Determining Lucas identities by using Hosoya index

Hacène Belbachir ${ }^{1}$, Hakim Harik ${ }^{1,2}$ and S. Pirzada ${ }^{3}$

Abstract

We introduce a new identity of Lucas number by using the Hosoya index. As a consequence we give some properties of Lucas numbers and the extension of the work of Hillard and Windfeldt.

1. Introduction

We denote by $G=(V(G), E(G))$ a simple graph, where $V(G)$ is the set of its vertices and $E(G)$ is the set of its edges. The order of G is $|V(G)|$ and the size of G is $|E(G)|$. For a vertex v of $G, N(v)$ is the set of vertices adjacent to $v, \operatorname{deg}(v):=|N(v)|$ is the degree of $v ; \operatorname{Link}(v)$ is the set of edges incident to v. In G, an edge between the vertices u and v is denoted by $u v$. A path P_{n}, from a vertex v_{1} to a vertex $v_{n}, n \geq 2$, is a sequence of vertices v_{1}, \ldots, v_{n} and edges $v_{i} v_{i+1}$, for $i=1, \ldots, n-1$; for simplicity we denote it by $v_{1} \ldots v_{n}$. For $n=1$, we assume that $P_{0} P_{n}=P_{n} P_{0}=P_{n}$ and for $n=0, P_{1}$ is a single vertex v. A cycle is a path with $v_{1}=v_{n}$. A cycle is elementary if all its vertices are different. We denote an elementary cycle on n vertices by C_{n}.

The graph $G-v$ is obtained from G by deleting the vertex v and removing all the edges which are incident to v. For an edge e of G, we denote by $G-e$ the graph obtained from G by removing e. The contraction of a graph G, associated to an edge e, is the graph G / e obtained by removing e and identifying the end vertices u and v of e and replacing them by a single vertex v^{\prime} where the edges incident to u or v are now incident to v^{\prime}. Then we say that in G the adjacent vertices u and v have been contracted into the vertex v^{\prime}. For further graph theoretical definitions, we refer to [15].

For $n \geq 2$, the well-known Fibonacci $\left\{F_{n}\right\}$ and Lucas $\left\{L_{n}\right\}$ sequences are defined by $F_{n}=F_{n-1}+F_{n-2}$ and $L_{n}=L_{n-1}+L_{n-2}$, where $F_{0}=0, F_{1}=1$ and $L_{0}=2, L_{1}=1$, respectively. Moreover, the Fibonacci numbers are connected to the element of Pascal's triangle using the following well known identity

$$
F_{n+1}=\sum_{k}\binom{n-k}{k} .
$$

It is well-known that the relation between Lucas and Fibonacci numbers is given by the identity

$$
L_{n}=F_{n+1}+F_{n-1}
$$

For some results and properties related to Fibonacci and Lucas numbers, one can see [3]. This sequence finds applications in many areas, particularly in physics and chemistry [13].

[^0]A matching M of a graph G is a subset of $E(G)$ such that no two edges in M share a common vertex. A matching of G is also called an independent edge set of G. A k matching of a graph G is of cardinality k, that is, an independent edge set of G of cardinality k. We denote by $m(G, k)$ the number of k-matching of G with the convention that $m(G, 0)=1$. Note that $m(G, 1)=|E(G)|$ and when $k>\frac{n}{2}, m(G, k)=0$.

The Hosoya index of a graph G, denoted by $Z(G)$, is an index introduced by Hosoya [12], as follows :

$$
Z(G)=\sum_{k=0}^{\lfloor n / 2\rfloor} m(G, k)
$$

where $n=|V(G)|,\lfloor n / 2\rfloor$ stands for the integer part of $n / 2$. This index has several applications in molecular chemistry such as boiling point, entropy or heat of vaporization. There are several papers on Hosoya index in the literature [1, 2, 4, 5, 6, 8].

2. Preliminary results

First we list the following results. From the definition of the Hosoya index, it is not difficult to deduce the following lemma.

Lemma 2.1. [10] Let G be a graph, we have the following.
(1) If $u v \in E(G)$, then $Z(G)=Z(G-u v)+Z(G-\{u, v\})$.
(2) If $v \in V(G)$, then $Z(G)=Z(G-v)+\sum_{w \in N_{G}(v)} Z(G-\{w, v\})$.
(3) If $G_{1}, G_{2}, \ldots, G_{t}$ are the components of G, then $Z(G)=\prod_{k=1}^{t} Z\left(G_{k}\right)$.

Lemma 2.1 allows us to compute $Z(G)$ recursively for any graph. The following theorem gives the relation between the Hosoya index and the Fibonacci number (see [9, 10]).
Theorem 2.1. Let P_{n} be a path on n vertices, then $Z\left(P_{n}\right)=F_{n+1}$.
The next theorem gives the relation between the Hosoya index and the Lucas number (see [9, 10]).

Theorem 2.2. Let C_{n} be a path on n vertices, then $Z\left(C_{n}\right)=L_{n}$.

3. Main results

In this section, we introduce a new identity of Lucas numbers which generalizes identities of Lucas numbers given in [11] and answers a question of Melham [14].

Theorem 3.3. For all positive integers $r_{i}(1 \leq i \leq s)$ and each integer $s \geq 2$, we have

$$
\begin{equation*}
L_{r_{1}+r_{2}+\ldots+r_{s}}=\sum_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{s}\right) \in \Omega_{s}} \prod_{i=1}^{s} F_{r_{i}+\varepsilon_{i}} \tag{3.1}
\end{equation*}
$$

where Ω_{s} be the set of $\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{s}\right)$ such that $\varepsilon_{i} \in\{-1,0,1\}$ and in cycle of s cases between each pair of zeros there is nothing or only -1^{\prime} s and between two consecutive pairs of zeros there is nothing or $1^{\prime} s$.

Proof. Let $C_{r_{1}+r_{2}+\cdots+r_{s}}$ be a cycle with $r_{1}+r_{2}+\cdots+r_{s}$ vertices. We subdivide $C_{r_{1}+r_{2}+\cdots+r_{s}}$ in consecutive blocs of paths $P_{r_{i}}$ with $r_{i}(1 \leq i \leq s)$ vertices as shown in Figure 1.

On one hand, by Theorem 2.2, we have $Z\left(C_{r_{1}+\cdots+r_{s}}\right)=L_{r_{1}+\cdots+r_{s}}$ while on the other hand, $Z\left(P_{r_{1}+r_{2}+\cdots+r_{s}}\right)$ is the number of independent edge subsets in

$$
C_{r_{1}+r_{2}+\cdots+r_{s}} . Z\left(C_{r_{1}+r_{2}+\cdots+r_{s}}\right)=\sum_{k=0}^{s-1}\left|M_{k}\right|
$$

FIGURE 1. A cycle $P_{r_{1}+r_{2}+\ldots+r_{s}}$ subdivide into consecutive blocs of path $P_{r_{i}}$ with $r_{i}(1 \leq i \leq s)$ vertices.
where M_{k} is a set of independent edge subsets in $C_{r_{1}+r_{2}+\cdots+r_{s}}$ such that for every independent edge subset of M_{k}, there exists k edges between the blocks of paths $P_{r_{i}}(1 \leq i \leq s)$ which belong to it.

Thus M_{0} is a set of independent edge subsets in $C_{r_{1}+r_{2}+\cdots+r_{s}}$ such that for every independent edge subset of M_{0}, it does not contain any edge between blocs of paths $P_{r_{i}}$ $(1 \leq i \leq s)$, so all independent edges are in blocks $P_{r_{i}}(1 \leq i \leq s)$ and using Theorem 2.1 we have $\left|M_{0}\right|=\prod_{i=1}^{s} F_{r_{i}+1}$.

Now M_{1} is a set of independent edge subsets in $P_{r_{1}+r_{2}+\cdots+r_{s}}$ such that for every independent edge subset of M_{1}, there exists only one edge between blocs of paths $P_{r_{i}}$ $(1 \leq i \leq s)$ which belong to it. Let H be a subset of M_{1} containing the edge

$$
v_{r_{1}+\cdots+r_{k}} v_{r_{1}+\cdots+r_{k}+1}(1 \leq k \leq s-1)
$$

in all of its independent edge subsets. We contract the adjacent vertices $v_{r_{1}+\cdots+r_{k}}$ and $v_{r_{1}+\cdots+r_{k}+1}$ in $C_{r_{1}+\cdots+r_{s}}$ into one vertex v^{\prime} and let $P_{r_{1}+\cdots+r_{s}-1}$ be a new path after contraction composed of the consecutive blocks of paths

$$
P_{r_{1}}, P_{r_{2}}, \ldots, P_{r_{k}-1}, v^{\prime}, P_{r_{k+1}-1}, \ldots, P_{r_{s}} .
$$

A cycle $C_{r_{1}+\cdots+r_{s}-1}$ does not contain any edge between the blocks which belong to the independent edge subsets of H, so

$$
|H|=F_{r_{1}+1} \times F_{r_{2}+1} \times \ldots \times F_{r_{k}} \times F_{2} \times F_{r_{k+1}} \ldots \times F_{r_{s}+1}
$$

Thus,

$$
\left|M_{1}\right|=\sum_{\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{s}\right) \in \Delta_{1}} \Pi F_{r_{i}+\varepsilon_{i}}
$$

where Δ_{1} is the set of $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{s}\right)$ such that for $1 \leq i \leq s, \varepsilon_{i} \in\{0,1\}$ and $\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{s}$ form a cycle of s cases such that there is only one pair of zeros and between them there is only ϕ.

Further, M_{2} is a set of independent edge subsets in $C_{r_{1}+r_{2}+\cdots+r_{s}}$ such that for every independent edge subset of M_{2}, there exist two edges between the blocks of paths $P_{r_{i}}$ ($1 \leq i \leq s$) which belong to it. As for computing of $\left|M_{1}\right|$ and using the contraction method for the two edges between blocks of paths $P_{r_{i}}(1 \leq i \leq s)$, the cardinality of M_{2} can be counted by $\sum_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{s}\right) \in \Delta_{2}} \Pi F_{r_{i}+\varepsilon_{i}}$, where Δ_{2} is the set of $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{s}\right)$ such that for $1 \leq i \leq s, \varepsilon_{i} \in\{-1,0,1\}$ and $\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{s}$ form a cycle of s cases such that there is only one pair of zeros separated only -1 or two pairs of zeros between them (the pairs) there is ϕ or 1 .

Continuing in this way, we see that M_{s} is a set of independent edge subsets in $C_{r_{1}+r_{2}+\cdots+r_{s}}$ such that for every independent edge subset of M_{s}, there exists s edges between blocs of
paths $P_{r_{i}}(1 \leq i \leq s)$ which belong to it. In this case, all paths $P_{r_{i}}(1 \leq i \leq s)$ lose two vertices after contraction method. Thus, the cardinality of M_{s} can be counted by $\prod_{i=1}^{s} F_{r_{i}-1}$. Hence, the identity (3.1) holds.
Example 3.1. To calculate L_{5}, we consider a cycle of five vertices C_{5}. We subdivided the cycle into two paths, the first one with three vertices P_{3} and the second one with two vertices P_{2}, see Figure 2.

Figure 2. A cycle C_{5} subdivide into two blocs of paths P_{3} and P_{2}.
Using Theorem 3.3, we have $\Omega_{2}=\{(1,1),(0,0),(0,0),(-1,-1)\}$ and $L_{5}=F_{4} F_{3}+$ $2 F_{3} F_{2}+F_{2} F_{1}=11$.

Example 3.2. To calculate $L_{6}=L_{3+1+2}$, we consider a C_{6}, a cycle on six vertices. We subdivided the cycle into three consecutive blocs, the first block contain a path P_{3} with three vertices, the second bloc contain one vertex and the third bloc contain a path P_{2} with two vertices, see Figure 3.

Figure 3. A cycle C_{6} subdivide into three consecutive blocs of paths P_{3} with three vertices, P_{1} with one vertex and P_{2} with two vertices.

Using Theorem 3.3, we have $\Omega_{3}=\{(1,1,1),(1,0,0),(0,1,0),(0,0,1),(-1,0,0)$, $(0,-1,0),(0,0,-1),(-1,-1,-1)\}$ then $L_{5}=F_{4} F_{3} F_{2}+F_{4} F_{1} F_{2}+F_{3} F_{2} F_{2}+F_{3} F_{1} F_{3}+$ $F_{2} F_{1} F_{2}+F_{3} F_{0} F_{2}+F_{3} F_{1} F_{1}+F_{2} F_{1} F_{0}=18$.

According to Theorem 3.3, it is easy to see that $\left|\Omega_{s}\right|=2^{s}$. The following corollaries are the main results of [11].

Corollary 3.1. For any non-negative integers r and t, we have

$$
\begin{equation*}
L_{r+t}=F_{r+1} F_{t+1}+2 F_{r} F_{t}+F_{r-1} F_{t-1} . \tag{3.2}
\end{equation*}
$$

Proof. From Theorem 3.3 with $s=2$ and $\Omega_{2}=\{(1,1),(0,0),(0,0),(-1,-1)\}$, we obtain the identity.

Corollary 3.2. For any non-negative integers u, v and w, we have

$$
\begin{aligned}
L_{u+v+w} & =F_{u+1} F_{v+1} F_{w+1}+F_{u+1} F_{v} F_{w}+F_{u} F_{v+1} F_{w}+F_{u} F_{v} F_{w+1} \\
& +F_{u-1} F_{v} F_{w}+F_{u} F_{v-1} F_{w}+F_{u} F_{v} F_{w-1}+F_{u-1} F_{v-1} F_{w-1} .
\end{aligned}
$$

Proof. From Theorem 3.3 with $s=3$ and $\Omega_{3}=\{(1,1,1),(1,0,0),(0,1,0),(0,0,1),(-1,0,0)$, $(0,-1,0),(0,0,-1),(-1,-1,-1)\}$, the identity holds.

- The lines of the following table represents the elements of Ω_{4},

$$
\begin{array}{||cccc||cccc||}
1 & 1 & 1 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & -1 & 0 & 0 & -1 \\
1 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 & -1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 & -1 & -1 & -1
\end{array} \|
$$

- The lines of the following table represents the elements of Ω_{5},

$$
\left\lvert\, \begin{array}{|ccccc||ccccc}
1 & 1 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & -1 & 0 & 1 & 0 & -1 \\
1 & 0 & 0 & 1 & 1 & -1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & -1 & -1 & 0 & 0 & -1 \\
1 & 1 & 1 & 0 & 0 & -1 & -1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 & 1 & -1 & -1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & -1 & -1 & -1 & -1 & -1 & -1 & -1
\end{array}\right. \|
$$

Another identity of Lucas number is given in the following result, and this is the equivalent form of Theorem 3.3.

Theorem 3.4. For any non-negative integer $r_{i}(1 \leq i \leq s)$, we have:

$$
\begin{aligned}
L_{\sum_{i=1}^{s} r_{i}} & =F_{\sum_{i=1}^{s-1} r_{i}+1} F_{r_{s}+1}+\sum_{\substack{i+k<s \\
i \neq 0, j \neq 0}}\left[\left(\prod_{j=0}^{i-1} F_{r_{s-j}-1}\right)\left(\prod_{j=1}^{k-1} F_{r_{j}-1}\right) F_{\sum_{j=k+1}^{s-i-1} r_{j}+1} F_{r_{k}} F_{r_{s-i}}\right] \\
& +\sum_{i=1}^{s-2}\left[\left[\left(\prod_{j=1}^{i} F_{r_{s-j}-1}\right) F_{\sum_{j=1}^{s-i-2} r_{j}+1}+\left(\prod_{j=1}^{s-i-2} F_{r_{j}-1}\right) F_{\sum_{j=1}^{i} r_{s-j}+1}\right] F_{r_{s-i-1}} F_{r_{s}}\right]
\end{aligned}
$$

Proof. As mentioned in Theorem 3.3,

$$
L_{\sum_{i=1}^{i=s} r_{i}+1}=\sum_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{s}\right) \in \Omega_{s}} \prod_{i=1}^{s} F_{r_{i}+\varepsilon_{i}}
$$

where Ω_{s} is the set of $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{s}\right)$ such that $\varepsilon_{i} \in\{-1,0,1\}$ and in cycle of s cases between each pair of zeros there is nothing or only $-1^{\prime} s$ and between two consecutive pairs of zeros there is nothing or $1^{\prime} s$. That means to count $L_{\sum_{i=1}^{i=s} r_{i}}$ we have three cases:

Case 1. $\varepsilon_{s}=1$. In this case for all $s-\operatorname{uplet}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{s}=1\right)$, the expression reduces to the following quantity

$$
F_{r_{s}+1}\left(\sum_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{s-1}\right) \in \Omega_{s-1}} \prod_{i=1}^{s-1} F_{r_{i}+\varepsilon_{i}}\right)
$$

where Ω_{s-1} is the set of $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{s-1}\right)$ such that $\varepsilon_{i} \in\{-1,0,1\}$ and between each pair of zeros there is nothing or only $-1^{\prime} s$ and between two consecutive pairs of zeros there is nothing or $1^{\prime} s$, so for $\varepsilon_{s}=1$ we have $F_{\sum_{i=1}^{i=s-1} r_{i}+1} F_{r_{s}+1}$.

Case 2. $\varepsilon_{s}=-1$, in this case, we search a pair of zeros associate that contains ε_{s}, Hence, to count $F_{\sum_{i=1}^{i=s} r_{i}+1}$, for $\varepsilon_{s}=-1$, we have

$$
\sum_{\substack{i+k<s \\ i \neq 0, j \neq 0}}\left[\left(\prod_{j=0}^{i-1} F_{r_{s-j}-1}\right)\left(\prod_{j=1}^{k-1} F_{r_{j}-1}\right) F_{\sum_{\substack{s-k+1}}^{s-i-1} r_{j}+1} F_{r_{k}} F_{r_{s-i}}\right]
$$

Case 3. $\varepsilon_{s}=0$, in this case, we search a pair of zeros associate to ε_{s}. Hence, to count $F_{\sum_{i=1}^{i=s} r_{i}+1}$, for $\varepsilon_{s}=0$, we have

$$
\sum_{i=1}^{s-2}\left[\left[\left(\prod_{j=1}^{i} F_{r_{s-j}-1}\right) F_{\sum_{j=1}^{s-i-2} r_{j}+1}+\left(\prod_{j=1}^{s-i-2} F_{r_{j}-1}\right) F_{\sum_{j=1}^{i} r_{s-j}+1}\right] F_{r_{s-i-1}} F_{r_{s}}\right]
$$

The following corollary is a particular case of Theorem 3.4.
Corollary 3.3. For any non-negative integers s and r, we have:

$$
\begin{aligned}
L_{s r} & =F_{r+1} F_{(s-1) r+1}+\sum_{\substack{i+k<s \\
i \neq 0, j \neq 0}} F_{r-1}^{i+k-1} F_{(s-i-k-1) r-1} F_{r}^{2} \\
& +\sum_{k=0}^{s-2}\left[F_{r-1}^{k} F_{(s-k-2) r+1} F_{r-1}^{s-k-2} F_{k r+1}\right] F_{r}^{2}
\end{aligned}
$$

Proof. This is obtained by using Theorem 3.4 with $r_{1}=\cdots=r_{s}=r$.

References

[1] Balaban, A., Chemical Applications of GraphTheory, Academic Press, London, (1976)
[2] Balaban, A., Applications of Graph Theory in Chemistry, J. Chem. Inf. Comput. Sci., 25 (1985), 334-343
[3] Belbachir, H. and Bencherif, F., Linear recurrent sequences and powers of a square matrix, Integers 6, A12 (2006) 17pp.
[4] Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications, North-Holland, (1976)
[5] Chan, O. Gutman, I., Lam, T. K. and Merris, R., Algebraic connections between topological indices, J. Chem. Inform. Comput. Sci, 38 (1998) 62-65
[6] Cyvin, S. J. and Gutman, I., Hosoya index of fused molecules, MATCH Commun. Math. Comput. Chem, 23 (1988) 89-94
[7] Deng, H., The largest Hosoya index of ($n, n+1$)-graphs, Computers \& Mathematics with Applications, 56 (2008), No. 10, 2499-2506
[8] Diudea, M. V., Gutman, I. and Lorentz, J., Molecular Topology, Nova, Huntington, (2001)
[9] Gutman, I., Acyclic systems with extremal Huckel π-electron energy, Theoret Chim Acta, 45 (1977) 79-87
[10] Gutman, I. and Polansky, O. E., Mathematical Concepts in Organic Chemistry, Springer, Berlin, (1986)
[11] Hillar, C. J. and Windfeldt, T.,Fibonacci identities and graph colorings, Fibonaccci Quarterly, 46/47 (2009) 220-224
[12] Hosoya, H., Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bulletin of the Chemical Society of Japan, 44 (1971), No. 9, 2332-2339
[13] Koshy, T., Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics (New York), WileyInterscience, New York, (2001)
[14] Melham, R. S., Families of identities involving sums of powers of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, 37 (1999), No. 4, 315-319
[15] Pirzada, S., An Introduction to Graph Theory, Universities Press, OrientBlackSwan, Hyderabad, India, (2012)

```
1 USTHB, FACUlTY OF MATHEmATICS
RECITS Laboratory,
El AliA, 16111, Algiers, Algeria
Email address: hbelbachir@usthb.dz; hacenebelbachir@gmail.com
2}\mathrm{ CERIST
5 Rue des frères Aissou
Algiers, AlgeriA
Email address: hhakim@mail.cerist.dz
3}\mathrm{ University of Kashmir
Department of Mathematics
HAZRATBAL, SRINAGAR, KASHMIR, IndiA
Email address: pirzadasd@kashmiruniversity.ac.in
```


[^0]: Received: 06.08.2016. In revised form: 14.12.2016. Accepted: 21.12.2016
 2010 Mathematics Subject Classification. 05A19, 05C15, 11B39, 05C30.
 Key words and phrases. Lucas numbers, matching, Hosoya index, paths, Fibonacci numbers.
 Corresponding author: S. Pirzada; pirzadasd@kashmiruniversity.ac.in

