CREAT. MATH. INFORM. Volume **26** (2017), No. 2, Pages 145 - 151 Online version at https://creative-mathematics.cunbm.utcluj.ro/ Print Edition: ISSN 1584 - 286X; Online Edition: ISSN 1843 - 441X DOI: https://doi.org/10.37193/CMI.2017.02.04

Determining Lucas identities by using Hosoya index

HACÈNE BELBACHIR¹, HAKIM HARIK^{1,2} and S. PIRZADA³

ABSTRACT. We introduce a new identity of Lucas number by using the Hosoya index. As a consequence we give some properties of Lucas numbers and the extension of the work of Hillard and Windfeldt.

1. INTRODUCTION

We denote by G = (V(G), E(G)) a simple graph, where V(G) is the set of its vertices and E(G) is the set of its edges. The order of G is |V(G)| and the size of G is |E(G)|. For a vertex v of G, N(v) is the set of vertices adjacent to v, $\deg(v) := |N(v)|$ is the degree of v; Link(v) is the set of edges incident to v. In G, an edge between the vertices u and v is denoted by uv. A path P_n , from a vertex v_1 to a vertex v_n , $n \ge 2$, is a sequence of vertices v_1, \ldots, v_n and edges $v_i v_{i+1}$, for $i = 1, \ldots, n-1$; for simplicity we denote it by $v_1 \ldots v_n$. For n = 1, we assume that $P_0P_n = P_nP_0 = P_n$ and for n = 0, P_1 is a single vertex v. A cycle is a path with $v_1 = v_n$. A cycle is elementary if all its vertices are different. We denote an elementary cycle on n vertices by C_n .

The graph G - v is obtained from G by deleting the vertex v and removing all the edges which are incident to v. For an edge e of G, we denote by G - e the graph obtained from G by removing e. The contraction of a graph G, associated to an edge e, is the graph G/eobtained by removing e and identifying the end vertices u and v of e and replacing them by a single vertex v' where the edges incident to u or v are now incident to v'. Then we say that in G the adjacent vertices u and v have been contracted into the vertex v'. For further graph theoretical definitions, we refer to [15].

For $n \ge 2$, the well-known Fibonacci $\{F_n\}$ and Lucas $\{L_n\}$ sequences are defined by $F_n = F_{n-1} + F_{n-2}$ and $L_n = L_{n-1} + L_{n-2}$, where $F_0 = 0$, $F_1 = 1$ and $L_0 = 2$, $L_1 = 1$, respectively. Moreover, the Fibonacci numbers are connected to the element of Pascal's triangle using the following well known identity

$$F_{n+1} = \sum_{k} \binom{n-k}{k}.$$

It is well-known that the relation between Lucas and Fibonacci numbers is given by the identity

$$L_n = F_{n+1} + F_{n-1}$$

For some results and properties related to Fibonacci and Lucas numbers, one can see [3]. This sequence finds applications in many areas, particularly in physics and chemistry [13].

Received: 06.08.2016. In revised form: 14.12.2016. Accepted: 21.12.2016

2010 Mathematics Subject Classification. 05A19, 05C15, 11B39, 05C30.

Key words and phrases. Lucas numbers, matching, Hosoya index, paths, Fibonacci numbers.

Corresponding author: S. Pirzada; pirzadasd@kashmiruniversity.ac.in

A matching *M* of a graph *G* is a subset of E(G) such that no two edges in *M* share a common vertex. A matching of *G* is also called an independent edge set of *G*. A *k*matching of a graph *G* is of cardinality *k*, that is, an independent edge set of *G* of cardinality *k*. We denote by m(G, k) the number of *k*-matching of *G* with the convention that m(G, 0) = 1. Note that m(G, 1) = |E(G)| and when $k > \frac{n}{2}$, m(G, k) = 0.

The Hosoya index of a graph *G*, denoted by Z(G), is an index introduced by Hosoya [12], as follows :

$$Z\left(G\right) = \sum_{k=0}^{\lfloor n/2 \rfloor} m\left(G,k\right),$$

where $n = |V(G)|, \lfloor n/2 \rfloor$ stands for the integer part of n/2. This index has several applications in molecular chemistry such as boiling point, entropy or heat of vaporization. There are several papers on Hosoya index in the literature [1, 2, 4, 5, 6, 8].

2. PRELIMINARY RESULTS

First we list the following results. From the definition of the Hosoya index, it is not difficult to deduce the following lemma.

Lemma 2.1. [10] Let G be a graph, we have the following.

(1) If $uv \in E(G)$, then $Z(G) = Z(G - uv) + Z(G - \{u, v\})$. (2) If $v \in V(G)$, then $Z(G) = Z(G - v) + \sum_{w \in N_G(v)} Z(G - \{w, v\})$. (3) If G_1, G_2, \dots, G_t are the components of G, then $Z(G) = \prod_{k=1}^t Z(G_k)$.

Lemma 2.1 allows us to compute Z(G) recursively for any graph. The following theorem gives the relation between the Hosoya index and the Fibonacci number (see [9, 10]).

Theorem 2.1. Let P_n be a path on n vertices, then $Z(P_n) = F_{n+1}$.

The next theorem gives the relation between the Hosoya index and the Lucas number (see [9, 10]).

Theorem 2.2. Let C_n be a path on n vertices, then $Z(C_n) = L_n$.

3. MAIN RESULTS

In this section, we introduce a new identity of Lucas numbers which generalizes identities of Lucas numbers given in [11] and answers a question of Melham [14].

Theorem 3.3. For all positive integers r_i $(1 \le i \le s)$ and each integer $s \ge 2$, we have

$$L_{r_1+r_2+\ldots+r_s} = \sum_{(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_s)\in\Omega_s} \prod_{i=1}^s F_{r_i+\varepsilon_i},$$
(3.1)

where Ω_s be the set of $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_s)$ such that $\varepsilon_i \in \{-1, 0, 1\}$ and in cycle of *s* cases between each pair of zeros there is nothing or only -1's and between two consecutive pairs of zeros there is nothing or 1's.

Proof. Let $C_{r_1+r_2+\cdots+r_s}$ be a cycle with $r_1+r_2+\cdots+r_s$ vertices. We subdivide $C_{r_1+r_2+\cdots+r_s}$ in consecutive blocs of paths P_{r_i} with r_i $(1 \le i \le s)$ vertices as shown in Figure 1.

On one hand, by Theorem 2.2, we have $Z(C_{r_1+\cdots+r_s}) = L_{r_1+\cdots+r_s}$ while on the other hand, $Z(P_{r_1+r_2+\cdots+r_s})$ is the number of independent edge subsets in

$$C_{r_1+r_2+\dots+r_s} \cdot Z(C_{r_1+r_2+\dots+r_s}) = \sum_{k=0}^{s-1} |M_k|,$$

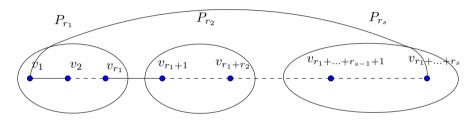


FIGURE 1. A cycle $P_{r_1+r_2+...+r_s}$ subdivide into consecutive blocs of path P_{r_i} with r_i $(1 \le i \le s)$ vertices.

where M_k is a set of independent edge subsets in $C_{r_1+r_2+\cdots+r_s}$ such that for every independent edge subset of M_k , there exists k edges between the blocks of paths P_{r_i} $(1 \le i \le s)$ which belong to it.

Thus M_0 is a set of independent edge subsets in $C_{r_1+r_2+\cdots+r_s}$ such that for every independent edge subset of M_0 , it does not contain any edge between blocs of paths P_{r_i} $(1 \le i \le s)$, so all independent edges are in blocks P_{r_i} $(1 \le i \le s)$ and using Theorem 2.1 we have $|M_0| = \prod_{i=1}^s F_{r_i+1}$.

Now M_1 is a set of independent edge subsets in $P_{r_1+r_2+\cdots+r_s}$ such that for every independent edge subset of M_1 , there exists only one edge between blocs of paths P_{r_i} $(1 \le i \le s)$ which belong to it. Let H be a subset of M_1 containing the edge

$$v_{r_1 + \dots + r_k} v_{r_1 + \dots + r_k + 1} \ (1 \le k \le s - 1)$$

in all of its independent edge subsets. We contract the adjacent vertices $v_{r_1+\dots+r_k}$ and $v_{r_1+\dots+r_k+1}$ in $C_{r_1+\dots+r_s}$ into one vertex v' and let $P_{r_1+\dots+r_s-1}$ be a new path after contraction composed of the consecutive blocks of paths

$$P_{r_1}, P_{r_2}, \ldots, P_{r_k-1}, v', P_{r_{k+1}-1}, \ldots, P_{r_k}$$

A cycle $C_{r_1+\dots+r_s-1}$ does not contain any edge between the blocks which belong to the independent edge subsets of *H*, so

$$|H| = F_{r_1+1} \times F_{r_2+1} \times \ldots \times F_{r_k} \times F_2 \times F_{r_{k+1}} \ldots \times F_{r_s+1}.$$

Thus,

$$|M_1| = \sum_{(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_s) \in \Delta_1} \prod F_{r_i + \varepsilon_i}$$

where Δ_1 is the set of $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_s)$ such that for $1 \le i \le s$, $\varepsilon_i \in \{0, 1\}$ and $\varepsilon_1 \varepsilon_2 ... \varepsilon_s$ form a cycle of *s* cases such that there is only one pair of zeros and between them there is only ϕ .

Further, M_2 is a set of independent edge subsets in $C_{r_1+r_2+\cdots+r_s}$ such that for every independent edge subset of M_2 , there exist two edges between the blocks of paths P_{r_i} $(1 \le i \le s)$ which belong to it. As for computing of $|M_1|$ and using the contraction method for the two edges between blocks of paths P_{r_i} $(1 \le i \le s)$, the cardinality of M_2 can be counted by $\sum_{(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_s) \in \Delta_2} \prod F_{r_i + \varepsilon_i}$, where Δ_2 is the set of $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_s)$ such that for $1 \le i \le s, \varepsilon_i \in \{-1, 0, 1\}$ and $\varepsilon_1 \varepsilon_2 \dots \varepsilon_s$ form a cycle of *s* cases such that there is only one pair of zeros separated only -1 or two pairs of zeros between them (the pairs) there is ϕ or 1.

Continuing in this way, we see that M_s is a set of independent edge subsets in $C_{r_1+r_2+\cdots+r_s}$ such that for every independent edge subset of M_s , there exists *s* edges between blocs of

paths P_{r_i} $(1 \le i \le s)$ which belong to it. In this case, all paths P_{r_i} $(1 \le i \le s)$ lose two vertices after contraction method. Thus, the cardinality of M_s can be counted by $\prod_{i=1}^{s} F_{r_i-1}$. Hence, the identity (3.1) holds.

Example 3.1. To calculate L_5 , we consider a cycle of five vertices C_5 . We subdivided the cycle into two paths, the first one with three vertices P_3 and the second one with two vertices P_2 , see Figure 2.

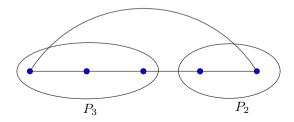


FIGURE 2. A cycle C_5 subdivide into two blocs of paths P_3 and P_2 .

Using Theorem 3.3, we have $\Omega_2 = \{(1,1), (0,0), (0,0), (-1,-1)\}$ and $L_5 = F_4F_3 + 2F_3F_2 + F_2F_1 = 11$.

Example 3.2. To calculate $L_6 = L_{3+1+2}$, we consider a C_6 , a cycle on six vertices. We subdivided the cycle into three consecutive blocs, the first block contain a path P_3 with three vertices, the second bloc contain one vertex and the third bloc contain a path P_2 with two vertices, see Figure 3.

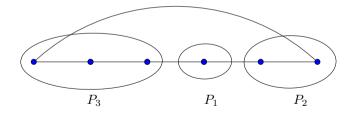


FIGURE 3. A cycle C_6 subdivide into three consecutive blocs of paths P_3 with three vertices, P_1 with one vertex and P_2 with two vertices.

Using Theorem 3.3, we have $\Omega_3 = \{(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 0, 0), (0, -1, 0), (0, 0, -1), (-1, -1, -1)\}$ then $L_5 = F_4F_3F_2 + F_4F_1F_2 + F_3F_2F_2 + F_3F_1F_3 + F_2F_1F_2 + F_3F_0F_2 + F_3F_1F_1 + F_2F_1F_0 = 18.$

According to Theorem 3.3, it is easy to see that $|\Omega_s| = 2^s$. The following corollaries are the main results of [11].

Corollary 3.1. For any non-negative integers r and t, we have

$$L_{r+t} = F_{r+1}F_{t+1} + 2F_rF_t + F_{r-1}F_{t-1}.$$
(3.2)

Proof. From Theorem 3.3 with s = 2 and $\Omega_2 = \{(1,1), (0,0), (0,0), (-1,-1)\}$, we obtain the identity.

Corollary 3.2. For any non-negative integers u, v and w, we have

$$L_{u+v+w} = F_{u+1}F_{v+1}F_{w+1} + F_{u+1}F_vF_w + F_uF_{v+1}F_w + F_uF_vF_{w+1} + F_{u-1}F_vF_w + F_uF_{v-1}F_w + F_uF_vF_{w-1} + F_{u-1}F_{v-1}F_{w-1}$$

Proof. From Theorem 3.3 with s = 3 and $\Omega_3 = \{(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 0, 0), (0, -1, 0), (0, 0, -1), (-1, -1, -1)\}$, the identity holds.

• The lines of the following table represents the elements of Ω_4 ,

• The lines of the following table represents the elements of Ω_5 ,

1	1	1	1	1	0	0	-1	0	0
0	0	1	1	1	-1	0	1	0	$^{-1}$
1	0	0	1	1	-1	0	1	1	0
1	1	0	0	1	-1	-1	0	0	-1
1	1	1	0	0	-1	-1	0	1	0
0	-1	0	1	1	-1	-1	-1	0	0
1	0	-1	0	1	0	0	0	0	1
1	1	0	-1	0	0	0	1	0	0
0	-1	-1	0	1	1	0	0	0	0
1	0	$^{-1}$	-1	0	0	-1	0	0	0
0	$^{-1}$	$^{-1}$	-1	0	0	0	0	-1	0
0	0	$^{-1}$	-1	-1	0	0	0	0	-1
0	1	0	-1	-1	-1	0	0	0	0
0	1	1	0	-1	0	1	0	0	0
0	1	1	1	0	0	0	0	1	0
-1	0	0	-1	-1	-1	-1	-1	$^{-1}$	-1

Another identity of Lucas number is given in the following result, and this is the equivalent form of Theorem 3.3.

Theorem 3.4. For any non-negative integer r_i $(1 \le i \le s)$, we have:

$$L_{\sum_{i=1}^{s} r_{i}} = F_{\sum_{i=1}^{s-1} r_{i}+1} F_{r_{s}+1} + \sum_{\substack{i+k \leq s \\ i \neq 0, \ j \neq 0}} \left[\left(\prod_{j=0}^{i-1} F_{r_{s-j}-1} \right) \left(\prod_{j=1}^{k-1} F_{r_{j}-1} \right) F_{\sum_{j=k+1}^{s-i-1} r_{j}+1} F_{r_{k}} F_{r_{s-i}} \right] + \sum_{i=1}^{s-2} \left[\left[\left(\prod_{j=1}^{i} F_{r_{s-j}-1} \right) F_{\sum_{j=1}^{s-i-2} r_{j}+1} + \left(\prod_{j=1}^{s-i-2} F_{r_{j}-1} \right) F_{\sum_{j=1}^{i} r_{s-j}+1} \right] F_{r_{s-i-1}} F_{r_{s}} \right]$$

Proof. As mentioned in Theorem 3.3,

$$L_{\sum_{i=1}^{i=s} r_i + 1} = \sum_{(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_s) \in \Omega_s} \prod_{i=1}^s F_{r_i + \varepsilon_i}$$

where Ω_s is the set of $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_s)$ such that $\varepsilon_i \in \{-1, 0, 1\}$ and in cycle of *s* cases between each pair of zeros there is nothing or only -1's and between two consecutive pairs of zeros there is nothing or 1's. That means to count $L_{\sum_{i=1}^{i=s} r_i}$ we have three cases:

Case 1. $\varepsilon_s = 1$. In this case for all $s - uplet (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_s = 1)$, the expression reduces to the following quantity

$$F_{r_s+1}\left(\sum_{(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_{s-1})\in\Omega_{s-1}}\prod_{i=1}^{s-1}F_{r_i+\varepsilon_i}\right)$$

where Ω_{s-1} is the set of $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{s-1})$ such that $\varepsilon_i \in \{-1, 0, 1\}$ and between each pair of zeros there is nothing or only -1's and between two consecutive pairs of zeros there is nothing or 1's, so for $\varepsilon_s = 1$ we have $F_{\sum_{i=1}^{i=s-1} r_i+1}F_{r_s+1}$.

Case 2. $\varepsilon_s = -1$, in this case, we search a pair of zeros associate that contains ε_s , Hence, to count $F_{\sum_{i=1}^{i=s} r_i+1}$, for $\varepsilon_s = -1$, we have

$$\sum_{\substack{i+k < s \\ i \neq 0, \ j \neq 0}} \left[\left(\prod_{j=0}^{i-1} F_{r_{s-j}-1} \right) \left(\prod_{j=1}^{k-1} F_{r_j-1} \right) F_{\sum_{j=k+1}^{s-i-1} r_j+1} F_{r_k} F_{r_{s-i}} \right].$$

Case 3. $\varepsilon_s = 0$, in this case, we search a pair of zeros associate to ε_s . Hence, to count $F_{\sum_{i=s}^{i=s} r_i+1}$, for $\varepsilon_s = 0$, we have

$$\sum_{i=1}^{s-2} \left[\left[\left(\prod_{j=1}^{i} F_{r_{s-j}-1} \right) F_{\sum_{j=1}^{s-i-2} r_{j}+1} + \left(\prod_{j=1}^{s-i-2} F_{r_{j}-1} \right) F_{\sum_{j=1}^{i} r_{s-j}+1} \right] F_{r_{s-i-1}} F_{r_{s}} \right].$$

The following corollary is a particular case of Theorem 3.4.

Corollary 3.3. For any non-negative integers s and r, we have:

$$L_{sr} = F_{r+1}F_{(s-1)r+1} + \sum_{\substack{i+k < s \\ i \neq 0, \ j \neq 0}} F_{r-1}^{i+k-1}F_{(s-i-k-1)r-1}F_r^2 + \sum_{k=0}^{s-2} \left[F_{r-1}^k F_{(s-k-2)r+1}F_{r-1}^{s-k-2}F_{kr+1} \right] F_r^2$$

Proof. This is obtained by using Theorem 3.4 with $r_1 = \cdots = r_s = r$.

REFERENCES

- [1] Balaban, A., Chemical Applications of GraphTheory, Academic Press, London, (1976)
- [2] Balaban, A., Applications of Graph Theory in Chemistry, J. Chem. Inf. Comput. Sci., 25 (1985), 334-343
- [3] Belbachir, H. and Bencherif, F., Linear recurrent sequences and powers of a square matrix, Integers 6, A12 (2006) 17pp.
- [4] Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications, North-Holland, (1976)
- [5] Chan, O. Gutman, I., Lam, T. K. and Merris, R., Algebraic connections between topological indices, J. Chem. Inform. Comput. Sci, 38 (1998) 62–65
- [6] Cyvin, S. J. and Gutman, I., Hosoya index of fused molecules, MATCH Commun. Math. Comput. Chem, 23 (1988) 89–94
- [7] Deng, H., The largest Hosoya index of (n, n + 1)-graphs, Computers & Mathematics with Applications, 56 (2008), No. 10, 2499–2506
- [8] Diudea, M. V., Gutman, I. and Lorentz, J., Molecular Topology, Nova, Huntington, (2001)
- [9] Gutman, I., Acyclic systems with extremal Huckel π -electron energy, Theoret Chim Acta, 45 (1977) 79–87
- [10] Gutman, I. and Polansky, O. E., Mathematical Concepts in Organic Chemistry, Springer, Berlin, (1986)
- [11] Hillar, C. J. and Windfeldt, T., Fibonacci identities and graph colorings, Fibonaccci Quarterly, 46/47 (2009) 220-224
- [12] Hosoya, H., Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bulletin of the Chemical Society of Japan, 44 (1971), No. 9, 2332–2339

150

- [13] Koshy, T., Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, (2001)
- [14] Melham, R. S., Families of identities involving sums of powers of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, 37 (1999), No. 4, 315–319
- [15] Pirzada, S., An Introduction to Graph Theory, Universities Press, OrientBlackSwan, Hyderabad, India, (2012)

¹USTHB, FACULTY OF MATHEMATICS RECITS LABORATORY, EL ALIA, 16111, ALGIERS, ALGERIA *Email address*: hbelbachir@usthb.dz; hacenebelbachir@gmail.com

²CERIST
5 RUE DES FRÈRES AISSOU
ALGIERS, ALGERIA
Email address: hhakim@mail.cerist.dz

³UNIVERSITY OF KASHMIR DEPARTMENT OF MATHEMATICS HAZRATBAL, SRINAGAR, KASHMIR, INDIA *Email address*: pirzadasd@kashmiruniversity.ac.in