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A proof of Garfunkel inequality and of some related results
in inner product spaces

DAN STEFAN MARINESCU and MIHAT MONEA

ABSTRACT. In this paper, we will present a inner product space proof of a geometric inequality proposed by
J. Garfunkel in American Mathematical Monthly [Garfunkel, J., Problem 2505, American Mathematical Monthly,
81 (1974), No. 11] and consider some other similar results.

1. INTRODUCTION

In [3], Garfunkel proposed the following problem:

Problem 1.1. Let a,b, ¢ be the sides of a triangle ABC, and let mg, my, m. be the medians to
sides a, b, ¢, respectively. Extend the medians so as to meet the circumcircle again, and these chords
be M,, My, M., respectively. Then:

a)Ma+Mb+Mc = %(ma+mb+mc);

b)Ma+Mb+Mc>%‘/§(a+b+C).

The readers can find two solutions to this problem in [2]. These geometrical inequal-
ities raised the interest of more mathematicians. For example, the second solution is
due Erdos and Klamkim. The references of this paper contains more results connected
with Problem 1.1 as solutions, extensions or generalizations. Garfunkel (see [4]) himself,
proposed another similar inequality.

Problem 1.2. Triangle ABC is inscribed in a circle. The medians of the triangle intersect at G
and are extended to the circle to points D, E and F. Then:

GA+GB+GC <GD+GE +GF. (1.1)

In fact, the relation GA = 2m, and the analogues show that inequality (1.1) is equiva-
lent with the previous. Boente ([1]) presented a proof to Problem 1.2., which includes the

following generalization.

Proposition 1.3. Let Py, P, .., Py, be points of an n-sphere S, and G their center of gravity. For
any i € {1,2,...,m} the extensions of P;G intersect S at Q);. Then:

En: PG < En: Q:G.
i=1 i=1

Tsintsifas ([10]) completed the inequality (1.1) with another two inequalities. These
results are included in the following problem.
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Problem 1.4. Let G be the centroid of a triangle ABC and and suppose that AG, BG, CG meet
the circumcircle of the triangle again in A', B’ , C', respectively. Then:
a) GA’ + GB’ +GC' > GC+GB+GC;
b &L+ G+ =3
oGA-GB'-GC'>GA-GB - GC.

In 1985, Klamkin moved this problem to a higher level. He presented a generalization
for a n-simplex from R™ (see [5]).

Proposition 1.5. The medians of a n-dimensional simplex AgA1As...A,, from R™ intersect at
the centroid G and are extended to meet the circumsphere again, in the points By, By, Ba, ..., By,
respectively.
a) Prove: GAg + GA1 + GAs + ... + GA, <GBy + GB1 + GBy + ... + GB,,;
b) Prove: G‘g" ggl +...+ & GA" =n+1;
1
C) Prove: GAO GAl GAQ G n S GBO . GBl . GB2 et GBn

Supplementary, he proposed an open question.

Open Question 1.6. The medians of an n-dimensional simplex Ag A, As... Ay, from R™ intersect
at the centroid G and are extended to meet the circumsphere again in the points By, By, Ba, ..., By,
respectively. Determine all other points P such that

We found a partial answer in [11]. The authors of this paper investigated all the previ-
ous results and concluded that these inequalities are more general.

In this context, the aim of this paper is to prove the inequality 1.1 in inner product
spaces. We completed with new inequalities related to 1.1. The main results are rep-
resented by the Proposition 3.1 from Section 3. Moreover, we present a similar open
question for inner product space. We offer only a partial answer. We start with some
preliminary results which are included in the second section.

2. SOME PRELIMINARY RESULTS

In this section, X denote a real or complex inner product space. First, we recall a useful
result.

Proposition 2.1. Let n € N, n > 2 and x1, 2, ...,zp,y € X. For any oy, aq, ..., a, € R with
a1 +as + ...+ a, = 1, we have:

n 2 n
- Zakxk = Z o |ly — il|* — Z oy |y — )7 (2.2)
k=1 k=1

1<k<ji<n

In [7], it showed that this identity characterizes an inner product space. We apply 2.2
to prove the following proposition.
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Proposition 2.2. Let xg, z1,22 € X and r € [0, 00) such that ||x; — xo|| = ||x2 — x0|| = 7. For
any o € [0, 1], we denote w = axy + (1 — o) 2. Then

lw =] - w = @2 = — Jw — zo]*.
Proof. Tha case n = 2in 2.2 led us to

Jw—zo|> = |zo—az — (1 - )z

allzo — z1]” + (1 — @) lzo — 22))* — a (1 — @) [|lz1 — 22

2 —a(l—a)lz; — x|,

It follows

lazs + (1 — &) zo — x2|| - [Jazs + (1 — &) x2 — 21|

lw = 1] - flw — 22|

allzy —zaf - (1 - a)[Jor — 22|

a(l—a)llzr —zo?,

which concludes our proof. O

The previous proposition represent a version for an inner product space of a ”point
power theorem” .

Proposition 2.3. Let xgp € X and r € [0,00). Then, for any x1,x € X with ||x1 —zo|| = r
and ||x — xo|| < r, it exists just one pair (yi;«) with y; € X and o € (0,1) so that x =
ay1 + (1 —a)xy and |ly1 — xol| = 7.

Proof. First, we want to find ¢ € R\ {0, 1} such thaty; =tz + (1 —t)x and ||y1 — zol| =7
Then
Y1 —$0=t$1+(1—t)3}—$0
= yr — @ol* = [ltw1 + (1~ t) & — o[
By using 2.2, we have
tller = wol* + (1 = ) flo = zo|* — ¢ (1 = 1) |21 — af|* =

=t(1—t) ||z — 2> = (1 —t) lz — zo||* — (1 — )
& — 2o|” — 7
S
|21 — |l

sot € R\ {0, 1}. Then

e —wol® =2 4 flay — ) — ||z — @)

Yy P 2
|1 — || |1 — ||

It follows that
(72 + lloy = 2 =l = o )*) @ = (72 = llz = wol*) @1 + llzn — 2]y

= 21 — 2 y 2 — ||z — zo?
= 1
r2 + |z — 2l — o - 2ol

2+ Iz —a))? = o =zl
If we denote )
|21 — =

r2 oy —z|” = o = zo*’
wehaver =ay; + (1 —a)x; and a € (0,1).
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Now, let (y2, ) another pair in the same conditions as the pair (y; ). Then

ay1 + (1 —a)zy =Py + (1 — f) a1

= (a—p)z1 =ay1 — By
= (a=PB)x1—(a—p)zo =ay — By2 — (o — B) o.
If we suppose that a # 3, then

T1 —Xp = < Y1 + ﬂyz—xo
a—pf a—f

2

9 9 « 153
= = — = —
r* = ||z — x| Haﬁyl + a—ﬂy2 Zo

Proposition 2.1 led us to

R S R Tt B O
o= ol - g el
= 2= a r? — s 2y of

a8 a8 "la-p
= |ly1 —y2f| =0
= Y1 = Y2.

2
||yl —y2||

2
||y1 —y2H

The equality (o« — 8) z1 = ay1 — Byz becames (a« — ) x; = (o« — B)y1 , also 1 = y;
which is false. The assumption « # § is not true and we have o = 3. From (o« — ) x1 =
ay; — By2, we obtain again y; = y» and the pairs (y1; @) and (y9, 3) are identical. O

Remarks. In fact, y; represents the “intersect” of B (z¢,r) with “lines” determined by
z1 and .

Proposition 2.4. Let n € N, n > 2, r € (0,00) and o9 € X. Let x1,22,...,x, € X, at least
two distinct, such that ||z1 — zo|| = ||x2 — x| = ... = ||&n — xo|| = 7. Forany oy, ag, ..., €
(0,1) with ay + a2 + ... + a, = 1, we have

lorzy + @oxs + ... + apxy, — 20| < 1.

Proof. We are using 2.2 and we obtain
2

|lerzy + oxo + ... + apxy, — xOH2 =

n
To = Y oy
k=1
n
2 2
= Y aplleo—mll* = D arajlar -l
k=1

1<k<j<n
n
< > ag[lwo — a)?
k=1

n

= Oék?“Q

B
Il
—

and the conclusion follows now. O
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We conclude this section by recalling another useful result (see page 76 from [9]).

Proposition 2.5. (Chebyshev Inequality) Let n € N, n > 2. Let ay,a2,...,an, € R,
bi,ba, ..., by, € Rand py,pa,...,pn € [0,1] such that ay < ag < ... <, by = by > ... = by, and
p1+po+ ... +p, =1 Then

> prarby, < (Zm%) (Zpk%) :
k=1 k=1 k=1

3. THE MAIN RESULTS

For the results from this section, we establish the following general conditions and
notations. Letn € N, n > 2,r € (0,00) and z¢g € X. Let 21,9, ...,x, € X, at least two
distinct, such that

|21 — 2ol = l|x2 — 20| = ... = [|z0 — @0 =1
Let ag, s, ..., ap, € (0,1) with @ + as + ... + a, = 1. Denote
T =Q1T1 + QX2 + ... + ApTy.

Proposition 2.4 shows that |z — x|| < r. Forany k € {1,2,..,n} we denote y;, € X , the
elements defined by Proposition 2.3 for x;, and .

Proposition 3.1. The following assertions are true:
) 3 o lzezall g
k=1

*lye—z]|

n n
b) > apllzr — 2l < Y2 arllyx — 2|,
k=1

n n
O IT lye — 2™ =TI llox — 2™
k=1 k=1

A oe — el ow =2 = o —2|®+ X iy llws — x| forany k € {1,2,...,n};
1<i<j<n

e) ||zx — yrll =2 S o |lag — x|, forany k € {1,2,...,n};

1<i<j<n
f)znxk—yku Zon . 5 Jmag | agll.
1<i<j<n

Proof. a) We have

n

n 2
ZO‘ |1 — 2] Za lzr — ||
| ~ ="

= e = ye =2l - llee — 2l

Proposition 2.2 goes to

n
. —al] _ )
> o — : Zak i — I

lye — 2l » —xol|” %




158 Dan Stefan Marinescu and Mihai Monea

Now, we apply 2.2 to y = x and y = zg. Then
n 2
o — Zakl‘k
k=1
= = > aagllo -l

1<k<j<n

lzo — 2| =

and

n
0=> aplle—zl> = > owajlae — ;)
k=1

1<k<jg<n
We obtain

n
3l — ail? = 2 — |l — ol
k=1

and

n
ok — all _ B
S - . Z o llox — o =

=k — 2| r—|| — x|)? £

b) Forany k € {1,2,...,n}, we have

law — 2l _ r = flo — 2ol
llys, — = Iy, — |*
it zi—a|| |lzz—a| lzn—2|
Then, we can apply Proposition 2.5 for the systems (Hyrrl\’ szl ||yn—m||) and
(lyr =l lly2 = 2l s s [lyn — []) and we obtain
- 2% — 2|
k —
> ok llax —xl = Zak Nyx — yll
2 2y
Tp— T
< Z k||||y: H Zak ke — yll-

Using the previous assertion, we have

n n
> ag ok — 2l <o llyk — .
k=1 k=1

c) By applying the generalized means inequality, we obtain
n n ag
Zak”xk — || > H <||17k —$|)
2y —a) 7 U =2

The assertion a) give now the conclusion.
d) From the definition of y;, we have

lex = yill = llzx — =l + llz = yell,
for any k € {1,2,..,n}. Then
2
e = yill - lloe =2l = llox — 2"+l = yill -l — 2] -
By using Propositions 2.1 and 2.2 , we obtain
lze —yell - llze =2l =z —all* + 1% = o — o

ok —z*+ > aiay o — 25

1<i<j<n
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e) Forany k € {1,2,...,n}, we have ||z}, — x|| > 0 due to Proposition 2.4. Then

lox —yell = e — 2| -I- Z ooy |z — x4
1<z<g<n
2
> eyl — )
1<i<jsn

f) Cauchy’s inequality give us
2

n(n—1) 2
Yo ez -l | < = D0 oy flai -]
1<i<j<n 1<i<j<n
Then
n
> llwk — uxl Z > aiag o — )
k=1 1<i<j<n
R PR
n—1 S
and the proofs are complete. O
. 1 ..
Particularly, for oy = ag = ... = a, = —, the Proposition 3.1 becomes:
n

Corollary 3.2. The following assertions are true:

.

' llye —all
n
B) 3 ok — 2 < 3 Iy — )
k=1 k=1
n n
A I llyx —zll = 1T llwn — [l
k=1 k=1

1
@D flor — el Now — 2l = lox — 2P+ = X o —a;))? forany k € {1,2,...n};
N7 1<i<ign

7

2
e) ||zr — il = = S @ =yl forany k€ {1,2, ..., n};

n \Z<]<’I’L
DY e =il 2 —=- > lzi—gl.
k=1 n(n—l) 1<i<j<n

Remarks.

1. If we apply the assertion b) from Corollary 3.2 for R”, we obtain the inequality from
Proposition 1.3. More, this proof is not similar with the Boente’s proof from [1].

2. If we apply Corollary 3.2 to a n-simplex from R", we recover the results from Propo-
sition 1.5.

Finally, we give a partial answer to Open Problem 1.6. With the conditions established
to the beginning of this section, we denote

1
a:zﬁ(arl—ka:g—k...—l—xn).
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Proposition 3.3. If ||Z — x| > ||zo — 2| + |Z — z||* then
n n
D e =) <D llyw — .
k=1 k=1

Proof. From 2.2, we obtain

_ 2 1O 2 1 2
[Z—xol® = =D llax—zol®—= > lai—a
n n —
k=1 1<i<j<n
1
2 2
= e Y lmwl?
1<i<j<n
Then
1 2 2 _ 2
== > e —ayll* = wo —@l* + |7 — =]
1<i<jgsn

1
= —llzo—z|*> = D> lw—al’+ T2
1<i<j<n

From Proposition 2.2, we have
2
r? = llwo = 2" = llzs = - Iy — =1,

forany k € {1,2,..,n} and 2.2 give us

_ s 1 1 2
el =23 el = 5 Y fm—ayl
k=1

1<i<jgsn

Then

1 — 5
e =2l - lly — 2l = ~ > k==,
k=1
for any k € {1,2,..,n}. Hence
2
1 & 1 &
-~ > ok —af* > (n > llze — 9””) )
k=1 k=1
so that

" 2
n® lax = || - g — 2l = (Z [k — JCII) ;
k=1

for any k € {1,2,..,n}. We obtain
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Now we use Cauchy inequality and we have

n n 2 n
2, _ > _ #
n Y el = (Y ek — 2| ZHx 2
k=1 k=1 k=1 Ik
> (Dl -2l )
i >z — a
k=1
n
= Yl
k=1
which concludes our proof. O

Final Remarks.
1. In fact, the equality

I1Z — zol|® > ||lwo — 2| + |7 — ||,

from Proposition 3.3 is equivalent with

1 1
2 | = 2 - 2 - 2
lzo —&|I” + |7 = 2" = 5 17 = zol|” < 5 |7 — 2ol

1 1 1 1
& 5||330—33||2+§||f—56||2—1||f—$o||2<1||f—ﬂfoll2
1
& fo- X0 < -l
o I0+£E <1H ”
T 5 < g llE -0
— x 1
o xeB(”jOJ“’, 2||xo—x||>.
To+ 7T

It means that z is situated in the “closed ball” with the center and the “diameter”

lzo — |-

2. If we apply Proposition 3.2 for a n-simplex from R™ and taking into account by the
previous remark, we recover the answer proposed to Open Question 1.6 by G. Tsintsifas
(see [11]).

3. An elementary version of the results from Section 3 of this paper can be found in [8].
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