p<1-—

Z [n+&—EB( fj{l)]l’(nﬁﬂ”f” a, <1 (5.11)
and o

3 [n+¢- fﬂ(lnzl)]L(n, Py o, (5.12)

n=1

We need to find the largest p such that

i [n+p = pB(n+ V)]L(n, p, )
L—p

From inequalities(5.11) and (5.12) we find, by means of the Cauchy-Schwarz inequality,

that

apb, < 1.

n=1

oo

PRl jgl)}L(n, ) b < 1. (5.13)

n=1

Thus it is enough to show that

[2+p = pB(n+ DIL(, p1,7) [n+&—&(n+ DIL(n, 1, 7)

That is,
(1—p)[n+&—EB(n+1)]
nbn < . 5.14
Vo S )+ p— pBn+ 1) 49
On the other hand, from equation(5.3) we have
1-¢
nbn — . .1
b S G €= € + D]Ln. i) 19
Therefore in view of equations (5.14) and (5.15) it is enough to show that
: _ APt 8n )
n+&—EB(n+1)|L(n,p,y) — (1=&)[n+p—pBn+1)]
which simplifies to

<
[+ & = €8(n+ )" Lin, p) + (1= 2 [1 = Bn + 1)]
A simple computation shows that ¢(n + 1) — ¢(n) > 0 for all n. This means that F'(n) is
increasing and ¢(n) > ¢(1). Using this, the result follows O
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Theorem 5.8. For functions f,g € ¥, defined by (1.1) let f,g € My (&, 5, A). Then the function

k(z) = 2+ 3 (a2 + b2)z" is in the class My(&, 8, A) and
n=1

2(1 - €)°L(n, p,y)[1 = B(n+1) +n]
{[n+ & = €B(n + )] L(n, i, )} + 2(1 = §)2L(n, s, ) [1 = B(n + 1)]
Proof. Since f,g € M,(&, 3, A) we have

p<1-

- 2
> { n+¢— éﬁ(nltlg)]L(n, 14,7)an } <1 (5.16)
n=1

and

- 2
n=1

combining the inequalities (5.16) and (5.17),we get
531{W+€—5Mn+Uﬂ@%mw
1-¢

But, we need to find the largest p such that

2
} (a2 +07) <1,

n=1

i [n + pP— pﬁ(lnj'pl)]l’(nv My 7) (ai + b721) S 1. (518)
n=1

The inequality (5.18) would hold if

[n+p—pB(n+1)]L(n, p,7)
I—p

IN

1f[n+p—pBn+D)Ln,uy))
2 1—p ’
Then we have

{[n+¢—&B(n+1)] L(n, pu,7)}> — 2n(1 — €)>L(n, 11,7)
T {[n+€—EB(n+ 1) L(n, 1, 7)Y +2(1 — €)2L(n, 1, 7) [1 — B(n + 1)]

L 2(1 = €)°L(n,1,7) [L = Bln + 1) + 1] .
{In+& = €B(n+ 1)) L(n, p,7)}* + 2(1 = €)2L(n, p,7) [L = B(n + 1))
A simple computation shows that ¢(n + 1) — ¢(n) > 0 for all n. This means that F(n) is
increasing and ¢(n) > ¢(1). Using this, we get
{In+€—€8(n + 1)) L(n, 1)} +2(1 = £)Ln, pp,7) [1 = B(n + 1))

p=1-

6. INTEGRAL OPERATORS

In this section, we consider integral transforms of functions in the class M, (¢, 8, A) of
the type considered by Goel and Sohi [16].
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Theorem 6.9. Let the function f € X, given by (1.1) be in the class M, (&, 5, A) . Then the
integral operator

F(z):c/zucf(uz)du, 0<u<l0<c<oo
0

is in M, (p, 3, A) where

1-81+28)+c

(1+£-2¢B)(c+2) + (1 -1 —28)
The result is sharp for the function
1 (1-9u+2)
A (T
Proof. Let f € ¥, given by (1.1) be in the class M, (¢, 3, A). Then

p=1-

1 o)
c 1 E ¢ n
F(Z):C/O uf(UZ)dU:;+n:1manZ

We have to show that

= c[n+p—pBn+1)]Ln,pu,~)
7; (1—p)(c+n+1) an < L. (6.19)

Since f € M,(§, 8, A) we have

oo

>y [n+¢&— fﬂ(lnjgl)}fl(n,uﬁ) 0 <1,

n=1
The inequality (6.19) satisfied if

cntp—pBn+1)] _[n+&—EFn+1)
(1—p)lc+n+1) — 1-¢ ’

Then we get
m+&—EBn+Dn+c+1)—(1—-¢&)cn
n+&=Efn+Dl(n+c+1)+e(1 =& = B(n+1))

_ 4 1= +Bn+1)]+cn 620)

[+ =P+ Din+et 1)+ (1= - Bn+1)
By a simple computation, we can show that the function

bn) =1— 1-=91+Bn+1)]+cn

n+&=&Bn+Dl(n+ct+1)+ (1= =B +1)]
is an increasing function of n(n > 1) and ¢(n) > ¢(1). Using this, we obtain the desired
result. O

p

Remark 6.8. If we let the function f € X, given by (1.1) is in the class Z;(v), then the
integral operator F(z) = ¢ [ u’f(uz)du 0<u<10<c<oo isin Z;(v), where
(26)(c+1)+2
(1+8(c+2)+2

The result is sharp for the function

1 0-9w+2),
f& = v eu
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Remark 6.9. If we let the function f € ¥, given by (1.1) is in the class )~ (v) for § = 0,
then we obtain the result given by Kavitha et all [18].
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