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Exact and trajectory controllability of second order
nonlinear differential equations with deviated argument

M. MUSLIM1, AVADHESH KUMAR2 and RAVI P. AGARWAL3

ABSTRACT. In this manuscript, we consider a control system governed by a second order nonlinear differ-
ential equations with deviated argument in a Hilbert space X . We used the strongly continuous cosine family
of bounded linear operators and fixed point method to study the exact and trajectory controllability. Also, we
study the exact controllability of the nonlocal control problem. Finally, we give an example to illustrate the
application of these results.

1. INTRODUCTION

We consider a control problem represented by a second order nonlinear differential
equation with deviated argument in a Hilbert space X :

x′′(t) = Ax(t) +Bu(t) + f(t, x(t), x[h(x(t), t)]), t ∈ (0, T ], (1.1)
x(0) = x0, x′(0) = y0,

where x : J(= [0, T ]) → X is the state function, u(.) ∈ L2(J, U) is the control function, U
is a Hilbert space known as the control space, A is the infinitesimal generator of a strongly
continuous cosine family of bounded linear operators (C(t))t∈R on X, B : U → X is a
bounded linear operator and f : J ×X ×X → X is a suitable continuous function to be
specified later.

Controllability is one of the basic concepts in mathematical theory which was intro-
duced by Kalman in 1960. This is a qualitative property of dynamical control systems and
it is of particular importance in control theory. Roughly speaking, controllability means,
that it is possible to steer dynamical control system from an arbitrary initial state to an
arbitrary final state using the set of admissible controls. Many scientific and engineering
problems are nonlinear in nature and can be described in infinite-dimensional spaces. So
the study of controllability results for the control systems in infinite-dimensional spaces is
very important. The controllability of nonlinear systems in finite-dimensional space has
been studied extensively by many authors. Several authors [4, 8, 9, 10, 15, 16, 19] have
extended the concept of controllability to infinite-dimensional systems and established
sufficient conditions for the controllability of nonlinear systems in abstract spaces [18].
Among the various approaches to the study of the controllability of nonlinear systems,
fixed-point techniques have been used effectively for these systems [2, 3, 25, 26]. In the
fixed-point method, the controllability problem is transformed into a fixed-point problem
for an appropriate nonlinear operator in a function space [11, 20, 21].

Several partial differential equations that arise in many problems connected with the
transverse motion of an extensible beam, the vibration of hinged bars and many other
physical phenomena can be formulated as the second order abstract differential equations
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in the infinite dimensional spaces. A useful tool for the study of second order abstract
differential equations is the theory of strongly continuous cosine families of operators. For
the initial study on the controllability of various kind of abstract second order differential
equations we refer to [1, 7] and references cited in these papers. Sakthivel et al. [22] study
the exact controllability of the following problem

x′′(t) = Ax(t) +Bu(t) + f(t, x(t), x′(t)), t ∈ J = [0, b], t 6= tk, (1.2)
x(0) = x0, x′(0) = y0,

∆x(tk) = I1k(x(tk)), ∆x′(tk) = I2k(x(t+k )), k = 1, 2...m,

and extend the result for the nonlocal conditions but authors have not discussed trajectory
controllability which is a stronger concept of exact controllability. Trajectory controllabil-
ity has concern not only with initial and final points but also with trajectory which passes
through these points. Chalishajar et al. [6] have shown trajectory controllability of integro-
differential system in the finite and infinite dimensional spaces. The infinite dimensional
version of the problem is

w′(t) = Aw(t) +B(t, u(t)) + f

(
t, w(t),

∫ t

0

G(t, s, w(s))ds

)
t ∈ J = [0, T ], (1.3)

w(0) = w0.

In (4.1, [6]), authors have converted second order differential equation into the first order
system of equations. In many cases it is advantages to treat second order abstract dif-
ferential equations directly rather than convert them to first order systems. Hence, it is
motivating to study trajectory controllability of second order differential problem.

In certain real world problems, delay depends not only on the time but also on the
unknown quantity. The differential equations with deviated arguments are the general-
ization of delay differential equations. Gal [13] has considered a nonlinear abstract dif-
ferential equations with deviated arguments and study the existence and uniqueness of
solutions. Muslim et al. [17] have investigated exact controllability of first order system
with deviated argument. As per author’s knowledge, there are only few papers which
discuss in detail both the exact controllability as well as trajectory controllability of the
second order nonlinear differential. Therefore, motivated by [6, 17, 22], we consider a
control problem described by a second order nonlinear differential equation with devi-
ated argument. The plan of the paper is as follows. In the first and second section, we
give the introduction, notations and results which are required for the later sections. In
the third, fourth and fifth section, we study the exact controllability for the problem (1.1),
integro-differential problem and nonlocal problem respectively. Trajectory controllabil-
ity is discussed in the sixth section. In the last section, an example is given to show the
application of these abstract results.

2. PRELIMINARIES AND ASSUMPTIONS

We briefly review some basic definitions and useful properties of the strongly continu-
ous cosine family of bounded operators which will be used in the subsequent sections.

Definition 2.1. (see, [24]) A one parameter family (C(t))t∈R of bounded linear operators
mapping the Banach space X into itself is called a strongly continuous cosine family if
and only if
(i) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R.
(ii) C(0) = I.
(iii) C(t)x is continuous in t on R for each fixed point x ∈ X .
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(S(t))t∈R be the sine function associated with the strongly continuous cosine family,
(C(t))t∈R which is defined by

S(t)x =

∫ t

0

C(s)x ds, x ∈ X, t ∈ R.

Let M and M̃ are positive constants such that ‖C(t)‖ ≤ M and ‖S(t)‖ ≤ M̃ for every
t ∈ J . The infinitesimal generator of a strongly continuous cosine family (C(t))t∈R is the
operator A : X → X defined by

Ax = d2/dt2C(0)x.

D(A) be the domain of the operator A which is defined by

D(A) = {x ∈ X : C(t)x is twice continuously differentiable in t}.
D(A) is the Banach space endowed with the graph norm ‖x‖A = ‖x‖ + ‖Ax‖ for all
x ∈ D(A). We define a set

E = {x ∈ X : C(t)x is once continuously differentiable in t}
which is a Banach space endowed with norm ‖x‖E = ‖x‖ + sup0≤t≤1 ‖AS(t)x‖ for all
x ∈ E.

With the help of C(t) and S(t), we define a operator valued function

h̄(t) =

[
C(t) S(t)
AS(t) C(t)

]
.

Operator valued function h̄(t) is a strongly continuous group of bounded linear operators
on the space E ×X generated by the operator

Ā =

[
0 I
A 0

]
defined on D(A)× E. AS(t) : E → X is a bounded linear operator and that AS(t)x → 0
as t → 0, for each x ∈ E. If x : [0,∞)→ X is locally integrable function then

y(t) =

∫ t

0

S(t− s)x(s)ds

defines an E valued continuous function which is a consequence of the fact that∫ t

0

h̄(t− s)
[

0
x(s)

]
ds =

[ ∫ t
0
S(t− s)x(s)ds∫ t

0
C(t− s)x(s)ds

]
defines an (E ×X) valued continuous function.

Proposition 2.1. Let (C(t))t∈R be a strongly continuous cosine family in X . The following are
true:

(i) C(t) = C(−t) for all t ∈ R.
(ii) C(s), S(s), C(t) and S(t) commute for all s, t ∈ R.

(iii) S(t)x is continuous in t on R for each fixed x ∈ X.
(iv) S(s+ t) + S(s− t) = 2S(s)C(t) for all s, t ∈ R.
(v) S(s+ t) = S(s)C(t) + S(t)C(s) for all s, t ∈ R.

(vi) S(t) = −S(−t) for all t ∈ R.
(vii) there exist constants K ≥ 1 and ω ≥ 0 such that |C(t)| ≤ Keω|t| for all t ∈ R.

(viii) |S(t2)− S(t1)| ≤ K|
∫ t2
t1
eω|s|ds| for all t1, t2 ∈ R.

For additional details on cosine family theory, we refer to Travis & Webb [24].
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Proposition 2.2. Let (C(t))t∈R be a strongly continuous cosine family in X with infinitesimal
generator A. The following are true:

(i) D(A) is dense in X and A is a closed operator in X.
(ii) If x ∈ X and r, s ∈ R, then define z =

∫ s
r
S(u)x du ∈ D(A) and Az = C(s)x− C(r)x.

(iii) If x ∈ X and r, s ∈ R, then define z =
∫ s
0

∫ r
0
C(u)C(v)x du dv ∈ D(A) and Az =

2−1(C(s+ r)x− C(s− r)x).
(iv) If x ∈ X, then S(t)x ∈ E for every t ∈ R.
(v) If x ∈ E, then S(t)x ∈ D(A), and (d/dt)C(t)x = AS(t)x for every t ∈ R.

(vi) If x ∈ D(A), then C(t)x ∈ D(A), and (d2/dt2)C(t)x = AC(t)x = C(t)Ax for every
t ∈ R.

(vii) If x ∈ E then limt→0AS(t)x = 0.
(viii) C(t+ s)− C(t− s) = 2AS(t)S(s) for all s, t ∈ R.

Proof. We refer to Fattorini [12] and Travis & Webb [23, 24]. �

Definition 2.2. Let xT (x0, y0;u) be the state value of(1.1) at time T corresponding to the
control u and the initial value x0 and y0. The system(1.1) is said to be exactly controllable
on the interval J if R(T, x0, y0) = X, where

R(T, x0, y0) = {xT (x0, y0;u) : u(.) ∈ L2(J, U)}.

We assume that the second order linear system

x
′′
(t) = Ax(t) +Bu(t), t ∈ J, (2.4)

x(0) = x0, x
′
(0) = y0

is exactly controllable on J . We define an operator

ΓT0 =

∫ T

0

S(T − s)BB∗S∗(T − s)ds.

System (2.1) is exactly controllabe [14] iff there exists a δ > 0 such that

〈ΓT0 x, x〉 ≥ δ‖x‖2,
for every x ∈ X then ‖(ΓT0 )−1‖ ≤ 1

δ .

Let C([0, T ], X) be the space of all continuous functions x : [0, T ] → X which is a
Banach space endowed with norm ‖x‖C(J,X) = supt∈J ‖x(t)‖. We define another set

CL(J,X) = {x ∈ C([0, T ], X) : ‖x(t)− x(s)‖ ≤ L|t− s|,∀ t, s ∈ J and, L > 0}.
Clearly CL(J,X) is a Banach space endowed with supremum norm.

Definition: A function x(·) ∈ CL([0, T ], X) is called a mild solution of the control problem
(1.1) if x(t) is the solution of the following integral equation

x(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)[Bu(s) + f(s, x(s), x[h(x(s), s)])]ds. (2.5)

In order to prove the exact controllability of the problem (1.1), we need the following
assumptions:

(A1) f : J ×X ×X → X is a continuous function and there exists positive constants
K1 and K2 such that

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤ K1(‖x1 − x2‖+ ‖y1 − y2‖)
for every x1, x2, y1, y2 ∈ X and maxt∈J ‖f(t, 0, x(0)‖ = K2.
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(A2) h : X× [0, T ] → R+ is a uniformly continuous and there exists a positive constant
Lh = Lh(α) such that

|h(x1, s)− h(x2, s)| ≤ Lh‖x1 − x2‖, ∀x1, x2 ∈ X whenever 0 ≤ s ≤ α

and satisfies h(., 0) = 0 for each α > 0.
(A3) The linear system (2.4) is exactly controllable.

3. EXACT CONTROLLABILITY

Steering of a dynamical control system from an arbitrary initial state to an arbitrary
final state using the set of admissible controls is called exactly controllable system. In this
section, we investigate exact controllability of the system (1.1).

Theorem 3.1. If x0 ∈ D(A), y0 ∈ E and all the assumptions (A1)-(A3) are satisfied. Then, the
second order nonlinear control system (1.1) is locally exactly controllable on [0, T0].

Proof. We take K3 = ‖B‖ and ρ = supt∈[0,T0] ‖AS(t)‖. For a suitable δ1 > 0, we choose
T0, 0 < T0 ≤ T such that

M‖x0‖+ M̃‖y0‖+ M̃K3PT0 + M̃K1L
2LhT

2
0 + M̃K2T0

(1− M̃K1T0)
= δ1.

We define the feedback control function

u(t) = B∗S∗(T0 − s)(ΓT0
0 )−1[

xT0
− C(T0)x0 − S(T0)y0 −

∫ T0

0

S(T0 − s)f(s, x(s), x[h(x(s), s)])ds

]
. (3.6)

Hence, we get

‖u(t)‖ ≤ P = K3M̃
1

δ
[‖xT0‖+M‖x0‖+ M̃‖y0‖+ M̃K1T0(δ1 + L2LhT0) + M̃K2T0].

We choose W = {x(.) ∈ CL([0, T0], X) : ‖x‖C([0,T0],X) ≤ δ1}. Clearly, W is a closed and
bounded subset of CL([0, T0], X). We define a map F : W →W given by

(Fx)(t) = C(t)x0 + S(t)y0 +

∫ t

0

S(t− s)[Bu(s) + f(s, x(s), x[h(x(s), s)])]ds.

First, we need to show that Fx ∈ CL([0, T0], X) for any x ∈ CL([0, T0], X). If x ∈
CL([0, T0], X), T0 > t2 > t1 > 0, then we get

‖(Fx)(t2)− (Fx)(t1)‖ ≤ ‖(C(t2)− C(t1))x0‖+ ‖(S(t2)− S(t1))y0‖

+

∫ t1

0

‖S(t2 − s)− S(t1 − s)‖‖B‖‖u(s)‖ds

+

∫ t2

t1

‖S(t2 − s)‖‖B‖‖u(s)‖ds

+

∫ t1

0

‖S(t2 − s)− S(t1 − s)‖‖f(s, x(s), x[h(x(s), s)])‖ds

+

∫ t2

t1

‖S(t2 − s)‖‖f(s, x(s), x[h(x(s), s)])‖ds

≤ ‖I1‖+ ‖I2‖+ ‖I3‖+ ‖I4‖+ ‖I5‖+ ‖I6‖. (3.7)
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We have,

‖I1‖ = ‖(C(t2)− C(t1))x0‖ = ‖
∫ t2

t1

AS(τ)x0dτ‖

≤ C1(t2 − t1), (3.8)

where C1 = ρ‖x0‖. Similarlly, we have

‖I2‖ = ‖(S(t2)− S(t1))y0‖ = ‖K
∫ t2

t1

eωτdτ‖‖y0‖

≤ C2(t2 − t1), (3.9)

where C2 = K.eωT0‖y0‖. We calculate ‖I3‖ as follows

‖I3‖ =

∫ t1

0

‖S(t2 − s)− S(t1 − s)‖‖B‖‖u(s)‖ds

≤ K3P

∫ t1

0

‖K
∫ t2−s

t1−s
eωτdτ‖ds

≤ C3(t2 − t1), (3.10)

where C3 = K.eωT0K3PT0. Fourth integral ‖I4‖ is calculated as follows

‖I4‖ =

∫ t2

t1

‖S(t2 − s)‖‖B‖‖u(s)‖ds ≤ C4(t2 − t1), (3.11)

where C4 = M̃K3P. Similarly, we calculate fifth and six part of inequality (3.7) as follows

‖I5‖ =

∫ t1

0

‖S(t2 − s)− S(t1 − s)‖‖f(s, x(s), x[h(x(s), s)])‖ds

≤ N

∫ t1

0

‖K
∫ t2−s

t1−s
eωτdτ‖ds

≤ C5(t2 − t1), (3.12)

where C5 = K.eωT0NT0, N = [M̃K1(δ1 + L2LhT0) + M̃K2] and

‖I6‖ =

∫ t2

t1

‖S(t2 − s)‖‖f(s, x(s), x[h(x(s), s)])‖ds ≤ C6(t2 − t1), (3.13)

where C6 = M̃N, N = [M̃K1(δ1 + L2LhT0) + M̃K2].
We use the inequalities (3.8), (3.9), (3.10), (3.11), (3.12) and (3.13)) in inequality (3.7) and
get the following inequality

‖(Fx)(t2)− (Fx)(t1)‖ ≤ L|t2 − t1|, (3.14)

whereL = C1+C2+C3+C4+C5+C6.Hence Fx ∈ CL([0, T0], X) for any x ∈ CL([0, T0], X)
Our next task is to prove that F : W →W. Now for t ∈ (0, T0] and x ∈W, we have

‖(Fx)(t)‖ ≤ ‖C(t)x0‖+ ‖S(t)y0‖+

∫ t

0

‖S(t− s)‖‖B‖‖u(s)‖ds

+

∫ t

0

‖S(t− s)‖‖f(s, x(s), x[h(x(s), s)])‖ds

≤ ‖C(t)x0‖+ ‖S(t)y0‖+ M̃K3PT0 + M̃K1T0(δ1 + L2LhT0) + M̃K2T0.

Thus, we get ‖(Fx)‖C([0,T0],X) ≤ δ1.
The feedback control (3.1) transfers the system (1.1) from the initial state to the final

state provided that the mapping F has a fixed point. So if the mapping F has an unique
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fixed point then the system (1.1) is exactly controllable.
For any x, y in CL([0, T0], X), we have

‖(Fx)(t)− (Fy)(t)‖

≤ 1

δ
M̃2K2

3T0

[∫ T

0

M̃
[
K1(‖x(t)− y(t)‖+ ‖x[h(x(s), s)]− y[h(y(s), s)]‖)

]
ds

]

+

∫ t

0

M̃
[
K1(‖x(t)− y(t)‖+ ‖x[h(x(s), s)]− y[h(y(s), s)]‖)

]
ds.

Thus we have,

‖(Fx)− (Fy)‖C([0,T0],X) ≤ λ‖x− y‖C([0,T0],X),

where λ =
[
M̃K1T0(1 + 1

δ M̃
2K2

3T0)(2 + LLh)
]
. We choose T0 in such a way that λ <

1. Hence, F is a contraction mapping. Therefore, F has a unique fixed point x(.) in
CL([0, T0], X) which is the mild solution of the equation (1.1). �

4. CONTROLLABILITY OF INTEGRO-DIFFERENTIAL EQUATIONS

In this section, we consider a control system represented by an integro-differential
equation in the Hilbert space X :

x′′(t) = Ax(t) +Bu(t) + f(t, x(t), x[h(x(t), t)]) (4.15)

+

∫ t

0

k(t− s)g(s, x(s))ds, t ∈ J = (0, T ],

x(0) = x0, x′(0) = y0,

where x is the state function, u(.) ∈ L2(J, U) is the control function, U is the control
space, A is the infinitesimal generator of a strongly continuous cosine family of bounded
linear operators (C(t))t∈R on X, B : U → X is a bounded linear operator. In order to
prove the controllability of the integro-differential equation (4.15), we need the following
conditions:
(A4.) κT =

∫ t
0
|κ(s)|ds.

(A5.) ‖g(t, u(t))− g(t, v(t))‖ ≤ Lg‖u(t)− v(t)‖, where Lg is a positive number.

Theorem 4.2. If x0 ∈ D(A), y0 ∈ E and all the conditions (A1)-(A5) are satisfied then the
problem (4.15) is locally exactly controllable on [0, T0].

Proof. The proof of the theorem is the consequence of the theorem (3.1). �

5. NONLOCAL PROBLEMS

The nonlocal condition is a generalization of the classical initial condition. Nonlocal
conditions are more realistic than the classical initial conditions because they appear in
many physical systems. The first results concerning the existence and uniqueness of mild
solutions to the Cauchy problems with nonlocal conditions were studied Byszewski [5].

We consider the following second order nonlocal differential problem with deviated
argument in a Hilbert space X :

x′′(t) = Ax(t) +Bu(t) + f(t, x(t), x[h(x(t), t)]), t ∈ J = (0, T ], (5.16)
x(0) = x0 + p(x), x′(0) = y0 + q(x).
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Definition 5.3. A function x(.) ∈ CL([0, T ], X) is called a mild solution of the nonlocal
control problem (5.16) if x(t) is the solution of the following integral equation

x(t) = C(t)(x0 + p(x)) + S(t)(y0 + q(x))

+

∫ t

0

S(t− s)[Bu(s) + f(s, x(s), x[h(x(s), s)])]ds.

We need the following assumptions on the functions f, p and q to show the exact con-
trollability of the system (5.16)
(A6): The function f : J ×X ×X → X holds the following conditions:
(i)The function f(t, .) : X ×X → X is continuous a.e. t ∈ J.
(ii)The function f(., x, y) : J → X is strongly measurable for each (x, y) ∈ X ×X .
(iii)There exists a constant cf such that

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤ c̃f (‖x1 − x2‖+ ‖y1 − y2‖)
for every x1, x2, y1, y2 ∈ X.
(A7): The functions p, q : C(J,X) → X are continuous and there exist positive constants
cp and cq such that

‖p(x1)− p(x2)‖ ≤ c̃p‖x1 − x2‖,
‖q(x1)− q(x2)‖ ≤ c̃q‖x1 − x2‖.

Theorem 5.3. Let x0 ∈ D(A), y0 ∈ E. If the assumptions (A2)-(A3) and (A6)-(A7) are satisfied,
then the second order nonlocal control system (5.16) is locally exactly controllable on [0, T0].

Proof. Define the feedback control function for the nonlocal problem (5.16) as

u(t) = B∗S∗(T0 − s)(ΓT0
0 )−1

[
xT0
− C(T0)(x0 + p(x))− S(T0)(y0 + q(x))

−
∫ T0

0

S(T0 − s)f(s, x(s), x[h(x(s), s)])ds

]
.

The proof of this theorem is the consequence of the theorem (3.1) in the previous section.
�

Remark 5.1. By using the similar technique as in theorem (3.1), we can prove the exact
controllability result for the following nonlocal integro-differential equation

x′′(t) = Ax(t) +Bu(t) + f(t, x(t), x[h(x(t), t)]) (5.17)

+

∫ t

0

k(t− s)g(s, x(s))ds, t ∈ J = (0, T ],

x(0) = x0 + p(x), x′(0) = y0 + q(x).

6. TRAJECTORY CONTROLLABILITY

In exact controllability we steer the system from initial state to the desired final state
without concern of path or trajectory but practically it may be desirable to steer the system
from initial state to the desired final state along a prescribed trajectory. It may optimize
certain factors involved in the steering system and leads to the motivation for the study
of T-controllability.

Definition 6.4. Let T be the set of all functions z(.) defined on J := [0, T ] which are twice
continuously differentiable such that z(0) = x0, and z′(0) = y0. The system (1.1) is called
Trajectory controllable (T-controllable) if for any z ∈ T there exists a control u such that
the corresponding solution x(.) of equation (1.1) satisfies x(t) = z(t) almost everywhere.
We call T the set of all feasible trajectories for the system (1.1).
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Theorem 6.4. If the bounded linear operator B has left inverse, then the second order nonlinear
control system (1.1) is T-controllable on J .

Proof. Let z(t) be a given trajectory in T. We look for a control function u(t) satisfying

z(t)− C(t)x0 − S(t)y0 −
∫ t

0

S(t− s)f(s, z(s), z[h(z(s), s)])ds =

∫ t

0

S(t− s)Bu(s)ds.

Differentiating both sides with respect to t, we get

z′(t)−AS(t)x0 − C(t)y0 −
∫ t

0

C(t− s)f(s, z(s), z[h(z(s), s)])ds =

∫ t

0

C(t− s)Bu(s)ds.

Again differentiating both sides with respect to t, we get

z′′(t)−AC(t)x0 − AS(t)y0 −
∫ t

0

AS(t− s)f(s, z(s), z[h(z(s), s)])ds (6.18)

− f(t, z(t), z[h(z(t), t)]) =

∫ t

0

AS(t− s)Bu(s)ds+Bu(t).

Equation (6.18) can be rewritten in the form given below

ỹ(t) =

∫ t

0

k(t, s)ỹ(s)ds+ ỹ0(t), (6.19)

where ỹ(t) = Bu(t), k(t, s) = −AS(t − s) and ỹ0(t) is the left hand side of (6.18). Define
an operator K̃ : L2(J,H)→ L2(J,H) by

(K̃ỹ)(t) =

∫ t

0

k(t, s)ỹ(s)ds. (6.20)

It is not difficult to prove that K̃ is a bounded linear operator. Also it can be proved that
K̃n is a contraction mapping for large n. Hence by generalized Banach principle, there
exists a unique solution ỹ(.) for the equation (6.19) for given ỹ0 ∈ L2(J,H). Therefore T-
controllability follows if we can extract u(t) from the relation

Bu(t) = ỹ(t).

It can be done by taking left inverse of B. �

7. APPLICATION

Example 7.1. LetX = L2(0, 1).We consider the control system governed by the following
partial differential equations with deviated argument,

∂ttH(t, y) = ∂yyH(t, y) + f2(y,H(t, y)),+f3(t, y,H(t, y))
+b(y)W1(t, y), y ∈ (0, 1), t > 0,

H(t, 0) = H(t, 1) = 0, t ∈ J := [0, T ], 0 < T <∞,
H(0, y) = x0, y ∈ (0, 1),
∂tH(0, y) = y0, y ∈ (0, 1),

(7.21)

where

f3(y,H(t, y)) =

∫ y

0

K̄(y, s)H(s, h(t)(a1|H(t, s)|+ b1|H(t, s)|))ds.

We assume that a1, b1 ≥ 0, (a1, b1) 6= (0, 0), h : [0, T ]→ R+ is locally Hölder continuous in
t with h(0) = 0 and K̄ : [0, 1]× [0, 1]→ R, b ∈ X
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We define an operator A, as follows,

Ax = x′′ with x ∈ D(A) = {x ∈ H1
0 (0, 1) ∩H2(0, 1) : x′′ ∈ X}. (7.22)

Here, clearly the operator A is the infinitesimal generator of a strongly continuous cosine
family of operators on X . Let B ∈ L(U,X) be defined by

Bu(t)(y) = b(y)W1(t, y), 0 < y < 1, b(y) ∈ L2(0, 1).

The equation (7.21) can be reformulated as the following abstract equation inX = L2(0, 1):

x′′ = Ax(t) +Bu(t) + f(t, x(t), x[h(x(t), t)]), t > 0,

x(0) = x0, x′(0) = y0,

where x(t) = H(t, .) that is x(t)(y) = H(t, y), y ∈ (0, 1). The operator A is same as in
equation (7.22).

The function f : [0, T ]×X ×X → X , is given by

f(t, ψ, ξ)(y) = f2(y, ξ) + f3(t, y, ψ),

where f2 : [0, 1]×X → H1
0 (0, 1) is given by

f2(y, ξ) =

∫ y

0

K̄(y, x)ξ(x)dx,

and

‖f3(t, y, ψ)‖ ≤ Q(t, y)(1 + ‖ψ‖H2(0,1))

withQ(t, y) ∈ X andQ is continuous in its first argument. For more details see [13]. Thus,
the theorem (3.1) can be applied to the problem (7.21).

We can choose the functions p(x) and q(x) as given below

p(x) =

n∑
k=1

ck x(tk), tk ∈ J for all n ∈ N,

q(x) =

n∑
k=1

dk x(tk), tk ∈ J for all n ∈ N,

where ck and dk are constants.
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