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Determining Lucas identities by using Hosoya index

HACENE BELBACHIR!, HAKIM HARIK!? and S. PIRZADA3

ABSTRACT. We introduce a new identity of Lucas number by using the Hosoya index. As a consequence we
give some properties of Lucas numbers and the extension of the work of Hillard and Windfeldt.

1. INTRODUCTION

We denote by G = (V(G), E(G)) a simple graph, where V(G) is the set of its vertices
and E(G) is the set of its edges. The order of G is |V (G)| and the size of G is |E(G)|. For
a vertex v of G, N(v) is the set of vertices adjacent to v, deg(v) := |N(v)| is the degree of
v; Link(v) is the set of edges incident to v. In G, an edge between the vertices u and v is
denoted by uv. A path P,, from a vertex v; to a vertex v,, n > 2, is a sequence of vertices
v1,...,U, and edges v;v;41, fori = 1,...,n—1; for simplicity we denote it by v; .. . v,,. For
n = 1, we assume that Py P, = P,P) = P, and for n = 0, P, is a single vertex v. A cycle
is a path with v; = v,,. A cycle is elementary if all its vertices are different. We denote an
elementary cycle on n vertices by Cj,.

The graph G — v is obtained from G by deleting the vertex v and removing all the edges
which are incident to v. For an edge e of G, we denote by G — e the graph obtained from
G by removing e. The contraction of a graph G, associated to an edge e, is the graph G/e
obtained by removing e and identifying the end vertices v and v of e and replacing them
by a single vertex v’ where the edges incident to u or v are now incident to v'. Then we say
that in G the adjacent vertices v and v have been contracted into the vertex v'. For further
graph theoretical definitions, we refer to [15].

For n > 2, the well-known Fibonacci {F,,} and Lucas {L,,} sequences are defined by
Fn = I'n_1+ Fn_g and Ln = Ln—l + Ln—2 P where F() = O7 Fl = 1land LO = 2, Ll = 1,
respectively. Moreover, the Fibonacci numbers are connected to the element of Pascal’s
triangle using the following well known identity

Fnﬂzz(";’“).

k

It is well-known that the relation between Lucas and Fibonacci numbers is given by the
identity
Ln — I'n41 + F, n—1

For some results and properties related to Fibonacci and Lucas numbers, one can see
[3]. This sequence finds applications in many areas, particularly in physics and chemistry
[13].
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A matching M of a graph G is a subset of E(G) such that no two edges in M share
a common vertex. A matching of G is also called an independent edge set of G. A k-
matching of a graph G is of cardinality k, that is, an independent edge set of G of cardi-
nality k. We denote by m (G, k) the number of k-matching of G with the convention that
m (G, 0) = 1. Note that m (G, 1) = |E(G)| and when k > &, m (G, k) = 0.
The Hosoya index of a graph G, denoted by Z(G), is an index introduced by Hosoya
[12], as follows :
[n/2]
Z(G) =Y m(G k),
k=0
where n = |[V(G)|, |n/2] stands for the integer part of n/2. This index has several applica-
tions in molecular chemistry such as boiling point, entropy or heat of vaporization. There
are several papers on Hosoya index in the literature [1, 2, 4, 5, 6, 8].

2. PRELIMINARY RESULTS

First we list the following results. From the definition of the Hosoya index, it is not
difficult to deduce the following lemma.

Lemma 2.1. [10] Let G be a graph, we have the following.
(1) Ifuv e E(G),then Z (G) = Z (G — w) + Z (G — {u,v}).
(2) Ifv e V(G), then Z(G) = Z(G = v) + - e ng ) £(G — {w,v}).
(3) If G1, Gy, . .., Gy are the components of G, then Z (G) = [[}_, Z (G4 .

Lemma 2.1 allows us to compute Z(G) recursively for any graph. The following theo-
rem gives the relation between the Hosoya index and the Fibonacci number (see [9, 10]).

Theorem 2.1. Let P, be a path on n vertices, then Z(P,) = Fy41.

The next theorem gives the relation between the Hosoya index and the Lucas number
(see [9, 10)).

Theorem 2.2. Let C,, be a path on n vertices, then Z(C,,) = L,

3. MAIN RESULTS

In this section, we introduce a new identity of Lucas numbers which generalizes iden-
tities of Lucas numbers given in [11] and answers a question of Melham [14].

Theorem 3.3. For all positive integers r; (1 <1 < s) and each integer s > 2, we have

LT1+T2+~~+T5 = Z HFTi+6i> (31)

(61,62,...,85)693 =1

where Q. be the set of (¢,,¢,, -+ ,&s) such that ¢; € {—1,0,1} and in cycle of s cases between
each pair of zeros there is nothing or only —1's and between two consecutive pairs of zeros there is
nothing or 1's.

Proof. Let Cy, 1y +...4r,beacycle with 7y +724- - - 41 vertices. We subdivide C, 4ry4...4r,
in consecutive blocs of paths P, with r; (1 <4 < s) vertices as shown in Figure 1.

On one hand, by Theorem 2.2, we have Z(C,,+...4y,) = Ly, +...+r, while on the other
hand, Z(P,, 4r,+..-+r,) is the number of independent edge subsets in

s—1

07"1+’7“2+"'+7‘s'Z(CT‘1+7‘2+"'+TS) = Z |Mk| )
k=0
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FIGURE 1. A cycle Py, 4r,+...+r, subdivide into consecutive blocs of path
P, with r; (1 <i < s) vertices.

where Mj, is a set of independent edge subsets in Cy, 4r,+...4+r, such that for every inde-
pendent edge subset of M}, there exists k edges between the blocks of paths P, (1 < i < s)
which belong to it.

Thus M, is a set of independent edge subsets in C;, 1, ...+, such that for every in-
dependent edge subset of My, it does not contain any edge between blocs of paths P,,
(1 <i<s),soall independent edges are in blocks P,, (1 < i < s) and using Theorem 2.1
we have [Moy| = [[;_; Fr,41.

Now M, is a set of independent edge subsets in P, ty,+...4+r, such that for every in-
dependent edge subset of M, there exists only one edge between blocs of paths P,
(1 <i < s) which belong to it. Let H be a subset of M; containing the edge

Uryfoootry Uy 4ot (1 S b < s = 1)

in all of its independent edge subsets. We contract the adjacent vertices v, +...+r, and
Upytogrpt1 in Cp 4.y, into one vertex v and let P, ;... 1 be a new path after con-
traction composed of the consecutive blocks of paths

!’
P’r’lvprga"wprkflavvp’r’ 7P7“s~

PR PR

A cycle Cy,4...4r,—1 does not contain any edge between the blocks which belong to the
independent edge subsets of H, so

|H| = Fry41 X Fryp1 X ... X Fy, X F3 X F,

Tha1 - X Frs-&-l-

Thus,
|M1| = Z HFTq'-‘rEN

(e1,62,+,65) €A
where A; is the set of (¢,,¢,,...,&5) such that for 1 < i < s,¢; € {0,1} and e1e5...¢5
form a cycle of s cases such that there is only one pair of zeros and between them there is
only ¢.

Further, M, is a set of independent edge subsets in C;, r,+...4+r, such that for every
independent edge subset of M, there exist two edges between the blocks of paths P,
(1 < ¢ < s) which belong to it. As for computing of | M | and using the contraction method
for the two edges between blocks of paths P,, (1 < i < s), the cardinality of M3 can be
counted by > .. . en, [[Fri+e,, where Ay is the set of (e,,¢,, ..., &) such that for
1<i<s,g €{-1,0,1} and e1¢2...e, form a cycle of s cases such that there is only one
pair of zeros separated only —1 or two pairs of zeros between them (the pairs) there is ¢
or 1.

Continuing in this way, we see that M is a set of independent edge subsets in C., 4y, 4...r,
such that for every independent edge subset of M, there exists s edges between blocs of
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paths P, (1 <1i < s) which belong to it. In this case, all paths P,, (1 <1i < s) lose two ver-
tices after contraction method. Thus, the cardinality of M, can be counted by [[;_, F, 1.
Hence, the identity (3.1) holds. O

Example 3.1. To calculate L5, we consider a cycle of five vertices C5. We subdivided the
cycle into two paths, the first one with three vertices P; and the second one with two
vertices P», see Figure 2.

P3 P2

FIGURE 2. A cycle C5 subdivide into two blocs of paths P; and P.

Using Theorem 3.3, we have Q, = {(1,1),(0,0),(0,0),(-1,-1)} and Ls = F4F3 +
2F3Fy + FoFy =11,
Example 3.2. To calculate Lg = L3;142, we consider a Cg, a cycle on six vertices. We
subdivided the cycle into three consecutive blocs, the first block contain a path P; with
three vertices, the second bloc contain one vertex and the third bloc contain a path P, with
two vertices, see Figure 3.

Py P P

FIGURE 3. A cycle Cg subdivide into three consecutive blocs of paths Ps
with three vertices, P; with one vertex and P, with two vertices.

Using Theorem 3.3, we have Q3 = {(1,1,1),(1,0,0),(0,1,0), (0,0, 1), (—1,0,0),
(O, —1,0), (0,07—1), (—1,—1, —1)} then L5 = F4F3F2 + F4F1F2 + F3F2F2 + F3F1F3 +
FsFi\Fot FsFoFs + FsF Fy + FoFy Fy = 18.

According to Theorem 3.3, it is easy to see that |2;| = 2°. The following corollaries are
the main results of [11].

Corollary 3.1. For any non-negative integers r and t, we have

Loy =FFipn+2FFy+Fo_1Fi_g. (3.2)
Proof. From Theorem 3.3 with s = 2 and @, = {(1,1),(0,0),(0,0),(—1,—1)}, we obtain
the identity. O

Corollary 3.2. For any non-negative integers u, v and w, we have
Lu+v+w = Fu+1Fv+1Fw+1 + Fu—i—vaFw + Fqu+1Fw + FquFw+l
+ Fu—lFUFw + Fqu—le + FuFqu—l + Fu—lFu—le—l-
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Proof. From Theorem 3.3 with s = 3and 23 = {(1,1,1),(1,0,0),(0,1,0),(0,0,1),(-1,0,0),

(0,—1,0),(0,0,-1),(—1,—1,—1)}, the identity holds. O
e The lines of the following table represents the elements of €14,
1 1 1 1 0 1 0 -1
0 0 1 1 0 1 1 0
1 0 0 1{{-1 0 0 -1
1 1 0 0 -1 0 1 0
0 -1 0 1 -1 -1 0 0
1 0 -1 0 o 0 0 o0
0 -1 -1 0 0o 0 0 o0
o 0 -1 —-1}-1 -1 -1 -1

e The lines of the following table represents the elements of {25,

1 1 1 1 1 0 0 -1 0 0
0 0 1 1 1 (-1 0 1 0 -1
1 0 0 1 1 (-1 0 1 1 0
1 1 0 0 1 (-1 -1 0 0 -1
1 1 1 0 0f-1 -1 0 1 0
0 -1 0 1 1 (-1 -1 -1 0 0
1 0 -1 0 1 0 0 0 0 1
1 1 0 -1 0 0 0 1 0 0
0 -1 -1 0 1 1 0 0 0 0
1 0 -1 -1 0 0 -1 0 0 0
0 -1 -1 -1 0 0 0 0 -1 0
0 0 -1 -1 =1 0 0 0 0 -1
0 1 0 -1 —-1}-1 0 0 0 0
0 1 1 0 —-14 O 1 0 0 0
0 1 1 1 0 0 0 0 1 0
-1 0 0 -1 -1y-1 -1 -1 -1 -1

Another identity of Lucas number is given in the following result, and this is the equiv-
alent form of Theorem 3.3.

Theorem 3.4. For any non-negative integer r; (1 < i < s), we have:

i—1 k—1
LZle i :sz;ll Ti_:,_lFrerl + E HFrs,jfl HFrjfl FZJS;erll Tj+1FTkFT577L
§=0 j=1

i+k<s

i7#0, j7#0
s—2 % s—1—2
i=1 7j=1 j=1

Proof. As mentioned in Theorem 3.3,

ES=TEC D DI | fo

(€1,82,...,65)EQs 1=1

where Q, is the set of (¢,,¢,,...,&,) such thate; € {—1,0,1} and in cycle of s cases be-
tween each pair of zeros there is nothing or only —1's and between two consecutive pairs
of zeros there is nothing or 1's.That means to count Ly-~i—., we have three cases:
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Case 1. ¢, = 1. In this case for all s — uplet (¢,,¢,,...,es = 1), the expression reduces
to the following quantity

s—1
FT5+1 Z H FTr‘rEi

(e1,€2,.,85-1)EQs 1 =1

where Q,_; is the set of (¢,,¢,,...,e5-1) such that ¢; € {—1,0,1} and between each pair
of zeros there is nothing or only —1’s and between two consecutive pairs of zeros there is
nothing or 1’s, so for e, = 1 we have Fzéfi—l o1 Frt1-

Case 2. ¢, = —1, in this case, we search a pair of zeros associate that contains ¢,, Hence,
to count Fy~i—., 4, fore; = —1, we have
i—1 k—1
> (T F s | I Br | P i BB
i+k<s 7=0 J=1
i#0, j#0

Case 3. ¢; = 0, in this case, we search a pair of zeros associate to €;. Hence, to count
inj 41> for g5 = 0, we have

5—2 % s—i—2
Do ILF ) Fomern | 1L P ) P | PP
i=1 j=1 j=1
O
The following corollary is a particular case of Theorem 3.4.
Corollary 3.3. For any non-negative integers s and r, we have:
Ly =FrpFloyrn+ Y BT iy FY
i+k<s
i7#0, j7#0
5—2
+ D [FE A Pyt B2 Frra] B
k=0
Proof. This is obtained by using Theorem 3.4 withr; =--- =1, = 1. O
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