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Determining Lucas identities by using Hosoya index

HACÈNE BELBACHIR1, HAKIM HARIK1,2 and S. PIRZADA3

ABSTRACT. We introduce a new identity of Lucas number by using the Hosoya index. As a consequence we
give some properties of Lucas numbers and the extension of the work of Hillard and Windfeldt.

1. INTRODUCTION

We denote by G = (V (G), E(G)) a simple graph, where V (G) is the set of its vertices
and E(G) is the set of its edges. The order of G is |V (G)| and the size of G is |E(G)|. For
a vertex v of G, N(v) is the set of vertices adjacent to v, deg(v) := |N(v)| is the degree of
v; Link(v) is the set of edges incident to v. In G, an edge between the vertices u and v is
denoted by uv. A path Pn, from a vertex v1 to a vertex vn, n ≥ 2, is a sequence of vertices
v1, . . . , vn and edges vivi+1, for i = 1, . . . , n−1; for simplicity we denote it by v1 . . . vn. For
n = 1, we assume that P0Pn = PnP0 = Pn and for n = 0, P1 is a single vertex v. A cycle
is a path with v1 = vn. A cycle is elementary if all its vertices are different. We denote an
elementary cycle on n vertices by Cn.

The graphG−v is obtained fromG by deleting the vertex v and removing all the edges
which are incident to v. For an edge e of G, we denote by G− e the graph obtained from
G by removing e. The contraction of a graph G, associated to an edge e, is the graph G/e
obtained by removing e and identifying the end vertices u and v of e and replacing them
by a single vertex v′ where the edges incident to u or v are now incident to v′. Then we say
that in G the adjacent vertices u and v have been contracted into the vertex v′. For further
graph theoretical definitions, we refer to [15].

For n ≥ 2, the well-known Fibonacci {Fn} and Lucas {Ln} sequences are defined by
Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2 , where F0 = 0, F1 = 1 and L0 = 2, L1 = 1,
respectively. Moreover, the Fibonacci numbers are connected to the element of Pascal’s
triangle using the following well known identity

Fn+1 =
∑
k

(
n− k
k

)
.

It is well-known that the relation between Lucas and Fibonacci numbers is given by the
identity

Ln = Fn+1 + Fn−1

For some results and properties related to Fibonacci and Lucas numbers, one can see
[3]. This sequence finds applications in many areas, particularly in physics and chemistry
[13].
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A matching M of a graph G is a subset of E(G) such that no two edges in M share
a common vertex. A matching of G is also called an independent edge set of G. A k-
matching of a graph G is of cardinality k, that is, an independent edge set of G of cardi-
nality k. We denote by m (G, k) the number of k-matching of G with the convention that
m (G, 0) = 1. Note that m (G, 1) = |E(G)| and when k > n

2 , m (G, k) = 0.
The Hosoya index of a graph G, denoted by Z(G), is an index introduced by Hosoya

[12], as follows :

Z (G) =

bn/2c∑
k=0

m (G, k) ,

where n = |V (G)|, bn/2c stands for the integer part of n/2. This index has several applica-
tions in molecular chemistry such as boiling point, entropy or heat of vaporization. There
are several papers on Hosoya index in the literature [1, 2, 4, 5, 6, 8].

2. PRELIMINARY RESULTS

First we list the following results. From the definition of the Hosoya index, it is not
difficult to deduce the following lemma.

Lemma 2.1. [10] Let G be a graph, we have the following.
(1) If uv ∈ E (G) , then Z (G) = Z (G− uv) + Z (G− {u, v}) .
(2) If v ∈ V (G) , then Z(G) = Z(G− v) +

∑
w∈NG(v) Z(G− {w, v}).

(3) If G1, G2, . . . , Gt are the components of G, then Z (G) =
∏t

k=1 Z (Gk) .

Lemma 2.1 allows us to compute Z(G) recursively for any graph. The following theo-
rem gives the relation between the Hosoya index and the Fibonacci number (see [9, 10]).

Theorem 2.1. Let Pn be a path on n vertices, then Z(Pn) = Fn+1.

The next theorem gives the relation between the Hosoya index and the Lucas number
(see [9, 10]).

Theorem 2.2. Let Cn be a path on n vertices, then Z(Cn) = Ln.

3. MAIN RESULTS

In this section, we introduce a new identity of Lucas numbers which generalizes iden-
tities of Lucas numbers given in [11] and answers a question of Melham [14].

Theorem 3.3. For all positive integers ri (1 ≤ i ≤ s) and each integer s ≥ 2, we have

Lr1+r2+...+rs =
∑

(ε1,ε2,...,εs)∈Ωs

s∏
i=1

Fri+εi , (3.1)

where Ωs be the set of (ε1 , ε2 , · · · , εs) such that εi ∈ {−1, 0, 1} and in cycle of s cases between
each pair of zeros there is nothing or only −1′s and between two consecutive pairs of zeros there is
nothing or 1′s.

Proof. LetCr1+r2+···+rsbe a cycle with r1+r2+· · ·+rs vertices. We subdivideCr1+r2+···+rs

in consecutive blocs of paths Pri with ri (1 ≤ i ≤ s) vertices as shown in Figure 1.
On one hand, by Theorem 2.2, we have Z(Cr1+···+rs) = Lr1+···+rs while on the other

hand, Z(Pr1+r2+···+rs) is the number of independent edge subsets in

Cr1+r2+···+rs .Z(Cr1+r2+···+rs) =

s−1∑
k=0

|Mk| ,
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v1 v2 vr1 vr1+1 vr1+r2

Pr1
Pr2

vr1+...+rs−1+1

Prs

vr1+...+rs

FIGURE 1. A cycle Pr1+r2+...+rs subdivide into consecutive blocs of path
Pri with ri (1 ≤ i ≤ s) vertices.

where Mk is a set of independent edge subsets in Cr1+r2+···+rs such that for every inde-
pendent edge subset ofMk, there exists k edges between the blocks of pathsPri (1 ≤ i ≤ s)
which belong to it.

Thus M0 is a set of independent edge subsets in Cr1+r2+···+rs such that for every in-
dependent edge subset of M0, it does not contain any edge between blocs of paths Pri

(1 ≤ i ≤ s) , so all independent edges are in blocks Pri (1 ≤ i ≤ s) and using Theorem 2.1
we have |M0| =

∏s
i=1 Fri+1.

Now M1 is a set of independent edge subsets in Pr1+r2+···+rs such that for every in-
dependent edge subset of M1, there exists only one edge between blocs of paths Pri

(1 ≤ i ≤ s) which belong to it. Let H be a subset of M1 containing the edge

vr1+···+rkvr1+···+rk+1 (1 ≤ k ≤ s− 1)

in all of its independent edge subsets. We contract the adjacent vertices vr1+···+rk and
vr1+···+rk+1 in Cr1+···+rs into one vertex v

′
and let Pr1+···+rs−1 be a new path after con-

traction composed of the consecutive blocks of paths

Pr1 , Pr2 , . . . , Prk−1, v
′
, Prk+1−1, . . . , Prs .

A cycle Cr1+···+rs−1 does not contain any edge between the blocks which belong to the
independent edge subsets of H , so

|H| = Fr1+1 × Fr2+1 × . . .× Frk × F2 × Frk+1
. . .× Frs+1.

Thus,
|M1| =

∑
(ε1,ε2,··· ,εs)∈∆1

∏
Fri+εi ,

where ∆1 is the set of (ε
1
, ε

2
, . . . , εs) such that for 1 ≤ i ≤ s, εi ∈ {0, 1} and ε1ε2 . . . εs

form a cycle of s cases such that there is only one pair of zeros and between them there is
only φ.

Further, M2 is a set of independent edge subsets in Cr1+r2+···+rs such that for every
independent edge subset of M2, there exist two edges between the blocks of paths Pri

(1 ≤ i ≤ s) which belong to it. As for computing of |M1| and using the contraction method
for the two edges between blocks of paths Pri (1 ≤ i ≤ s), the cardinality of M2 can be
counted by

∑
(ε1,ε2,...,εs)∈∆2

∏
Fri+εi , where ∆2 is the set of (ε1 , ε2 , . . . , εs) such that for

1 ≤ i ≤ s, εi ∈ {−1, 0, 1} and ε1ε2 . . . εs form a cycle of s cases such that there is only one
pair of zeros separated only −1 or two pairs of zeros between them (the pairs) there is φ
or 1.

Continuing in this way, we see thatMs is a set of independent edge subsets inCr1+r2+···+rs

such that for every independent edge subset of Ms, there exists s edges between blocs of
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paths Pri (1 ≤ i ≤ s) which belong to it. In this case, all paths Pri (1 ≤ i ≤ s) lose two ver-
tices after contraction method. Thus, the cardinality of Ms can be counted by

∏s
i=1 Fri−1.

Hence, the identity (3.1) holds. �

Example 3.1. To calculate L5, we consider a cycle of five vertices C5. We subdivided the
cycle into two paths, the first one with three vertices P3 and the second one with two
vertices P2, see Figure 2.

P3 P2

FIGURE 2. A cycle C5 subdivide into two blocs of paths P3 and P2.

Using Theorem 3.3, we have Ω2 = {(1, 1), (0, 0), (0, 0), (−1,−1)} and L5 = F4F3 +
2F3F2 + F2F1 = 11.

Example 3.2. To calculate L6 = L3+1+2, we consider a C6, a cycle on six vertices. We
subdivided the cycle into three consecutive blocs, the first block contain a path P3 with
three vertices, the second bloc contain one vertex and the third bloc contain a path P2 with
two vertices, see Figure 3.

P3 P2P1

FIGURE 3. A cycle C6 subdivide into three consecutive blocs of paths P3

with three vertices, P1 with one vertex and P2 with two vertices.

Using Theorem 3.3, we have Ω3 = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0),
(0,−1, 0), (0, 0,−1), (−1,−1,−1)} then L5 = F4F3F2 + F4F1F2 + F3F2F2 + F3F1F3 +
F2F1F2+ F3F0F2 + F3F1F1 + F2F1F0 = 18.

According to Theorem 3.3, it is easy to see that |Ωs| = 2s. The following corollaries are
the main results of [11].

Corollary 3.1. For any non-negative integers r and t, we have

Lr+t = Fr+1Ft+1 + 2FrFt + Fr−1Ft−1. (3.2)

Proof. From Theorem 3.3 with s = 2 and Ω2 = {(1, 1) , (0, 0) , (0, 0) , (−1,−1)}, we obtain
the identity. �

Corollary 3.2. For any non-negative integers u, v and w, we have

Lu+v+w = Fu+1Fv+1Fw+1 + Fu+1FvFw + FuFv+1Fw + FuFvFw+1

+ Fu−1FvFw + FuFv−1Fw + FuFvFw−1 + Fu−1Fv−1Fw−1.
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Proof. From Theorem 3.3 with s = 3 and Ω3 = {(1, 1, 1) , (1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (−1, 0, 0) ,
(0,−1, 0) , (0, 0,−1) , (−1,−1,−1)}, the identity holds. �

• The lines of the following table represents the elements of Ω4,
1 1 1 1 0 1 0 −1
0 0 1 1 0 1 1 0
1 0 0 1 −1 0 0 −1
1 1 0 0 −1 0 1 0
0 −1 0 1 −1 −1 0 0
1 0 −1 0 0 0 0 0
0 −1 −1 0 0 0 0 0
0 0 −1 −1 −1 −1 −1 −1

• The lines of the following table represents the elements of Ω5,
1 1 1 1 1 0 0 −1 0 0
0 0 1 1 1 −1 0 1 0 −1
1 0 0 1 1 −1 0 1 1 0
1 1 0 0 1 −1 −1 0 0 −1
1 1 1 0 0 −1 −1 0 1 0
0 −1 0 1 1 −1 −1 −1 0 0
1 0 −1 0 1 0 0 0 0 1
1 1 0 −1 0 0 0 1 0 0
0 −1 −1 0 1 1 0 0 0 0
1 0 −1 −1 0 0 −1 0 0 0
0 −1 −1 −1 0 0 0 0 −1 0
0 0 −1 −1 −1 0 0 0 0 −1
0 1 0 −1 −1 −1 0 0 0 0
0 1 1 0 −1 0 1 0 0 0
0 1 1 1 0 0 0 0 1 0
−1 0 0 −1 −1 −1 −1 −1 −1 −1

Another identity of Lucas number is given in the following result, and this is the equiv-
alent form of Theorem 3.3.

Theorem 3.4. For any non-negative integer ri (1 ≤ i ≤ s) , we have:

L∑s
i=1 ri = F∑s−1

i=1 ri+1Frs+1 +
∑

i+k<s
i6=0, j 6=0

i−1∏
j=0

Frs−j−1

k−1∏
j=1

Frj−1

F∑s−i−1
j=k+1 rj+1FrkFrs−i



+

s−2∑
i=1

 i∏
j=1

Frs−j−1

F∑s−i−2
j=1 rj+1 +

s−i−2∏
j=1

Frj−1

F∑i
j=1 rs−j+1

Frs−i−1Frs


Proof. As mentioned in Theorem 3.3,

L∑i=s
i=1 ri+1 =

∑
(ε1,ε2,...,εs)∈Ωs

s∏
i=1

Fri+εi

where Ωs is the set of (ε
1
, ε

2
, . . . , εs) such that εi ∈ {−1, 0, 1} and in cycle of s cases be-

tween each pair of zeros there is nothing or only −1′s and between two consecutive pairs
of zeros there is nothing or 1′s.That means to count L∑i=s

i=1 ri
we have three cases:
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Case 1. εs = 1. In this case for all s − uplet (ε
1
, ε

2
, . . . , εs = 1) , the expression reduces

to the following quantity

Frs+1

 ∑
(ε1,ε2,...,εs−1)∈Ωs−1

s−1∏
i=1

Fri+εi


where Ωs−1 is the set of (ε1 , ε2 , . . . , εs−1) such that εi ∈ {−1, 0, 1} and between each pair
of zeros there is nothing or only −1′s and between two consecutive pairs of zeros there is
nothing or 1′s, so for εs = 1 we have F∑i=s−1

i=1 ri+1Frs+1.
Case 2. εs = −1, in this case, we search a pair of zeros associate that contains εs, Hence,

to count F∑i=s
i=1 ri+1, for εs = −1, we have

∑
i+k<s

i6=0, j 6=0

i−1∏
j=0

Frs−j−1

k−1∏
j=1

Frj−1

F∑s−i−1
j=k+1 rj+1FrkFrs−i

 .
Case 3. εs = 0, in this case, we search a pair of zeros associate to εs. Hence, to count

F∑i=s
i=1 ri+1, for εs = 0, we have

s−2∑
i=1

 i∏
j=1

Frs−j−1

F∑s−i−2
j=1 rj+1 +

s−i−2∏
j=1

Frj−1

F∑i
j=1 rs−j+1

Frs−i−1
Frs

 .
�

The following corollary is a particular case of Theorem 3.4.

Corollary 3.3. For any non-negative integers s and r, we have:

Lsr = Fr+1F(s−1)r+1 +
∑

i+k<s
i 6=0, j 6=0

F i+k−1
r−1 F(s−i−k−1)r−1F

2
r

+

s−2∑
k=0

[
F k
r−1F(s−k−2)r+1F

s−k−2
r−1 Fkr+1

]
F 2
r

Proof. This is obtained by using Theorem 3.4 with r1 = · · · = rs = r. �
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