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Fixed point theorems and convergence theorems for
monotone (α, β)-nonexpansive mappings in ordered Banach
spaces

KHANITIN MUANGCHOO-IN1, DAWUD THONGTHA1,2 , POOM KUMAM1,2 and YEOL JE
CHO3

ABSTRACT. In this paper, we introduce the notion of a monotone (α, β)-nonexpansive mapping in an ordered
Banach space E with the partial order ≤ and prove some existence theorems of fixed points of a monotone
(α, β)-nonexpansive mapping in a uniformly convex ordered Banach space. Also, we prove some weak and
strong convergence theorems of Ishikawa type iteration under the control condition

lim sup
n→∞

sn(1− sn) > 0 and lim inf
n→∞

sn(1− sn) > 0.

Finally, we give an numerical example to illustrate the main result in this paper.

1. INTRODUCTION

Let T be a mapping with domain D(T ) and range R(T ) in an ordered Banach space E
with the partial order ≤. A mapping T : D(T )→ R(T ) is said to be monotone if Tx ≤ Ty
for all x, y ∈ D(T ) with x ≤ y and monotone nonexpansive if T is monotone and

‖Tx− Ty‖ ≤ ‖x− y‖,

for all x, y ∈ D(T ) with x ≤ y.
In 2010, Aoyama et al. [1] introduced a class of a λ-hybrid mapping, that is, a mapping

T : D(T )→ R(T ) is called λ-hybrid mapping in a Hilbert space H if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2(1− λ)〈x− Tx, y − Ty〉,

for all x, y ∈ D(T ). They proved a fixed point theorem and an ergodic theorem for such
a mapping. Clearly, a nonexpansive mapping is a 1-hybrid mapping. In 2011, Aoyama
and Kohsaka [2] also introduced the concept of an α-nonexpansive mapping, that is, a
mapping T : D(T )→ R(T ) is said to be α−nonexpansive if α < 1 and

‖Tx− Ty‖2 ≤ α‖Tx− y‖+ α‖Ty − x‖+ (1− 2α)‖x− y‖,

for all x, y ∈ D(T ). Obviously, a nonexpansive mapping is 0-nonexpansive and λ-hybrid
mapping is 1−λ

2−λ -nonexpansive if λ < 2 in a Hilbert space H (for more details, see [2]).
Recently, in 2015, Dehaish and Khamsi [3] proved some weak convergence theorems of

Mann’s iteration for finding some order fixed points of monotone nonexpansive mappings
in uniformly convex ordered Banach spaces as follows:
Theorem DK1. Let K be a nonempty closed convex and bounded subset of an ordered Banach
space E. Let T : K → K be a monotone nonexpansive mapping. Assume that X is uniformly
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convex and there exist z ∈ F (T ) and x1 ∈ K such that x1 and z are comparable. Then we have

lim
n→∞

‖xn − Txn‖ = 0,

where {xn} is Mann’s iteration generated by

xn+1 = βnTxn + (1− βn)xn,

for each n ≥ 1, where βn ∈ [a, b] for some a > 0 and b < 1.
Theorem DK2. K be a nonempty closed convex and bounded subset of an ordered Banach space
E. Let T : K → K be a monotone nonexpansive mapping. Let x1 ∈ K be such that x1 and T (x1)
are comparable. Let {xn} be Mann’s iteration defined by generated by

xn+1 = βnTxn + (1− βn)xn,

for each n ≥ 1, where βn ∈ [a, b] for some a > 0 and b < 1. Then we have

lim
n→∞

‖xn − Txn‖ = 0.

Theorem DK3. Let E be an ordered Banach space which satisfies Opial’s weakly condition. Let K
be a nonempty weakly compact convex subset of E. Let T : K → K be a monotone nonexpansive
mapping. Assume that there exists x1 ∈ K such that x1 and Tx1 are comparable. Let {xn} be
Mann’s iteration defined by generated by

xn+1 = βnTxn + (1− βn)xn,

for each n ≥ 1, where βn ∈ [a, b] for some a > 0 and b < 1. Then {xn} converges weakly to a fixed
point z of T , i.e., T (z) = z. Moreover, z and x1 are comparable.

Note that, in Theorems DK1, DK2, DK3 of Dehaish and Khamsi, they gave the control
condition {tn} in [a, b] with a > 0 and b < 1, but we cannot apply the following control
condition {βn} in their results: for each n ≥ 1,

βn =
1

n+ 1
.

Thus, to improve the results mentioned above, in 2016, Song et al. [9] we consider Mann’s
iteration {xn} for a monotone nonexpansive mapping T : C → C defined by

xn+1 = βnxn + (1− βn)Txn,

for each n ≥ 1, where {βn} in (0, 1) satisfies the following condition:
∞∑
n=1

βn(1− βn) =∞.

Clearly, this control condition {βn} contains βn = 1
n+1 as a special case.

Recently, in 2016, Song et al. [10] considered the convergence of Mann’s iteration for a
monotone α-nonexpansive mapping T in an ordered Banach space E.
Theorem SPKC1. Let K be a nonempty closed convex subset of an ordered Banach space (E,≤)
and T : K → K be a monotone α-nonexpansive mapping. Assume that the sequence {xn} defined
by the Mann iteration with x1 ≤ Tx1 (or Tx1 ≤ x1) and F≥(T ) 6= ∅ (or F≤(T ) 6= ∅). Then we
have

(1) the sequence {xn} is bounded;
(2) ‖xn+1 − p‖ ≤ ‖xn − p‖ and the limit lim

n→∞
‖xn − p‖ exists for all p ∈ F≥(T ) (or

p ∈ F≤(T ));
(3) lim inf

n→∞
‖xn − Txn‖ = 0 provided lim sup

n→∞
βn(1− βn) > 0;

(4) lim
n→∞

‖xn − Txn‖ = 0 provided lim inf
n→∞

βn(1− βn) > 0.
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Theorem SPKC2. Let K be a nonempty closed convex subset of a uniformly convex ordered
Banach space (E,≤) and T : K → K be a monotone α-nonexpansive mapping. Assume that E
satisfies Opial’s condition and the sequence {xn} is defined by Mann’s iteration with x1 ≤ Tx1 (or
Tx1 ≤ x1). If F≥(T ) 6= ∅ (or F≤(T ) 6= ∅) and lim inf

n→∞
βn(1− βn) > 0, then the sequence {xn}

converges weakly to a fixed point z of T .
Theorem SPKC3. Let K be a nonempty compact and closed convex subset of a uniformly convex
ordered Banach space (E,≤) and T : K → K be a monotone α-nonexpansive mapping. Assume
that the sequence {xn} is defined by Mann’s iteration with Tx1 ≤ x1. If either lim inf

n→∞
βn(1−βn) >

0 or lim sup
n→∞

βn(1−βn) > 0, then the sequence {xn} converges strongly to a fixed point y ∈ F≤(T ).

Motivated by the results mentioned above, in this paper, first, we introduce the concept
of a monotone (α, β)-nonexpansive mapping in ordered Banach spaces. Second, we show
the existence of a fixed point of the proposed mapping in ordered Banach spaces. Third,
we proves some strong and weak convergence theorems of Ishikawa type iteration for a
monotone (α, β)-nonexpansive mapping in ordered Banach spaces under the condition

lim sup
n→∞

sn(1− sn) > 0, lim inf
n→∞

sn(1− sn) > 0.

Finally, we give a numerical example to illustrate the main result in this paper.

2. PRELIMINARIES

Let P be a closed convex cone of a real Banach space E. A partial order “≤” with respect
to P in E is defined as follows:

x ≤ y (x < y) if and only if y − x ∈ P (y − x ∈ P̊ ),

for all x, y ∈ E, where P̊ is the interior of P .
Throughout this paper, let E be a Banach space with the norm ‖ · ‖ and the partial order

≤. Let F (T ) = {x ∈ H : Tx = x} denote the set of all fixed points of a mapping T . Also,
we assume that the order intervals are closed and convex. Recall that an order interval is
any of the subsets

[x,→) = {p ∈ E;x ≤ p} or (←, x] = {p ∈ E; p ≤ x}

for any a ∈ C. An order interval [x, y] for all x, y ∈ E is given by

[x, y] = {z ∈ E : x ≤ z ≤ y} = [x,→) ∩ (←, y]. (2.1)

Then the convexity of the order interval [x, y] implies that

x ≤ tx+ (1− t)y ≤ y, (2.2)

for all x, y ∈ E with x ≤ y. A Banach space E is said to be:

(1) strictly convex if ‖x+y2 ‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y;
(2) uniformly convex if, for all ε ∈ (0, 2], there exists δ > 0 such that ‖x+y‖2 < 1− δ for

all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε.
The following inequality was shown by Xu [12] in a uniformly convex Banach space E,

which is known as Xu’s inequality.

Lemma 2.1. [12] For any real numbers q > 1 and r > 0, a Banach space E is uniformly convex if
and only if there exists a continuous strictly increasing convex function g : [0,+∞)→ [0,+∞)
with g(0) = 0 such that

‖tx+ (1− t)y‖q ≤ t‖x‖q + (1− t)‖y‖q − ω(q, t)g(‖x− y‖), (2.3)
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for all x, y ∈ Br(0) = {x ∈ E; ‖x‖ ≤ r} and t ∈ [0, 1], where ω(q, t) = tq(1− t) + t(1− t)q.
In particular, take q = 2 and t = 1

2 ,∥∥∥x+ y

2

∥∥∥2 ≤ 1

2
‖x‖2 +

1

2
‖y‖2 − 1

4
g(‖x− y‖). (2.4)

Lemma 2.2. [11] Let K be a nonempty closed convex subset of a reflexive Banach space E. Assume
that ρ : K → R is a proper convex lower semi-continuous and coercive function. Then the function
ρ attains its minimum on K, that is, there exists x ∈ K such that

ρ(x) = inf
y∈K

ρ(y).

Lemma 2.3. [8] A Banach space E is said to satisfy Opial’s condition if, whenever any sequence
{xn} in E converges weakly to a point x,

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||

for any y ∈ E such that y 6= x.

Definition 2.1. Let K be a nonempty closed subset of an ordered Banach space (E,≤). A mapping
T : K → E is said to be :

(1) monotone α-nonexpansive if T is monotone and, for some α < 1,

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + α‖Ty − x‖2 + (1− 2α)‖x− y‖2,

for all x, y ∈ K with x ≤ y, by [10, Lemma 2.2] which is equivalent to

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
2α

1− α
‖Tx− x‖2

+
2|α|

1− α
‖Tx− x‖ [‖x− y‖+ ‖Tx− Ty‖] . (2.5)

(2) monotone quasi-nonexpansive if T is monotone, F (T ) 6= ∅ and ‖Tx− p‖ ≤ ‖x− p‖
for all p ∈ F (T ) and x ∈ K with x ≤ p or p ≤ x.

3. MAIN RESULTS

3.1. Monotone (α, β)-nonexpansive mappings. In this section, we define the notion of
a monotone (α, β)-nonexpansive mapping and introduce a lemma in a uniformly convex
Banach space (E,≤) as follows:

Definition 3.2. Let K be a nonempty closed subset of an ordered Banach space (E,≤). A
mapping T : K → K is said to be monotone (α, β)-nonexpansive if T is monotone and

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + β‖Ty − x‖2 + (1− (α+ β))‖x− y‖2, (3.6)

for all x, y ∈ K with x ≤ y and α, β < 1.

Remark 3.1. (1) If α = β, then α-nonexpansive implies (α, β)-nonexpansive mapping and
converse is true;

(2) Every nonexpansive mapping is a 0-nonexpansive mapping and (0, 0)-nonexpansive
mapping;

(3) Every α-nonexpansive and (α, β)-nonexpansive mappings with F (T ) 6= ∅ are a
quasi-nonexpansive mapping.

Now, we introduce a mapping T which is a monotone (α, β)-nonexpansive mapping,
but not a monotone α-nonexpansive mapping as follows:
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Example 3.1. Let T : [0, 1]→ [0, 1] be defined by

Tx =

{
0.25 if x 6= 1,
0.5 if x = 1.

Next, we will show that T is a monotone (0.8, 0.2)-nonexpansive mapping where ‖x−y‖
is defined by |x− y|. The proof is divided into two parts.
First, we prove that T is monotone. The proof is divided into four cases.

Case 1. If x = y = 1 then Tx = 0.5 = Ty,
Case 2. if x 6= 1 and y 6= 1 then Tx = 0.25 = Ty,
Case 3. if x 6= 1 and y = 1 then Tx = 0.25 < 0.5 = Ty,
Case 4. if y 6= 1 and x = 1 then Ty = 0.25 < 0.5 = Tx.

Therefore T is monotone.
Second, we prove that T is monotone (0.8, 0.2)-nonexpansive. We divide the proof into
four cases.

Cases1. x = y = 1. We have

‖Tx− Ty‖2 = 0 ≤ 0.225 = 0.8‖0.5− 1‖2 + 0.2‖0.5− 1‖2

Case 2. x 6= 1, y 6= 1. Then,

‖Tx− Ty‖2 = 0 ≤ 0.8‖0.25− y‖2 + 0.2‖0.25− x‖2

Case 3. x = 1, y 6= 1. We get

‖Tx− Ty‖2 = 0.0625 ≤ 0.8‖0.5− y‖2 + 0.2‖0.25− 1‖2

= 0.1125 + 0.8‖0.5− y‖2

Case 4. x 6= 1, y = 1. So,

‖Tx− Ty‖2 = 0.0625 ≤ 0.8‖0.25− 1‖2 + 0.2‖0.5− x‖2

= 0.45 + 0.2‖0.5− x‖2

From these four cases, the mapping T is is satisfied (3.6).
Hence, T is monotone (0.8, 0.2)-nonexpansive mapping. However, T is not a monotone
0.8-nonexpansive mapping. Note that if x = 1, y = 0 ∈ [0, 1] and α = β = 0.8, we have

‖Tx− Ty‖2 = 0.0625 � 0.05 = 0.8‖0.5− 0‖2 + 0.8‖0.25− 1‖2 − 0.6‖1− 0‖2.
This show that T is not a monotone 0.8-nonexpansive mapping.

Before proving the main results, we need the following:

Lemma 3.4. Let K be a nonempty closed convex subset of an ordered Banach space (E,≤) and
T : K → K be a monotone (α, β)-nonexpansive mapping. Then we have:

(1) T is monotone quasi-nonexpansive;
(2) for all x, y ∈ K and α, β < 1 with x ≤ y,

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
|α|‖x− y‖+ |β|‖Tx− Ty‖

]
. (3.7)

Proof. (1) It follows that

‖Tx− p‖2 = ‖Tx− Tp‖2

≤ α‖Tx− p‖2 + β‖Tp− x‖2 + (1− (α+ β))‖x− p‖2

= α‖Tx− p‖2 + (1− α)‖x− p‖2
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and so ‖Tx− p‖2 ≤ ‖x− p‖2.

(2) From Definition 3.2, we consider the following cases:
(a) If 0 ≤ α, β < 1, then we have

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + β‖Ty − x‖2 + (1− (α+ β))‖x− y‖2

≤ α
[
‖Tx− x‖+ ‖x− y‖

]2
+ β

[
‖Ty − Tx‖+ ‖Tx− x‖

]2
+ (1− (α+ β))‖x− y‖2

= α‖Tx− x‖2 + 2α‖Tx− x‖‖x− y‖+ α‖x− y‖2 + β‖Ty − Tx‖2

+ 2β‖Ty − Tx‖‖Tx− x‖+ β‖Tx− x‖2 + (1− (α+ β))‖x− y‖2

= (α+ β)‖Tx− x‖2 + (1− β)‖x− y‖2 + β‖Ty − Tx‖2

+ 2‖Tx− x‖
[
α‖x− y‖+ β‖Tx− Ty‖

]
and so

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
α‖x− y‖+ β‖Tx− Ty‖

]
.

(b) If 0 ≤ α < 1 and β < 0, then we have

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + β‖Ty − x‖2 + (1− (α+ β))‖x− y‖2

≤ α
[
‖Tx− x‖+ ‖x− y‖

]2
+ β

[
‖Ty − Tx‖ − ‖Tx− x‖

]2
+ (1− (α+ β))‖x− y‖2

= α‖Tx− x‖2 + 2α‖Tx− x‖‖x− y‖+ α‖x− y‖2 + β‖Ty − Tx‖2

− 2β‖Ty − Tx‖‖Tx− x‖+ β‖Tx− x‖2 + (1− (α+ β))‖x− y‖2

= (α+ β)‖Tx− x‖2 + (1− β)‖x− y‖2 + β‖Ty − Tx‖2

+ 2‖Tx− x‖
[
α‖x− y‖ − β‖Tx− Ty‖

]
and so

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
α‖x− y‖ − β‖Tx− Ty‖

]
.

(c) If α < 0 and 0 ≤ β < 1, then we have

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + β‖Ty − x‖2 + (1− (α+ β))‖x− y‖2

≤ α
[
‖Tx− x‖ − ‖x− y‖

]2
+ β

[
‖Ty − Tx‖+ ‖Tx− x‖

]2
+ (1− (α+ β))‖x− y‖2

= α‖Tx− x‖2 − 2α‖Tx− x‖‖x− y‖+ α‖x− y‖2 + β‖Ty − Tx‖2

+ 2β‖Ty − Tx‖‖Tx− x‖+ β‖Tx− x‖2 + (1− (α+ β))‖x− y‖2

= (α+ β)‖Tx− x‖2 + (1− β)‖x− y‖2 + β‖Ty − Tx‖2

+ 2‖Tx− x‖
[
− α‖x− y‖+ β‖Tx− Ty‖

]
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and so

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
− α‖x− y‖+ β‖Tx− Ty‖

]
.

(d) If α, β < 0, then we have

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + β‖Ty − x‖2 + (1− (α+ β))‖x− y‖2

≤ α
[
‖Tx− x‖ − ‖x− y‖

]2
+ β

[
‖Ty − Tx‖ − ‖Tx− x‖

]2
+ (1− (α+ β))‖x− y‖2

= α‖Tx− x‖2 − 2α‖Tx− x‖‖x− y‖+ α‖x− y‖2 + β‖Ty − Tx‖2

− 2β‖Ty − Tx‖‖Tx− x‖+ β‖Tx− x‖2 + (1− (α+ β))‖x− y‖2

= (α+ β)‖Tx− x‖2 + (1− β)‖x− y‖2 + β‖Ty − Tx‖2

+ 2‖Tx− x‖
[
− α‖x− y‖ − β‖Tx− Ty‖

]
and so

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
− α‖x− y‖ − β‖Tx− Ty‖

]
.

Thus it follow that, for all x, y ∈ K and α, β < 1 with x ≤ y,

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
|α|‖x− y‖+ |β|‖Tx− Ty‖

]
.

This completes the proof. �

3.2. The existence of fixed points. In this section, we consider the Ishikawa type iteration
defined by {

yn = (1− sn)xn + snTxn,
xn+1 = (1− sn)xn + snT (yn)

(3.8)

for each n ≥ 1, where {sn} is the sequences in [0, 1]. We denote

F≤(T ) = {p ∈ F (T ) : p ≤ x1}, F≥(T ) = {p ∈ F (T ) : x1 ≤ p}.

Note that, since the partial order ≤ is defined by the closed convex cone P , it is obvious
that both F≤(T ) and F≥(T ) are closed convex.

Now, we introduce the following lemma to find fixed points of a monotone (α, β)-
nonexpansive mapping in Banach space E:

Lemma 3.5. LetK be a nonempty closed comvex subset of a Banach space (E,≤). Let T : K → K
be a monotone mapping and assume that the sequence {xn} defined by Ishikawa type iteration (3.8)
and x1 ≤ Tx1 (or Tx1 ≤ x1). Then we have

(1) xn ≤ yn ≤ xn+1 and xn ≤ yn ≤ Txn ≤ Tyn (or xn ≥ yn ≥ xn+1 and xn ≥ yn ≥
Txn ≥ Tyn);

(2) xn ≤ x (orx ≤ xn) for all n ≤ 1 if {xn} weakly converges to a point x ∈ K.
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Proof. (1) Let k1, k2 ∈ K such that k1 ≤ k2. Then we have

k1 ≤ (1− α)k1 + αk2 ≤ k2
for all α ∈ [0, 1] since order intervals are convex. By the assumption, we have x1 ≤ Tx1
and so the inequality is true for n = 1. Assume that xk ≤ Txk for k ≥ 2. By convexity and
monotonicity, we have

xk ≤ (1− sk)xk + skTxk = yk ≤ (1− sk)Txk + skTxk = Txk,

i.e., xk ≤ yk ≤ Txk. By monotonicity, we get xk ≤ yk ≤ Txk ≤ Tyk.
From xk ≤ Tyk, by convexity

xk ≤ (1− sk)xk + skTyk = xk+1 ≤ Tyk
i.e., xk ≤ xk+1 ≤ Tyk. And again, we have

yk = (1− sk)xk + skTxk ≤ (1− sk)xk + skTyk = xk+1,

so we get xk ≤ yk ≤ xk+1. By monotonicity, we have Tyk ≤ Txk+1.
So xk+1 ≤ Txk+1. By induction, we can conclude that xn ≤ Txn is true for all n ≥ 1.
Now we have xn ≤ Txn for all n ≥ 1 by convexity

xn ≤ (1− sn)xn + snTxn = yn ≤ Txn,
since T is monotonicity Txn ≤ Tyn, that is xn ≤ yn ≤ Txn ≤ Tyn. And

yn = (1− sn)xn + snTxn ≤ (1− sn)xn + snTyn ≤ xn+1,

i.e., xn ≤ yn ≤ xn+1.
Hence, we conclude that xn ≤ yn ≤ xn+1 and xn ≤ yn ≤ Txn ≤ Tyn.
On the other hand, if we assume Tx1 ≤ x1, then we can show that xn ≥ yn ≥ xn+1 and
xn ≥ yn ≥ Txn ≥ Tyn.

(2) From Dehaish and Chamsi [3, Lemma 3.1]), we have the conclusion. This completes
the proof. �

Next, we show some existence theorems of fixed points of monotone (α, β)-nonexpansive
mappings in a uniformly convex ordered Banach space (E,≤).

Theorem 3.1. Let K be a nonempty closed convex subset of a uniformly convex ordered Banach
space (E,≤) and T : K → K be a monotone (α, β)-nonexpansive mapping. Assume that
x1 ≤ Tx1 and the sequence {xn} defined by Ishikawa type iteration (3.8) is bounded with xn ≤ w
for some w ∈ K and lim inf

n→∞
‖xn − Txn‖ = 0. Then F≥(T ) 6= ∅.

Proof. From lim inf
n→∞

‖xn−Txn‖ = 0, it follows that there exists a subsequence {xnk
} ⊂ {xn}

such that
lim inf
k→∞

‖xnk
− Txnk

‖ = 0.

From Lemma 3.5, we have x1 ≤ xnk
≤ xnk+1

. Let Ck = {z ∈ K : xnk
≤ z} for all k ≥ 1.

Then Ck is closed convex and w ∈ Ck and so Ck is nonempty. Let C∗ =
∞⋂
n=1

Cn. Then C∗ is

a nonempty closed convex subset of K. Since {xn} is bounded, we can define a function
ρ : C∗ → [0,+∞) by

ρ(z) = lim sup
n→∞

‖xn − z‖2,

for all z ∈ C∗. From Lemma 2.2, it follows that there exists z∗ ∈ C∗ such that

ρ(z∗) = inf
z∈C∗

ρ(z). (3.9)
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By the definition of C∗, we have

x1 ≤ xn1
≤ xn2

≤ · · · ≤ xnk
≤ xnk+1

≤ · · · ≤ z∗.

Since T is monotone, it follows from Lemma 3.5 that

xnk
≤ Txnk

≤ Tz∗,

for each k ≥ 1, which means that Tz∗ ∈ C∗ and hence z∗+Tz∗

2 ∈ C∗. Thus, by (3.9), we
have

ρ(z∗) ≤ ρ
(z∗ + Tz∗

2

)
, ρ(z∗) ≤ ρ(Tz∗). (3.10)

On the other hand, it follows from Lemma 3.4 that

‖Txnk
− Tz∗‖2 ≤ ‖xnk

− z∗‖2 +
α+ β

1− β
‖Txnk

− xnk
‖2

+
2

1− β
‖Txnk

− xnk
‖
[
|α|‖xnk

− z∗‖+ |β|‖Txnk
− Tz∗‖

]
.

Since the sequence {xn} is bounded and lim inf
k→∞

‖xnk
− Txnk

‖ = 0, we have

‖Txnk
− Tz∗‖2 ≤ ‖xnk

− z∗‖2,

and then
lim sup
k→∞

‖Txnk
− Tz∗‖2 ≤ lim sup

k→∞
‖xnk

− z∗‖2. (3.11)

Thus, using (3.11), we have

ρ(Tz∗) = lim sup
k→∞

‖xnk
− Tz∗‖2

= lim sup
k→∞

‖Txnk
− Tz∗‖2

≤ lim sup
k→∞

[‖xnk
− z∗‖2

= ρ(z∗). (3.12)

Now, we show that z∗ = Tz∗. It follows from Lemma 2.1 with q = 2 and t = 1
2 and

(3.12) that

ρ
(z∗ + Tz∗

2

)
= lim sup

k→∞

∥∥∥xnk
− z∗ + Tz∗

2

∥∥∥2
= lim sup

k→∞

∥∥∥xnk
− z∗

2
+
xnk
− Tz∗

2

∥∥∥2
≤ lim sup

k→∞

(1

2
‖xnk

− z∗‖2 +
1

2
‖xnk

− Tz∗‖2 − 1

4
g(‖z∗ − Tz∗‖)

)
≤ 1

2
ρ(z∗) +

1

2
ρ(Tz∗)− 1

4
g(‖z∗ − Tz∗‖)

= ρ(z∗)− 1

4
g(‖z∗ − Tz∗‖).

By Lemma 2.1, we have

1

4
g(‖z∗ − Tz∗‖) ≤ ρ(z∗)− ρ

(z∗ + Tz∗

2

)
≤ 0.

Thus we have g(‖z∗ − Tz∗‖) = 0 and so z∗ = Tz∗ by the property of g. This completes the
proof. �
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Theorem 3.2. Let K be a nonempty closed convex subset of a uniformly convex ordered Banach
space (E,≤) and T : K → K be a monotone (α, β)-nonexpansive mapping. Assume that
Tx1 ≤ x1 and the sequence {xn} defined by Ishikawa type iteration (3.8) is bounded with w ≤ xn
for some w ∈ K and lim inf

n→∞
‖xn − Txn‖ = 0. Then F≤(T ) 6= ∅.

Proof. It follow from lim inf
n→∞

‖xn − Txn‖ = 0 that there exists a subsequence {xnk
} ⊂ {xn}

such that
lim inf
k→∞

‖xnk
− Txnk

‖ = 0.

From Lemma 3.5, it follows that xnk+1
≤ xnk

≤ x1. Let Ck = {z ∈ K : z ≤ xnk
} for all

k ≥ 1. Then Ck is closed convex and w ∈ Ck and so Ck is nonempty. Let C∗ =
∞⋂
n=1

Cn.

Then C∗ is a nonempty closed convex subset ofK. Since {xn} is bounded, define a function
ρ : C∗ → [0,+∞) by

ρ(z) = lim sup
n→∞

‖xn − z‖2,

for all z ∈ C∗. From Lemma 2.2, it follows that there exists z∗ ∈ C∗ such that

ρ(z∗) = inf
z∈C∗

ρ(z). (3.13)

By the definition of C∗, we have

x1 ≥ xn1
≥ xn2

≥ · · · ≥ xnk
≥ xnk+1

≥ · · · ≥ z∗.

Since T is monotone, it follows Lemma 3.5 that

xnk
≥ Txnk

≥ Tz∗,

for each k ≥ 1, which means that Tz∗ ∈ C∗ and hence z∗+Tz∗

2 ∈ C∗. Thus, by (3.13), we
have

ρ(z∗) ≤ ρ
(z∗ + Tz∗

2

)
, ρ(z∗) ≤ ρ(Tz∗). (3.14)

On the other hand, it follows from Lemma 3.4 that

‖Txnk
− Tz∗‖2 ≤ ‖xnk

− z∗‖2 +
α+ β

1− β
‖Txnk

− xnk
‖2

+
2

1− β
‖Txnk

− xnk
‖
[
|α|‖xnk

− z∗‖+ |β|‖Txnk
− Tz∗‖

]
.

Since the sequence {xn} is bounded and lim inf
k→∞

‖xnk
− Txnk

‖ = 0, we have

‖Txnk
− Tz∗‖2 ≤ ‖xnk

− z∗‖2,

and then
lim sup
k→∞

‖Txnk
− Tz∗‖2 ≤ lim sup

k→∞
‖xnk

− z∗‖2. (3.15)

Thus, using (3.15), we have

ρ(Tz∗) = lim sup
k→∞

‖xnk
− Tz∗‖2

= lim sup
k→∞

‖Txnk
− Tz∗‖2

≤ lim sup
k→∞

[‖xnk
− z∗‖2

= ρ(z∗). (3.16)
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Now, we show that z∗ = Tz∗. It follows from Lemma 2.1 with q = 2 and t = 1
2 and

(3.16) that

ρ
(z∗ + Tz∗

2

)
= lim sup

k→∞

∥∥∥xnk
− z∗ + Tz∗

2

∥∥∥2
= lim sup

k→∞

∥∥∥xnk
− z∗

2
+
xnk
− Tz∗

2

∥∥∥2
≤ lim sup

k→∞

(1

2
‖xnk

− z∗‖2 +
1

2
‖xnk

− Tz∗‖2 − 1

4
g(‖z∗ − Tz∗‖)

)
≤ 1

2
ρ(z∗) +

1

2
ρ(Tz∗)− 1

4
g(‖z∗ − Tz∗‖)

= ρ(z∗)− 1

4
g(‖z∗ − Tz∗‖).

Thus, by Lemma 2.1, we have

1

4
g(‖z∗ − Tz∗‖) ≤ ρ(z∗)− ρ

(z∗ + Tz∗

2

)
≤ 0

and hence g(‖z∗ − Tz∗‖) = 0. So z∗ = Tz∗ by the property of g. This completes the
proof. �

3.3. The convergence of Ishikawa type iteration. In this section, we prove some conver-
gence theorems of Ishikawa type iteration for a monotone (α, β)-nonexpansive mapping in
an ordered Banach space E.

Theorem 3.3. Let K be a nonempty closed convex subset of a uniformly convex ordered Banach
space (E,≤) and T : K → K be a monotone (α, β)-nonexpansive mapping. Assume that the
sequence {xn} is defined by Ishikawa type iteration (3.8) with x1 ≤ Tx1 (or Tx1 ≤ x1) and
F≥(T ) 6= ∅ (or F≤(T ) 6= ∅). Then we have

(1) the sequence {xn} is bounded;
(2) ‖xn+1 − p‖ ≤ ‖xn − p‖ and limn→∞ ‖xn − p‖ exists for all p ∈ F≥(T ) 6= ∅ (or

F≤(T ) 6= ∅);
(3) lim infn→∞ ‖xn − Txn‖ = 0 provided lim supn→∞ sn(1− sn) > 0;
(4) limn→∞ ‖xn − Txn‖ = 0 provided lim infn→∞ sn(1− sn) > 0.

Proof. Without loss of generality, we assume that x1 ≤ p ∈ F≥(T ) 6= ∅. Now, we claim
xn ≤ p for all n ≥ 1. In fact, since T is monotone, we have x1 ≤ Tx1 ≤ Tp = p and
x1 ≤ y1 ≤ Tx1 ≤ p then we have y1 ≤ p. Again from T is monotone, we get Ty1 ≤ Tp = p
from x1 ≤ Ty1. By convex we can get x2 ≤ p, and so x1 ≤ x2 ≤ p. Suppose that xk ≤ p for
some k ≥ 2. Then Txk ≤ Tp = p by monotonicity, from the condition (1) of Lemma 3.5 we
have xk ≤ yk ≤ Txk ≤ Tyk and xk ≤ yk ≤ Txk ≤ p. Since yk ≤ p then Tyk ≤ Tp = p. And
xk ≤ Tyk by convexity

xk ≤ (1− sk)xk + skTyk = xk+1 ≤ Tyk.

That is, we get xk+1 ≤ p. Hence we conclude xn ≤ p for all n ≤ 1.
It follows from Lemma 3.5 that ‖Txn − p‖ ≤ ‖xn − p‖ for all n ≥ 1 and so

‖yn − p‖ = ‖(1− sn)xn + snTxn − p‖
≤ (1− sn)‖xn − p‖+ sn‖T (xn)− p‖
≤ (1− sn)‖xn − p‖+ sn‖xn − p‖
= ‖xn − p‖.
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Consequently, we have

‖xn+1 − p‖ = ‖(1− sn)xn + snT (yn)− p‖
≤ (1− sn)‖xn − p‖+ sn‖Tyn − p‖
≤ (1− sn)‖xn − p‖+ sn‖yn − p‖
≤ (1− sn)‖xn − p‖+ sn‖xn − p‖
= ‖xn − p‖
· · ·
≤ ‖x1 − p‖.

Then the sequence {‖xn − p‖} is non-increasing and bounded and hence the conclusions
(1) and (2) hold.

Now, we show that the conclusion (3) and (4) hold. It follows from Lemma 2.1 with
q = 2, t = sn and Lemma 3.5 that

‖xn+1 − p‖2 = ‖(1− sn)xn + snTyn − p‖2

≤ ‖(1− sn)(xn − p) + sn(Tyn − p)‖2

≤ (1− sn)‖xn − p‖2 + sn‖Tyn − p‖2 − sn(1− sn)g(‖xn − Tyn‖)
≤ (1− sn)‖xn − p‖2 + sn‖yn − p‖2 − sn(1− sn)g(‖xn − Tyn‖)
≤ (1− sn)‖xn − p‖2 + sn‖xn − p‖2 − sn(1− sn)g(‖xn − Tyn‖)
≤ ‖xn − p‖2 − sn(1− sn)g(‖xn − Txn‖)

which implies that

sn(1− sn)g(‖xn − Txn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Then it follows from the conclusion (2) that

lim sup
n→∞

sn(1− sn)g(‖xn − Txn‖) = 0.

From the conclusion (3), since lim supn→∞ sn(1− sn) > 0,(
lim sup
n→∞

sn(1− sn)

)(
lim inf
n→∞

g(‖xn − Txn‖)
)
≤ lim sup

n→∞
sn(1− sn)g(‖xn − Txn‖),

we have
lim inf
n→∞

g(‖xn − Txn‖) = 0.

Hence we have
lim inf
n→∞

‖xn − Txn‖ = 0,

by the properties of g. From the conclusion (4), since lim infn→∞ sn(1− sn) > 0,(
lim inf
n→∞

sn(1− sn)
)(

lim sup
n→∞

g(‖xn − Txn‖)
)
≤ lim sup

n→∞
sn(1− sn)g(‖xn − Txn‖),

we have
lim
n→∞

g(‖xn − Txn‖) = lim sup
n→∞

g(‖xn − Txn‖) = 0.

Hence we have
lim
n→∞

‖xn − Txn‖ = 0,

by the properties of g. This completes the proof. �
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Theorem 3.4. Let K be a nonempty closed convex subset of a uniformly convex ordered Banach
space (E,≤) and T : K → K be a monotone (α, β)-nonexpansive mapping. Assume that E
satisfies Opial’s condition and the sequence {xn} is defined by Ishikawa type iteration (3.8) with
x1 ≤ Tx1 (or Tx1 ≤ x1). If F≥(T ) 6= ∅ (or F≤(T ) 6= ∅) and lim infn→∞ sn(1− sn) > 0, then
the sequence {xn} converges weakly to a fixed point z of T .

Proof. It follows from Theorem 3.3 that {xn} is bounded and limn→∞ ‖xn − Txn‖ = 0.
Then there exists a subsequence {xnk

} of {xn} such that {xnk
} converges weakly to a point

z ∈ K. From Lemma 3.5, it follows that x1 ≤ xnk
≤ z (or z ≤ xnk

≤ xn) for all k ≥ 1.
On the other hand, the condition (2) of Lemma 3.4 means that

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
|α|‖x− y‖+ |β|‖Tx− Ty‖

]
.

Since the sequence {xn} is bounded and limk→∞ ‖xnk
− Txnk

‖ = 0, we have

lim sup
k→∞

‖Txnk
− Tz‖2 ≤ lim sup

k→∞
‖xnk

− z‖2

and hence

lim sup
k→∞

‖Txnk
− Tz‖ ≤ lim sup

k→∞
‖xnk

− z‖. (3.17)

Now, we prove that z = Tz. In fact, suppose that z 6= Tz. Then, by (3.17) and Opial’s
condition, we have

lim sup
k→∞

‖xnk
− z‖ ≤ lim sup

k→∞
‖xnk

− Tz‖

≤ lim sup
k→∞

(‖xnk
− Txnk

‖+ ‖Txnk
− Tz‖)

≤ lim sup
k→∞

‖xnk
− z‖,

which is a contraction. This implies that z ∈ F≥(T ) (or z ∈ F≤(T )). Using the conclusion
(2) of Theorem 3.3, limn→∞ ‖xn − z‖ exists.

Now, we show that the sequence {xn} converge weakly to the point z. Suppose that
this does not hold. Then there exists a subsequence {xnj} to converge weakly to a point
x ∈ K and z 6= x. Similarly, we must have x = Tx and limn→∞ ‖xn − x‖ exists. It follows
from Opial’s condition that

lim
n→∞

‖xn − z‖ < lim
n→∞

‖xn − x‖ = lim sup
j→∞

‖xnj
− x‖ < lim

n→∞
‖xn − z‖,

which is a contradiction and hence we get x = z. This completes the proof. �

Theorem 3.5. Let K be a nonempty compact and closed convex subset of a uniformly convex
ordered Banach space (E,≤) and T : K → K be a monotone (α, β)-nonexpansive mapping.
Assume that the sequence {xn} is defined by Ishikawa type iteration (3.8) with x1 ≤ Tx1. If
lim supn→∞ sn(1 − sn) > 0, then the sequence {xn} converges strongly to a fixed point p ∈
F≥(T ).

Proof. Since K is compact, there exists a subsequence {xnk
} of {xn} such that {xnk

} con-
verges strongly to a point p ∈ K. From Lemma 3.5, it follows that x1 ≤ xnk

≤ p for all
k ≥ 1. By Theorem 3.1, we have F≥(T ) 6= ∅ and it follows from Theorem 3.3 that {xn} is
bounded and

lim inf
n→∞

‖xn − Txn‖ = 0.
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Assume that

lim inf
k→∞

‖xnk
− Txnk

‖ = 0.

On the other hand, the condition (2) of Lemma 3.4 means that

‖Tx− Tp‖2 ≤ ‖x− p‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
|α|‖x− p‖+ |β|‖Tx− Tp‖

]
.

Since the sequence {xnk
} is bounded and

lim
k→∞

‖xnk
− p‖ = 0, lim

k→∞
‖xnk

− Txnk
‖ = 0,

we have

lim sup
k→∞

‖Txnk
− Tp‖2 ≤ 0

and hence

lim
k→∞

‖Txnk
− Tp‖ = 0. (3.18)

Therefore, we have

lim sup
k→∞

‖xnk
− Tp‖ ≤ lim sup

k→∞
(‖xnk

− Txnk
‖+ ‖Txnk

− Tp‖) = 0

and so limk→∞ ‖xnk
− Tp‖ = 0, which implies that p ∈ F≥(T ). Using the conclusion (2)

of Theorem 3.3, limk→∞ ‖xnk
− p‖ exists and so limk→∞ ‖xn − p‖ = 0. This completes the

proof. �

Theorem 3.6. Let K be a nonempty compact and closed convex subset of a uniformly convex
ordered Banach space (E,≤) and T : K → K be a monotone (α, β)-nonexpansive mapping.
Assume that the sequence {xn} is defined by Ishikawa type iteration (3.8) with x1 ≤ Tx1. If
lim infn→∞ sn(1−sn) > 0, then the sequence {xn} converges strongly to a fixed point p ∈ F≥(T ).

Proof. Since K is compact, there exists a subsequence {xnk
} of {xn} such that {xnk

} con-
verges strongly to a point p ∈ K. From Lemma 3.5, it follows that x1 ≤ xnk

≤ p for all
k ≥ 1. By Theorem 3.1, we have F≥(T ) 6= ∅ and it follows from Theorem 3.3 that {xn} is
bounded and

lim inf
n→∞

‖xn − Txn‖ = 0.

Without loss of generality, we can assume that

lim inf
k→∞

‖xnk
− Txnk

‖ = 0.

On the other hand, the condition (2) of Lemma 3.4 means that

‖Tx− Tp‖2 ≤ ‖x− p‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
|α|‖x− p‖+ |β|‖Tx− Tp‖

]
.

Since the sequence {xnk
} is bounded and

lim
k→∞

‖xnk
− p‖ = 0, lim

k→∞
‖xnk

− Txnk
‖ = 0,

we have

lim inf
k→∞

‖Txnk
− Tp‖2 ≤ 0
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and hence

lim
k→∞

‖Txnk
− Tp‖ = 0. (3.19)

Therefore, we have

lim inf
k→∞

‖xnk
− Tp‖ ≤ lim inf

k→∞
(‖xnk

− Txnk
‖+ ‖Txnk

− Tp‖) = 0

and so limk→∞ ‖xnk
− Tp‖ = 0, which implies that p ∈ F≥(T ). Using the conclusion (2)

of Theorem 3.3, limk→∞ ‖xnk
− p‖ exists and so limk→∞ ‖xn − p‖ = 0. This completes the

proof. �

Similarly, the following theorem can be proved:

Theorem 3.7. Let K be a nonempty compact and closed convex subset of a uniformly convex
ordered Banach space (E,≤) and T : K → K be a monotone (α, β)-nonexpansive mapping.
Assume that the sequence {xn} is defined by Ishikawa type iteration (3.8) with Tx1 ≤ x1. If either
lim infn→∞ sn(1 − sn) > 0 or lim supn→∞ sn(1 − sn) > 0, then the sequence {xn} converges
strongly to a fixed point p ∈ F≤(T ).

From Theorem 3.6, we have the following:

Corollary 3.1. Let K be a nonempty closed convex subset of a uniformly convex ordered Banach
space (E,≤) and T : K → K be a monotone α-nonexpansive mapping. Assume that x1 ≤ Tx1
(or Tx1 ≤ x1) and the sequence {xn} defined by Mann’s iteration is bounded with xn ≤ y (or
y ≤ xn) for some y ∈ K and lim inf

n→∞
‖xn − Txn‖ = 0. Then F≥(T ) 6= ∅.

3.4. A numerical example. Now, we give numerical example to illustrate Example 3.2 in
this paper. This section, the numerical solution of this example is presented in Figure 2,3
and Table 1.

Example 3.2. Let T : [0, 1]→ [0, 1] be a mapping defined by

Tx =

{
0.25 if x 6= 1,
0.5 if x = 1.

for any x ∈ [0, 1]. Then T is a (0.8, 0.2)-nonexpansive mapping. Define the sequences {sn}
and {tn} by sn = 1

4 + 1
n2 for each n ≥ 1, then lim supn→∞ sn(1 − sn) = lim supn→∞( 1

4 +
1
n2 )( 3

4 + 1
n2 ) = 3

16 > 0. Then all the conditions of Theorem 3.5 are satisfied. Also, 0.25 is a
fixed point of T (see Figure 1, 2, 3 and Table 1).

FIGURE 1. A fixed point of T is 0.25
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FIGURE 2. The numerical solution in Example 3.2 for sn = 1
4 + 1

n2 and x0 = 0.1

FIGURE 3. The numerical solution in Example 3.2 for sn = 1
4 + 1

n2 and x0 = 0.5
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TABLE 1. The convergent step of {xn} for Example 3.2 with sn = 1
4 + 1

n2

Number of Iterations Sequence value of Mann Sequence value of Ishikawa
x0 = 0.1 x0 = 0.5 x0 = 0.1 x0 = 0.5

1 0.1000000 0.5000000 0.1000000 0.5000000
2 0.2875000 0.1875000 0.2107903 0.3294046
4 0.2619791 0.2300347 0.2493380 0.2518192
6 0.2558473 0.2402544 0.2499226 0.2502132
8 0.2530811 0.2448648 0.2499882 0.2500322
10 0.2516690 0.2472181 0.2499980 0.2500053
12 0.2509161 0.2484731 0.2499996 0.2500009
14 0.2505065 0.2491557 0.2499999 0.2500001
16 0.2502813 0.2495311 0.2499999 0.2500000
18 0.2501566 0.2497388 0.2499999 0.2500000
20 0.2500874 0.2498542 0.2499999 0.2500000
22 0.2500488 0.2499185 0.2499999 0.2500000
24 0.2500273 0.2499544 0.2499999 0.2500000
26 0.2500153 0.2499744 0.2499999 0.2500000
28 0.2500085 0.2499856 0.2499999 0.2500000
30 0.2500048 0.2499919 0.2499999 0.2500000
32 0.2500026 0.2499955 0.2499999 0.2500000
34 0.2500015 0.2499974 0.2499999 0.2500000
36 0.2500008 0.2499985 0.2500000 0.2500000
38 0.2500004 0.2499992 0.2500000 0.2500000
40 0.2500002 0.2499995 0.2500000 0.2500000

Acknowledgments. The first author would like to thank the Research Professional De-
velopment Project Under the Science Achievement Scholarship of Thailand (SAST) for
financial support. This project was supported by the Theoretical and Computational
Science (TaCS) Center under Computational and Applied Science for Smart Innovation
Cluster (CLASSIC), Faculty of Science, KMUTT.

REFERENCES

[1] Aoyama, K., Lemoto, S., Kohsaka, F. and Takahashi, W., Fixed points and ergodic theorems for λ-hybrid mappings
in Hilbert spaces, Nonlinear Convex Anal., 11 (2010), 335–343

[2] Aoyama, K. and Kohsaka, F., Fixed points theorem for α-nonexpansive mappings in Banach spaces, Nonlinear
Anal., 74 (2011), 4387–4391

[3] Dehaish, B. A. B. and Khamsi, M. A., Mann iteration process for monotone nonexpansive mappings, Fixed Point
Theory Appl., (2015), 2015:177

[4] Ishikawa, S., Fixed points and iterations of non-expansive mappings in Banach spaces, in Proceedings of the
American Mathematical Society, Atlanta, USA, 59 (1976), 65–71

[5] Kohsaka, F. and Takahashi, W., Fixed point theorems for a class of nonlinear mappings relate to maximal monotone
operators in Banach spaces, Arch. Math., 91 (2008), 166–177

[6] Mann, W. R., Mean value methods in iteration, in Proceedings of the American Mathematical Society, Atlanta,
USA, 4 (1954), 15–26

[7] Naraghirad, E., Wong, N. C. and Yao, J. C., Approximating fixed points of α-nonexpansive mappings in uniformly
convex banach spaces and Cat(0), Fixed Point Theory Appl., (2013), 2013:57

[8] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings in Banach
spaces, Bull. Amer. Math. Soc., 73 (1967), 591–597

[9] Song, Y., Promluang, K., Kumam, P. and Cho, Y. J., Fixed point theorems and iterative approximations for monotone
nonexpansive mappings in ordered Banch spaces, Fixed Point Theorem Appl., (2016), 2016:73



180 K. Muangchoo-in, P. Kumam, Y. J. Cho

[10] Song, Y., Kumam, P. and Cho, Y. J., Some convergence theorems of the Mann iteration for monotone α-nonexpansive
mappings, Appl. Math. Comput., 287/288 (2016), 74–82

[11] Takahashi, W., Nonlinear Functional Analysis–Fixed Point Theory and its Applications, in Proceedings of the
International Conference, Yokohama Publishers, Yokohama, 2000

[12] Xu, H. K., Inequality in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127–1138

1KMUTTFIXED POINT RESEARCH LABORATORY

DEPARTMENT OF MATHEMATICS

ROOM SCL 802 FIXED POINT LABORATORY

SCIENCE LABORATORY BUILDING, FACULTY OF SCIENCE

KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT)
126 PRACHA-UTHIT ROAD, BANG MOD, THRUNG KHRU, BANGKOK 10140, THAILAND

Email address: khanitin.math@mail.kmutt.ac.th
Email address: dawud.tho@kmutt.ac.th
Email address: poom.kum@kmutt.ac.th

2KMUTT-FIXED POINT THEORY AND APPLICATIONS RESEARCH GROUP (KMUTT-FPTA)
THEORETICAL AND COMPUTATIONAL SCIENCE CENTER (TACS), SCIENCE LABORATORY BUILDING

FACULTY OF SCIENCE, KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT)
126 PRACHA-UTHIT ROAD, BANG MOD, THRUNG KHRU, BANGKOK 10140, THAILAND

Email address: dawud.tho@kmutt.ac.th
Email address: poom.kum@kmutt.ac.th

3 DEPARTMENT OF MATHEMATICS EDUCATION

GYEONGSANG NATOINAL UNIVERSITY

JINJU 660-701, KOREA.
Email address: yjcho@gnu.kr


