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Fixed point theorems and convergence theorems for

monotone (o, f)-nonexpansive mappings in ordered Banach
spaces

KHANITIN MUANGCHOO-IN!, DAWUD THONGTHA 2, PoOM KuMAM"? and YEOL JE
CHO?

ABSTRACT. In this paper, we introduce the notion of a monotone («, 3)-nonexpansive mapping in an ordered
Banach space E with the partial order < and prove some existence theorems of fixed points of a monotone
(a, B)-nonexpansive mapping in a uniformly convex ordered Banach space. Also, we prove some weak and
strong convergence theorems of Ishikawa type iteration under the control condition

limsup sp(1 —sp) >0 and liminfs,(1— s,) > 0.
n— oo n—roo

Finally, we give an numerical example to illustrate the main result in this paper.

1. INTRODUCTION

Let 7' be a mapping with domain D(T") and range R(T’) in an ordered Banach space X
with the partial order <. A mapping T : D(T') — R(T) is said to be monotone if T < Ty
forall z,y € D(T) with z < y and monotone nonexpansive if T is monotone and

[Tz =Tyl < le—yl,

forallz,y € D(T) withz <.
In 2010, Aoyama et al. [1] introduced a class of a A-hybrid mapping, that is, a mapping
T :D(T) — R(T) is called A-hybrid mapping in a Hilbert space H if

[Tz — Tyl < |z — ylI> + 2(1 = A)(z — Tz,y — Ty),

for all z,y € D(T). They proved a fixed point theorem and an ergodic theorem for such
a mapping. Clearly, a nonexpansive mapping is a 1-hybrid mapping. In 2011, Aoyama
and Kohsaka [2] also introduced the concept of an a-nonexpansive mapping, that is, a
mapping T : D(T) — R(T) is said to be a—nonexpansive if & < 1 and

1Tz = Ty|* < a|| Tz — yll + al| Ty — || + (1 = 20) |z - y],

forall z,y € D(T'). Obviously, a nonexpansive mapping is 0-nonexpansive and A-hybrid

mapping is £=3-nonexpansive if A < 2 in a Hilbert space H (for more details, see [2]).
Recently, in 2015, Dehaish and Khamsi [3] proved some weak convergence theorems of

Mann’s iteration for finding some order fixed points of monotone nonexpansive mappings

in uniformly convex ordered Banach spaces as follows:

Theorem DK1. Let K be a nonempty closed convex and bounded subset of an ordered Banach

space E. Let T : K — K be a monotone nonexpansive mapping. Assume that X is uniformly
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convex and there exist z € F(T') and x1 € K such that x1 and z are comparable. Then we have
nh—>Holo [#n, — Tan|| = 0,

where {x,, } is Mann’s iteration generated by

Tn+1 = BnT(En + (1 - ﬂn)xru

for each n > 1, where 3, € [a,b] for some a > 0and b < 1.

Theorem DK2. K be a nonempty closed convex and bounded subset of an ordered Banach space
E. Let T : K — K be a monotone nonexpansive mapping. Let x1 € K be such that x1 and T (z1)
are comparable. Let {x,,} be Mann’s iteration defined by generated by

Tn+1 = 5nTxn + (]- - Bn)xru
for each n > 1, where 3,, € [a, b] for some a > 0 and b < 1. Then we have

lim |z, — Tx,| = 0.
n—oo

Theorem DK3. Let E be an ordered Banach space which satisfies Opial’s weakly condition. Let K
be a nonempty weakly compact convex subset of E. Let T : K — K be a monotone nonexpansive
mapping. Assume that there exists x1 € K such that x1 and Txq are comparable. Let {z,} be
Mann’s iteration defined by generated by

Tn+l = BnTmn + (1 - ﬂn)xna

for each n > 1, where 3, € [a,b] for some a > 0and b < 1. Then {x,,} converges weakly to a fixed
point z of T, i.e., T|(z) = z. Moreover, z and x1 are comparable.

Note that, in Theorems DK1, DK2, DK3 of Dehaish and Khamsi, they gave the control
condition {¢,} in [a, b] with @ > 0 and b < 1, but we cannot apply the following control
condition {f,} in their results: for each n > 1,

1
Brn = e
Thus, to improve the results mentioned above, in 2016, Song et al. [9] we consider Mann’s
iteration {x,, } for a monotone nonexpansive mapping 7" : C' — C defined by

Tnt+1 = 5nzn + (1 - ﬁn,)TIna

for each n > 1, where {$,,} in (0, 1) satisfies the following condition:

Zﬁn(l - 6n) =0
n=1

Clearly, this control condition {3, } contains ,, = +1 as a special case.

Recently, in 2016, Song et al. [10] considered the convergence of Mann’s iteration for a
monotone a-nonexpansive mapping 7" in an ordered Banach space E.
Theorem SPKC1. Let K be a nonempty closed convex subset of an ordered Banach space (E, <)
and T : K — K be a monotone a-nonexpansive mapping. Assume that the sequence {x.,} defined
by the Mann iteration with x1 < Tz (or Txq < 1) and F>(T) # 0 (or F<(T) # 0). Then we
have

(1) the sequence {x,,} is bounded;

2) |znt1 — pll < |lwn — pll and the limit nh—>H;o llzn, — pl| exists for all p € F>(T) (or

p € F<(T));
3) hm mf |z, — T'zy|| = O provided hm sup Bn(1—B,) >0;

4) hm H;rn — Tz, = 0 provided hm 1nf ﬂn(l — Bn) > 0.




Fixed Point Theorems and Convergence Theorems for Monotone («, 3)-Nonexpansive Mappings 165

Theorem SPKC2. Let K be a nonempty closed convex subset of a uniformly convex ordered
Banach space (E,<) and T : K — K be a monotone a-nonexpansive mapping. Assume that £
satisfies Opial’s condition and the sequence {x,,} is defined by Mann’s iteration with 1 < Tz (or
Txy < x1). If F>(T) # 0 (or F<(T) # 0) and h,fgigf Bn(1 — Bn) > 0, then the sequence {z,,}

converges weakly to a fixed point z of T

Theorem SPKC3. Let K be a nonempty compact and closed convex subset of a uniformly convex
ordered Banach space (E, <) and T : K — K be a monotone a-nonexpansive mapping. Assume
that the sequence {x,, } is defined by Mann’s iteration with Tz, < x1. If either hnni> i£f Bn(1—5y) >

Oorlimsup 3, (1—f,) > 0, then the sequence {x,, } converges strongly to a fixed point y € F<(T).

n—oo
Motivated by the results mentioned above, in this paper, first, we introduce the concept
of a monotone («, §)-nonexpansive mapping in ordered Banach spaces. Second, we show
the existence of a fixed point of the proposed mapping in ordered Banach spaces. Third,
we proves some strong and weak convergence theorems of Ishikawa type iteration for a
monotone (¢, §)-nonexpansive mapping in ordered Banach spaces under the condition

limsup s, (1 —s,) >0, liminfs,(1—s,) > 0.
n—oo n—oo

Finally, we give a numerical example to illustrate the main result in this paper.

2. PRELIMINARIES

Let P be a closed convex cone of a real Banach space E. A partial order “<” with respect
to P in E is defined as follows:

mgy(x<y)ifandonlyify—xEP(y—xElg),

for all z,y € E, where P is the interior of P.

Throughout this paper, let E be a Banach space with the norm || - || and the partial order
<. Let F(T) = {z € H : Tz = z} denote the set of all fixed points of a mapping 7'. Also,
we assume that the order intervals are closed and convex. Recall that an order interval is
any of the subsets

[v,=) ={pe Bz <p} or (2] ={pe E;p <z}
for any a € C. An order interval [x,y] for all 2,y € E is given by
[,y ={z€E:x<z<y}=lz,—=)N(+,y] (2.1)
Then the convexity of the order interval [z, y] implies that
r<tr+(l-ty <y, (2.2)
forall z,y € E with « < y. A Banach space F is said to be:
(1) strictly convex if || £52|| < 1 forall z,y € E with ||z|| = ||y|| = 1 and = # y;

(2) uniformly convex if, for all € € (0, 2], there exists § > 0 such that w <1- for
all z,y € Ewith ||z]| = [ly| = 1and ||z — y|| > &.

The following inequality was shown by Xu [12] in a uniformly convex Banach space E,
which is known as Xu’s inequality.

Lemma 2.1. [12] For any real numbers ¢ > 1 and r > 0, a Banach space E is uniformly convex if
and only if there exists a continuous strictly increasing convex function g : [0, +00) — [0, +00)
with g(0) = 0 such that

[tz + (1 = t)y[|? < tllz]|? + (L = t)[[y[|? — wlg, g(llz = yl), (2.3)
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forall z,y € B, (0) ={z € E;||z|| <r}andt € [0,1], where w(q,t) = ¢t4(1 — t) + t(1 — ).
In particular, take ¢ = 2 and t = %,

H z+y
2
Lemma 2.2. [11] Let K be a nonempty closed convex subset of a reflexive Banach space E. Assume

that p : K — R is a proper convex lower semi-continuous and coercive function. Then the function
p attains its minimum on K, that is, there exists x € K such that

2 1 1 1
| < 52l + 5l = Z90lz = vl). (2.4

p(x) = nf p(y).-

Lemma 2.3. [8] A Banach space E is said to satisfy Opial’s condition if, whenever any sequence
{zn} in E converges weakly to a point x,

limsup ||z, — z|| < limsup ||z, — ||
n— 00 n—oo

forany y € E such that y # «.
Definition 2.1. Let K be a nonempty closed subset of an ordered Banach space (E, <). A mapping
T : K — Eis said to be :

(1) monotone a-nonexpansive if T is monotone and, for some o < 1,

1Tz — Ty|* < al|Tz — y|* + al| Ty — z|* + (1 - 2a) = — y%,
forall x,y € K with x <y, by [10, Lemma 2.2] which is equivalent to

2c

1Tz = Ty|* < llz =yl + 5
—

T2 — x|

2|a
+%HTT—%H llz = yll + 172 — Tyl]]. (2.5)
(2) monotone quasi-nonexpansive if T' is monotone, F(T') # 0 and ||Tx — p|| < ||z — p||

forallp e F(T)and x € K withx <porp < z.

3. MAIN RESULTS

3.1. Monotone («a, 8)-nonexpansive mappings. In this section, we define the notion of
a monotone («, 8)-nonexpansive mapping and introduce a lemma in a uniformly convex
Banach space (E, <) as follows:

Definition 3.2. Let K be a nonempty closed subset of an ordered Banach space (E, <). A
mapping 7' : K — K is said to be monotone («, 3)-nonexpansive if T' is monotone and

1T — Tyll? < allTz — yl? + BITy — 2P + (1 — (a+ M)z — ol (36)
forall z,y € K withz <yand o, 5 < 1.

Remark 3.1. (1) If &« = 3, then a-nonexpansive implies («, 5)-nonexpansive mapping and
converse is true;

(2) Every nonexpansive mapping is a 0-nonexpansive mapping and (0, 0)-nonexpansive
mapping;

(3) Every a-nonexpansive and («, §)-nonexpansive mappings with F(T) # () are a
quasi-nonexpansive mapping.

Now, we introduce a mapping 1" which is a monotone («, 5)-nonexpansive mapping,
but not a monotone a-nonexpansive mapping as follows:
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Example 3.1. Let T : [0,1] — [0, 1] be defined by

pp_ [ 025 if x#l
105 if x=1

Next, we will show that 7" is a monotone (0.8, 0.2)-nonexpansive mapping where ||z —y||
is defined by |z — y|. The proof is divided into two parts.
First, we prove that 7" is monotone. The proof is divided into four cases.

Casel.lfr =y=1thenTz =0.5="Ty,

Case2. ifx # land y # 1 then Tz = 0.25 =Ty,

Case3.ifx #landy =1then Tz = 0.25 < 0.5 =Ty,

Cased.ify# land z =1thenTy =0.25 < 0.5 =T'z.
Therefore T" is monotone.
Second, we prove that T" is monotone (0.8, 0.2)-nonexpansive. We divide the proof into
four cases.

Casesl. x = y = 1. We have

| T2z — Ty|*> = 0 < 0.225 = 0.8][0.5 — 1]|> 4+ 0.2]|0.5 — 1|
Case 2. x # 1,y # 1. Then,
| T2z — Ty||*> =0 < 0.8]0.25 — y||* + 0.20.25 — z||
Case3.z =1,y # 1. We get
T2 — Ty||> = 0.0625 < 0.8][0.5 — y|> + 0.2[]0.25 — 1|2
=0.1125+0.8]0.5 — y||?
Cased.z # 1,y =1.So,
|Tx — Ty||* = 0.0625 < 0.8/0.25 — 1]|? + 0.2]|0.5 — =||?
=0.45+0.2/0.5 — z|?

From these four cases, the mapping T is is satisfied (3.6).
Hence, T is monotone (0.8, 0.2)-nonexpansive mapping. However, T is not a monotone
0.8-nonexpansive mapping. Note thatifx =1,y =0 € [0,1] and o = 5 = 0.8, we have

| Tz — Ty||* = 0.0625 £ 0.05 = 0.8]|0.5 — 0]|% + 0.80.25 — 1]|* — 0.6||1 — 0]|°.
This show that 7" is not a monotone 0.8-nonexpansive mapping.
Before proving the main results, we need the following;:

Lemma 3.4. Let K be a nonempty closed convex subset of an ordered Banach space (E, <) and
T : K — K be a monotone («, )-nonexpansive mapping. Then we have:

(1) T is monotone quasi-nonexpansive;
(2) forallz,y € Kand o, < 1 withx <y,

a+ b
72 = Tyl < o =7 + S D e -

2
+ﬂllTx—$ll[\allll‘—yll + 18I Tz — Tyll]. (3.7)

Proof. (1) It follows that
T2 — pl* = Tz — Tp|*
< a||Tz —p|* + BI|Tp — 2|* + (1 - (a + B))|lz - pl®
= af|Tz - plI* + (1 - a)||z - p|
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and so ||Ta — p||* < |z — p|*.

(2) From Definition 3.2, we consider the following cases:
(a) If 0 < o, B < 1, then we have

Tz — Tyl* < ol|Tx — y|* + BITy — 2| + (1 — (a + )z — y?
< a[|Tz — al| + ||lz — yll]* + B[|Ty — Tel| + | Tz — ]
+ (1= (a+B)e -yl
= o||Tz — 2|® + 2a||Tz — ||z — yl| + allz — y||* + BTy — Tx|?
+28||Ty — Tell| Tz — 2| + BT — 2| + (1 - (a + )|z — y|I?
— (a +8)|Tx - 2|* + (1 - Bl — y||* + BITy — T=|?
+ 2Tz — al|[alle — yl| + BTz — Tyl
and so
a+p
1-5

2
+ mllTﬂv —all[allz =yl + BTz — Ty|l].

(b) If 0 < @ < 1 and B < 0, then we have
ITz — Ty|* < al|Te — y|? + BITy — || + (1 — (a+ B) |z — yl

< af|lTz — x| + ||z — yll]* + B[ITy — Tz| - | Tz — z|)*
+ (1= (a+8))lz -y

= a|[Tz - z||? + 20||Tx — zl||= — y|l + allz — y|? + BTy — Tz|?
— 28| Ty — Ta|||Tx — || + BTz — x| + (1 - (a + 8))l|z — y|?

= (a+ BTz — 2| + (1 - B)||lz — y|* + BITy — Tx|?
+2||Tz — al|[ol|z — yl| — BTz — Tyl

T2 = Tyl* < llz - yl* + T2 — x|

and so

a+p
1Tz — Tyl|* < ||z —yl* + WHTSE —z?
2

+ mllTx —all[allz =yl - BTz - Tyl].

(¢) f a <0and 0 < B8 < 1, then we have
1Tz —Ty|* < a|| Tz —yl* + BTy — 2| + (1 — (a+ B))llz — y|”

< afllTx - af| = |lz = yl]* + B[ITy - Te|| + | Tz — 2]
+ (1= (a+8)z -yl

= a||Tz - z|* = 20| Tz — 2|z — y|| + allz — y|> + BTy — Tx|?
+26|Ty — Tz|||Tz — x| + BTz — 2| + (1 - (a + B)) [z - y|*

= (a+P)|Te —z|* + (1 = B)l|lz — y|* + BTy — Tx|?
+2||Tz — z||[ - alle — y|| + BTz - Tyl]
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and so
a+p
[Tz — Tyl* < |lz —y|* + mllTw — x|
2
+ mllTx — || - allz —yll + BTz — Tyl|].

(d) If @, 5 < 0, then we have
1Tz —Ty|? < a|Te —yl* + BTy — 2l|* + (1 — (a + 8))l|z —y|

< af|Tz —z| - |z — yll]* + B[ITy — Tx| — | T — z|]”
+ (1= (a+p)llz —y|?

= a|Tz - z||? - 20| Tz — 2|z — y|l + allz — y||? + BTy — Tx|?
— 28| Ty — Ta|||Tx — z|| + BTz — x| + (1 - (o + §)) ||z — yI?

= (a+ B)| Tz —z|* + (1 - B)l|lz — y||> + B Ty — Tz
+2||Tz — 2| - aflz — y]| - BTz — Tyl|]

and so
a+
72~ Tyl < o =yl + S5 0T = ol
2
15Tz =l [—alle —yll - BTz — Ty|].
Thus it follow that, forall z, y € K and o, 8 < 1 withz <y,
o+
[T = Tyl < o = ol + 51T = o
2
1 glTe =l [lellle = yll + 18Tz — Ty]].
This completes the proof. O

3.2. The existence of fixed points. In this section, we consider the Ishikawa type iteration
defined by

Tnt1 = (1= $p)Tn + 2T (yn)

for each n > 1, where {s, } is the sequences in [0, 1]. We denote
FA(T)={peF{T):p<ax}, F>(T)={pecF(T):x <p}

Note that, since the partial order < is defined by the closed convex cone P, it is obvious
that both F<(T') and F (T') are closed convex.

Now, we introduce the following lemma to find fixed points of a monotone («, 3)-
nonexpansive mapping in Banach space E:

Lemma 3.5. Let K be a nonempty closed comvex subset of a Banach space (E,<). LetT : K — K
be a monotone mapping and assume that the sequence {x,, } defined by Ishikawa type iteration (3.8)
and x1 < Tzq (or Tx1 < x1). Then we have

(1) Ty < Yn < Tn41 and Ty < Yn < Txn < Tyn (07' Ty > Yn > Tn41 and Ty > Yn >
Txy, > Tyn);
(2) zp <z (orx < ) forall n < 1if {x,} weakly converges to a point x € K.
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Proof. (1) Let kq, k2 € K such that ky < ky. Then we have
kl é (]. — Ck)kl +C¥]€2 S k2

for all & € [0, 1] since order intervals are convex. By the assumption, we have 21 < Ta4
and so the inequality is true for n = 1. Assume that x;, < Tz, for £ > 2. By convexity and
monotonicity, we have

wp < (1= sp)wp + spTap = yp < (1 — sp)Tap + spTay, = Ty,
ie., 2 < yr < Tap. By monotonicity, we get x, <y, < Ty, < Ty,
From z;, < Ty, by convexity
vp < (1= sg)op + sk Tyr = vp1 < Ty
ie, zp < xpy1 < Ty, And again, we have
yr = (1 — sp)xp + spTar < (1 — sgp)zk + spTyx = Tht1,
so we get z, < yp < zp41. By monotonicity, we have Ty, < Twpy;.

So zx+1 < Twpy1. By induction, we can conclude that z,, < Tz, is true for all n > 1.
Now we have z,, < Tz, for all n > 1 by convexity

Ty < (1 - Sn)xn + SnTxn =Yn < Tmna
since 1" is monotonicity T'z,, < Tyy, thatis z,, <y, < Tz, < Ty,. And
Yn = (1 - Sn)xn + SnTxn < (]- - Sn)mn + SnTyn < Tn+1,

ie, Tn <Yp < Tpyl-

Hence, we conclude that z,, <y, < 2,41 and z, <y, < Tz, < TYp.

On the other hand, if we assume T'z; < 1, then we can show that z,, > ¥, > x,4+1 and
Ty 2> Yn = Txy > Tyn.

(2) From Dehaish and Chamsi [3, Lemma 3.1]), we have the conclusion. This completes
the proof. O

Next, we show some existence theorems of fixed points of monotone (o, 5)-nonexpansive
mappings in a uniformly convex ordered Banach space (E, <).

Theorem 3.1. Let K be a nonempty closed convex subset of a uniformly convex ordered Banach
space (E,<) and T : K — K be a monotone («, 3)-nonexpansive mapping. Assume that
x1 < Ty and the sequence {x,,} defined by Ishikawa type iteration (3.8) is bounded with z,, < w
for some w € K and linrgigéf |zn, — Tay| = 0. Then F>(T) # 0.

Proof. From liminf ||z, —T'z,|| = 0, it follows that there exists a subsequence {z,,, } C {z,}
n—oo
such that
liminf ||z, —Tx,,| = 0.
k—o0
From Lemma 3.5, we have z; < z,,, < xp,,,. LetCy, = {2 € K : x,,, < 2z} forall k > 1.

Then Cj, is closed convex and w € Cj, and so Cj, is nonempty. Let C* = (| C,,. Then C* is
n=1

a nonempty closed convex subset of K. Since {z,, } is bounded, we can define a function

p:C* = [0,4+00) by

p(z) = limsup ||z, — z||%,
n— o0
for all z € C*. From Lemma 2.2, it follows that there exists z* € C* such that
p(z%) = inf p(2). 3.9)
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By the definition of C*, we have
) STy STy, <o Sy Sy, <o <27
Since T' is monotone, it follows from Lemma 3.5 that
Ty, < Ty, <T2",

for each £ > 1, which means that 7z* € C* and hence % € C*. Thus, by (3.9), we
have

N 2+ Tz* N "
p(z") < p(T), p(z*) < p(T="). (3.10)
On the other hand, it follows from Lemma 3.4 that
* * +
[T, = T2 < om, = 2" + S5 T, — |
2 * *
+ mIIT%k =z, | [lel[@n, — 27| + |8l Tz, — T2*].

Since the sequence {z,, } is bounded and likm inf ||z, — Tzy, || = 0, we have
— 00

I T@n, = T2|* < lan, — 2",

and then
limsup || Tz, — T2*||> < limsup ||z, — 2" (3.11)
k

k—o0 —00

Thus, using (3.11), we have
p(Tz*) = limsup ||z, — Tz*|?

k—oco

= limsup || Tz, — T2*||?
k—o0

< limsup|||z,, — 2*||?
k— o0

— o). (3.12)

Now, we show that z* = T'z*. It follows from Lemma 2.1 with ¢ = 2 and ¢t = % and
(3.12) that

25+ Tz* . 254+ Tz 2
p(7> = limsup ||y, — ———
2 k—o0 2
Ty, — 25y, —T2%2
e |+

< timsup (Flan, — 2|2 + 5o, = T2 = J9(l=" = T="1)

k—o0
< o)+ 30(T2") = J9(ll=" = T="1)
> 2/’ 20 49
RO . .
= p(=") = 9(l=" = T="I)).
By Lemma 2.1, we have
Lol =T=") < p(=") = p(=—5—) <.

Thus we have g(||z* — T'2*||) = 0 and so z* = T'z* by the property of g. This completes the
proof. O
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Theorem 3.2. Let K be a nonempty closed convex subset of a uniformly convex ordered Banach
space (E,<) and T : K — K be a monotone («, 5)-nonexpansive mapping. Assume that
Tx1 < x1 and the sequence {x,,} defined by Ishikawa type iteration (3.8) is bounded with w < x,,
for some w € K and lim inf |zn, — Tay| = 0. Then F<(T') # 0.

Proof. It follow from hnrg io%f |zn, — Tx,| = 0 that there exists a subsequence {z,, } C {z,}
such that
liminf ||z, —Tx,,| = 0.
k—o0
From Lemma 3.5, it follows that z,, , < z,, < z;. LetCp = {z € K : 2 < x,, } for all
k > 1. Then C} is closed convex and w € C} and so C}, is nonempty. Let C* = ﬁ C,.
=1

Then C* is a nonempty closed convex subset of K. Since {x,, } is bounded, define a function
p:C* = [0,400) by

p(z) = limsup ||z, — z||%,
n— oo

for all z € C*. From Lemma 2.2, it follows that there exists z* € C* such that
*) = inf ) 1
p(z7) = inf p(2) (3.13)
By the definition of C*, we have
TL 2 Tpy 2Ty = 2Ty 2Ty =0 > 2

Since T' is monotone, it follows Lemma 3.5 that

Ty > Ty, >T2",

for each k£ > 1, which means that Tz* € C* and hence Z*+2TZ* € C*. Thus, by (3.13), we
have

p(z) < p(F5), plz") < p(T2). (3.14)
On the other hand, it follows from Lemma 3.4 that
* * +
[T, =TI < llom, = 2" + T4 T, = P
2 * *
+ 75T, = wnllollan, = =71 + 1811 Ten, — T2,

Since the sequence {x, } is bounded and likm inf ||z, — Tzp, || = 0, we have
— 00

T2, = T2|* < lam, — 2|,

and then

limsup || T2, — T2*||* < limsup ||z, — 2" (3.15)

k—oo k—o0
Thus, using (3.15), we have
p(T=") = limsup |n, — T2
k—o0
= limsup | Tz, — T2

k—o0

< limsup|||zn, — z*||2
k— o0

= p(z"). (3.16)
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Now, we show that z* = T'z*. It follows from Lemma 2.1 with ¢ = 2 and ¢t = % and
(3.16) that

¢+ Tz* . 25+ Tz 2
p<7> =limsup ||zp, — ———
2 k—o0 2
= lim sup Hx”k —z + T, —T2" |2

< timsup (Sllam, — 272 + 5 llzn, — T2 = 290" = T="]))

k— o0

1 1 1
< Z * - *\ _ * *
< 5o + 5p(T2") = J9(l=" = T="])

* 1 * *
= p(z7) = 9l = T=7).

Thus, by Lemma 2.1, we have

1 2*+ Tz

- * * < *) 2T )«

1901z =T2)) < pl(=") = p(—5—) <0
and hence g(||z* — Tz*||) = 0. So z* = Tz* by the property of g. This completes the
proof. O

3.3. The convergence of Ishikawa type iteration. In this section, we prove some conver-
gence theorems of Ishikawa type iteration for a monotone (o, §)-nonexpansive mapping in
an ordered Banach space E.

Theorem 3.3. Let K be a nonempty closed convex subset of a uniformly convex ordered Banach
space (E,<)and T : K — K be a monotone (c, §)-nonexpansive mapping. Assume that the
sequence {x,} is defined by Ishikawa type iteration (3.8) with v1 < Txy (or Tzy < 1) and
F>(T) # 0 (or F<(T) # 0). Then we have

(1) the sequence {x,,} is bounded;

@) Nznsr — pll < llan — pl| and lim,— o ||z, — p|| exists for all p € F>(T) # 0 (or

F<(T) #0);
(3) liminf, o0 ||xn — Tzy| = 0 provided lim sup,,_, . $n(1 — $5) > 0;
4) limy oo [|[xn — Ty || = 0 provided liminf,,_,~ s, (1 — sp,) > 0.

Proof. Without loss of generality, we assume that z; < p € F>(T) # 0. Now, we claim
r, < pforall n > 1. In fact, since T is monotone, we have 1 < Tx; < Tp = p and
21 < y1 < Ty < pthen we have y; < p. Again from 7" is monotone, we get Ty; < Tp = p
from z; < Ty;. By convex we can get 2 < p, and so z1 < zy < p. Suppose that z; < p for
some k > 2. Then Tz, < T'p = p by monotonicity, from the condition (1) of Lemma 3.5 we
have z;, < yp < Ty < Ty and 2 < yp < Tz, < p. Since yi < p then Ty, < Tp = p. And
zi, < Ty, by convexity

o < (1= sp)op + sk Tyr = vpp1 < Tyg
That is, we get z1+1 < p. Hence we conclude z,, < pforalln < 1.
It follows from Lemma 3.5 that || Tz,, — p|| < ||z, — p|| for all n > 1 and so
= pll = 0 = s2) + 5u T~
< (1= sp)llzn = pll + sallT(zn) — pll
< (1= sn)llzn = pll + sullzn — pll
= ||z, — pl|.
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Consequently, we have
[Zn1 = pll = 1L = sn)an + s2T(yn) = pl
< (1= sa)llzn = pll + snllTyn — 2l
< (1= sp)llen = pll + snllyn — pll
< (1= sa)llzn = pll + snllzn = p|
= [|lzn —pll

< [lz1 = pll-

Then the sequence {||z,, — p||} is non-increasing and bounded and hence the conclusions
(1) and (2) hold.

Now, we show that the conclusion (3) and (4) hold. It follows from Lemma 2.1 with
q =2,t = s, and Lemma 3.5 that

lZns1 = plI* = (1 = sn)zn + saTyn — pl®

< (1 = sn)(@n = p) + 50 (Tyn — p)|?
< (1= sa)llzn = plI* + sl Tyn = plI* = 50 (1 = s0)g(|l2n — Tynl))
< (1= sn)llzn = plI* + snllyn — pI* = 50(1 = s0)g(|[2n — Tyal)
< (1= sa)llzn = plI* + sullzn = plI* = s2(1 = s2)g([[2n — Tyal)
< lwn = pl? = s50(1 = sn)g(llzn — Taa|)

which implies that

sn(1 = sn)g(lzn = Tzall) < llzn = pl* = 2nts — ]
Then it follows from the conclusion (2) that

limsup s, (1 = sn)g([|[zn — Tznl]) = 0.

n—oo
From the conclusion (3), since lim sup,, , .. Sn(1 — s,) >0,
(hm sup s, (1 — sn)> (lim inf g(||z,, — Txn||)) <limsup s, (1 — s,)g(||zn — Tzy]),
n—o0o n—0oo n—0o0
we have
liminf g(||lz,, — Tz, |]) = 0.
Hence we have
liminf ||z, — Tz, | =0,
n—oo
by the properties of g. From the conclusion (4), since liminf,,_,o (1 — s5,) > 0,
<lim inf s, (1 — sn)) <lim sup g(||z,, — Txn||)> < limsup s, (1 — $p)g9(|zn — Txs ),
n—oo n—oo n—oo
we have

lim g(||xn — Tzyl||) = limsup g(||z, — Tx,||) = 0.
n—roo n—o0o

Hence we have
lim |z, — Tz,| =0,
n—oo

by the properties of g. This completes the proof. O
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Theorem 3.4. Let K be a nonempty closed convex subset of a uniformly convex ordered Banach
space (E,<)and T : K — K be a monotone (o, 3)-nonexpansive mapping. Assume that E
satisfies Opial’s condition and the sequence {x,, } is defined by Ishikawa type iteration (3.8) with
x1 < Txq (or Txy < xq). If F>(T) # 0 (or F<(T) # 0) and liminf,_,  s,,(1 — s,,) > O, then
the sequence {x,,} converges weakly to a fixed point z of T

Proof. Tt follows from Theorem 3.3 that {x,,} is bounded and lim,_,« ||z, — T,|| = 0.
Then there exists a subsequence {z,, } of {z,} such that {z,,, } converges weakly to a point
z € K. From Lemma 3.5, it follows that 1 < z,,, < z (orz < z,,, < x,)forall k > 1.
On the other hand, the condition (2) of Lemma 3.4 means that
a+ 3
|1T2 = Tyl* < llo - ylI* + Tz~ ||?
2
1 glTe ==l [lallz = yll + Bl T2 — Tyll].

Since the sequence {x,,} is bounded and limy_, . ||Zn, — T%n,|| = 0, we have

limsup ||Tx,, — Tz||* < limsup ||z, — 2|
k

k—o0 —00
and hence
limsup ||Tzp, — Tz|| < limsup ||z, — z|. 3.17)
k—o0 k—oo

Now, we prove that z = T'z. In fact, suppose that z # T'z. Then, by (3.17) and Opial’s
condition, we have
limsup ||x,, — 2|| < limsup ||z,, — Tz||
k— o0 k— o0

< limsup(|[zn, — T, || + [[T2n, —Tz])

k— o0
< hmsup Hxnk - ZH;
k— o0
which is a contraction. This implies that z € F~(T') (or z € F<(T)). Using the conclusion
(2) of Theorem 3.3, lim,,_, o ||z, — 2| exists.

Now, we show that the sequence {xz,,} converge weakly to the point z. Suppose that
this does not hold. Then there exists a subsequence {z,, } to converge weakly to a point
z € K and z # x. Similarly, we must have x = T’z and lim,, oo |z — x| exists. It follows
from Opial’s condition that

lim ||z, —z|| < lim |z, — 2| = limsup ||z, — | < lim |z, — 2],
n— oo n—oo _]—)OO n— oo
which is a contradiction and hence we get x = z. This completes the proof. O

Theorem 3.5. Let K be a nonempty compact and closed convex subset of a uniformly convex
ordered Banach space (E,<) and T : K — K be a monotone (o, 3)-nonexpansive mapping.
Assume that the sequence {x,,} is defined by Ishikawa type iteration (3.8) with 1 < Tz;. If
limsup,,_, o $n(1 — sn) > 0, then the sequence {x,} converges strongly to a fixed point p €
F=(T).

Proof. Since K is compact, there exists a subsequence {z,, } of {z,} such that {z,, } con-
verges strongly to a point p € K. From Lemma 3.5, it follows that z; < z,, < p for all
k > 1. By Theorem 3.1, we have F>(T) # ) and it follows from Theorem 3.3 that {z,,} is
bounded and

liminf ||z, — Tz,| = 0.
n— oo
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Assume that

liminf ||z, —Tx,,| = 0.
k—oc0

On the other hand, the condition (2) of Lemma 3.4 means that
a+pB
1-—

2
+ mHTI —a|l{lellle - pll + |81 T= — Tp|l].

Since the sequence {xz,, } is bounded and

Tz = Tp|]* < ||z — p|* + T HTSC*HCH2

lim ||z, —pl|=0, lim |z,, — T2, [ =0,
k—o0 k— o0
we have
limsup || Tz, — Tp||*> <0
k—o00
and hence
lim | Tz, —Tp| =0. (3.18)
k—o0

Therefore, we have
i sup |, = Tpl| < lim sup({|n, — T, || + | T2n, = Tpll) =
— 00
and so limy_,  ||Zn, — Tp|| = 0, which implies that p € F~(T'). Using the conclusion (2)

of Theorem 3.3, limj_, o ||y, — p|| exists and so limg_, ||, — p|| = 0. This completes the
proof. O

Theorem 3.6. Let K be a nonempty compact and closed convex subset of a uniformly convex
ordered Banach space (E,<) and T : K — K be a monotone (o, §)-nonexpansive mapping.
Assume that the sequence {x,,} is defined by Ishikawa type iteration (3.8) with 1 < Txzy. If
liminf, o s, (1—sy) > 0, then the sequence {x,, } converges strongly to a fixed point p € F>(T).

Proof. Since K is compact, there exists a subsequence {z,, } of {z,} such that {z,, } con-
verges strongly to a point p € K. From Lemma 3.5, it follows that z; < z,,, < p for all
k > 1. By Theorem 3.1, we have F> (T # ) and it follows from Theorem 3.3 that {x,, } is
bounded and

liminf ||z, — Tz, | = 0.
n—oo
Without loss of generality, we can assume that
liminf ||, — Ty, | = 0.
k—o0

On the other hand, the condition (2) of Lemma 3.4 means that
a+f

1Tz = Tpl* <o —p* + T—5 Tz - x|
2
gl Tl [ladllz = pll + 18] T2 — Tp]].
Since the sequence {x,, } is bounded and
lim ||z, —pll =0, lim ||a,, —Tz,,.| =0,
k—o0 k—oo

we have
liminf || T2, —Tp||> <0
k— o0
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and hence
lim | Tz, — Tp| = 0. (3.19)
k— o0

Therefore, we have

liminf ||2,, — Tp|| < liminf(||z,, — Tz, || + |T2n, — Tp||) =0
k—oo k—oo

and so limy_,« ||Zn, — Tp|| = 0, which implies that p € F>(T). Using the conclusion (2)
of Theorem 3.3, limy,_, o ||Zn, — Pl exists and so limy_, ||z, — p|| = 0. This completes the
proof. O

Similarly, the following theorem can be proved:

Theorem 3.7. Let K be a nonempty compact and closed convex subset of a uniformly convex
ordered Banach space (E,<) and T : K — K be a monotone («, 3)-nonexpansive mapping.
Assume that the sequence {x,} is defined by Ishikawa type iteration (3.8) with Txy < zy. If either
liminf, o0 $p(1 — s,) > 0 0or limsup,,_, o $n(1 — s,) > 0, then the sequence {x,,} converges
strongly to a fixed point p € F<(T).

From Theorem 3.6, we have the following:

Corollary 3.1. Let K be a nonempty closed convex subset of a uniformly convex ordered Banach
space (E,<)and T : K — K be a monotone a-nonexpansive mapping. Assume that x1 < T'z4
(or Ty < 1) and the sequence {x,} defined by Mann’s iteration is bounded with z,, < y (or
y < xy,) for some y € K and linn;igf |zn, — Tay| = 0. Then F>(T) # 0.

3.4. A numerical example. Now, we give numerical example to illustrate Example 3.2 in
this paper. This section, the numerical solution of this example is presented in Figure 2,3
and Table 1.

Example 3.2. Let T : [0,1] — [0, 1] be a mapping defined by
(025 if a#l,
T”C—{ 05 if =1
for any z € [0, 1]. Then T is a (0.8, 0.2)-nonexpansive mapping. Define the sequences {s, }

and {tn} by s, = & + 2 for each n > 1, then limsup,,_, o, sn(1 — s,) = limsup,,_, . (3 +
1)(3 + %) = £ > 0. Then all the conditions of Theorem 3.5 are satisfied. Also, 0.25 is a

n?2 n?2

fixed point of 1" (see Figure 1, 2, 3 and Table 1).

4
os
06

0.4

<

0.2

Txx=0.25 , if x in [0/1)

FIGURE 1. A fixed point of T"is 0.25
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0.35 T T T T
I Mann's iteration
= |shikawa's iteration
03F ~
2 02s) = T |
E 02F i
0151 ~
D1 L L L L 1 1 1 1
] 5 10 15 20 25 30 35 40 45
Mumber of iterations
FIGURE 2. Th ical solution i 1 f =1+ L andx =
. e numerical solution in Example 3.2 for s, = ; + -5 and zp = 0.1
045 T 1 t T
3 LI Mann's iteration
045 e |shikavea's iteration E|
0.4 3 .
s 03sf 5: g
Z o3l y
@
0251 ~
02F ~
L L L L 1 1 1 1
] 5 10 15 20 25 a0 35 40 45
Nurber of iterations
FIGURE 3. The numerical solution in Example 3.2 for s,, = % + % and zg = 0.5
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TABLE 1. The convergent step of {z,,} for Example 3.2 with s, = 1 + %

Sequence value of Mann | Sequence value of Ishikawa
o = 0.1 ‘ o = 0.5 o = 0.1 ‘ o = 0.5

1 0.1000000  0.5000000 0.1000000  0.5000000
2 0.2875000 0.1875000 0.2107903  0.3294046
4 0.2619791 0.2300347 0.2493380  0.2518192
6

8

Number of Iterations

0.2558473 0.2402544 0.2499226  0.2502132
0.2530811 0.2448648 0.2499882  0.2500322

10 0.2516690 0.2472181 0.2499980  0.2500053
12 0.2509161 0.2484731 0.2499996  0.2500009
14 0.2505065 0.2491557 0.2499999  0.2500001
16 0.2502813 0.2495311 0.2499999  0.2500000
18 0.2501566  0.2497388 0.2499999  0.2500000
20 0.2500874  0.2498542  0.2499999  0.2500000
22 0.2500488 0.2499185 0.2499999  0.2500000
24 0.2500273  0.2499544  0.2499999  0.2500000
26 0.2500153  0.2499744  0.2499999  0.2500000
28 0.2500085 0.2499856  0.2499999  0.2500000
30 0.2500048 0.2499919 0.2499999  0.2500000
32 0.2500026  0.2499955 0.2499999  0.2500000
34 0.2500015 0.2499974 0.2499999  0.2500000
36 0.2500008  0.2499985 0.2500000  0.2500000
38 0.2500004  0.2499992  0.2500000  0.2500000
40 0.2500002  0.2499995 0.2500000  0.2500000
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